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We obtain analytical expressions for the eigenvalues and eigenstates of a family of exponential-type
potential wells. The supersymmetry formalism applied to quantum mechanics is summarized and
illustrated by producing from this family of potentials another class of exact solutions made of their
isospectral partners. A subset of the supersymmetric partners provides a class of exactly solvable
double well potentials. The exact solutions of these potentials are used to test the robustness and
accuracy of different approximation methods. We determine the ground state through a variational
method applied to a set of trial functions and the entire spectrum using the WKB, JWKB, and its
supersymmetric extension formulas. We comment on the importance of the Maslov index and on the
range of validity of these semiclassical quantization approaches. © 2011 American Association of Physics
Teachers.
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I. INTRODUCTION

Analytically solvable models in quantum mechanics are of
much interest because they allow the abstract theoretical
framework to be illustrated by concrete examples. For in-
stance, the square well potential is convenient for introduc-
ing the notion of reflection and transmission coefficients for
the scattering states with a minimum of calculations, yielding
some astonishing results such as the total quantum reflection
of a low incident energy particle interacting with a potential
well. Besides the square potential, there are not many scat-
tering one-dimensional potentials that are discussed in quan-
tum mechanics textbooks. Reference 1 gives the interesting
example of the step potential U!x"=U0 / !1+e!x", for which
one has to deal with subtle asymptotic conditions at infinity
to solve the scattering problem.

Interestingly, once an analytical solution is known, super-
symmetry techniques applied to quantum mechanics provide
a whole family of analytical solutions having closely related
properties. Analytically solvable models provide a way for
comparing approximate methods to exact solutions and can
be used to model more complex situations.

In this article, we first investigate a family of one-
dimensional exponential-type potential wells. In contrast to
square well potentials, these potentials are characterized by
two parameters—the depth of the potential U0 and the typi-
cal length of variation !−1 of the potential !see Fig. 1". We
solve the scattering problem analytically and determine the
bound states. This family of potentials provides an interest-
ing example of the role of parity symmetry and the impor-
tance of boundary conditions on the existence and the num-
ber of bound states.

The second part of the article is devoted to the use of the
supersymmetry formalism for exponential potential wells2,3

and a new class of exactly solvable double well potentials.
The third part explores the robustness and accuracy of

approximation methods in quantum mechanics. We compare
the exact energy of the ground state for exponential poten-
tials with approximate results based on variational calcula-
tions. We give examples of the importance of the appropriate
set of trial functions to obtain an accurate estimate of the
ground state along with the limitations of this method. The

exact bound spectrum of the potential wells is also compared
with the predictions of different semiclassical quantization
formulas. We recover general conclusions on the relative
range of validity of these different approaches.

II. EXPONENTIAL POTENTIALS

We first solve for the eigenstates for potentials UI!x" de-
fined for x"0 with a sharp wall at x=0 and then for even
potentials UII!x" defined on the entire real axis with only soft
walls. We have

UI!x" = %− U0e−!x !x " 0"
# !x $ 0" & !1"

and

UII = − U0e−!'x', !2"

with !"0. We set U0"0 because we are considering poten-
tial wells.5 The potentials UI!x" and UII!x" are represented in
Fig. 1.

The determination of the motion of a particle of mass m
that experiences UI!x" or UII!x" requires the knowledge of
the stationary states, which are solutions of the time-
independent Schrödinger equation. If we introduce the di-
mensionless variable X=!x and the dimensionless param-
eters a= #8mU0 / !%2!2"$1/2 and b= #8m!−E" / !%2!2"$1/2, we
can express the time-independent Schrödinger equation in
the form

d2&

dX2 +
1
4

#a2e−X − b2$&!X" = 0. !3"

By making the change of variable y=ae−X/2, Eq. !3" takes the
form of the second-order differential equation satisfied by the
Bessel functions,

y2d2&

dy2 + y
d&

dy
+ #y2 − b2$&!y" = 0. !4"
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A. The bound energies and states of UI„x…
The energy of the bound states of the potential well UI!x"

is found for energy E$0 !b is real and positive". In this case,
the solution of Eq. !3" takes the form

&!X ' 0" = A1
+Jb!ae−X/2" + A2

+J−b!ae−X/2" , !5"

where Jb are the Bessel functions of the first kind. The spec-
trum is determined by the boundary conditions, &!0"=0 and
&!x→#"=0, and we obtain

A1
+Jb!a" + A2

+J−b!a" = 0, !6"

#A1
+Jb!y → 0" + A2

+J−b!y → 0"$ → 0. !7"

We have J(!y→0")y(. Because b"0, the divergence of
J−b!y" when y→0 requires that A2

+=0 to satisfy Eq. !7". The
discrete spectrum of energy (En) is therefore obtained from
Eq. !6" and involves the zeros (bn) of the Bessel function for
fixed values of U0 and !,

Jbn
!a" = 0. !8"

The number of bound states is thus dictated by the value of
the parameter a. The ground state energy is E0=−U0b0

2 /a2.
The wave function associated with the eigenenergy En is

&n!x" = NnJbn
!ae−!x/2" , !9"

where Nn is a normalization factor. If a$ac*2.405, there is
no value of b that satisfies Eq. !8", meaning that the potential
UI does not have a bound state. The sharp wall of the poten-
tial at x=0 rules out the application of the theorem, accord-
ing to which there is always at least a bound state for a
one-dimensional potential.6,7 The analysis of the bound states
of UII!x" enables a simple interpretation of the nonexistence
of a bound state for UI!x" when a$ac.

B. The bound energies and states of UII„x…
The general form of the solution of the stationary

Schrödinger equation for the potential UII!x" is

&!X ' 0" = A1
+Jb!ae−X/2" + A2

+J−b!ae−X/2" , !10a"

&!X * 0" = A1
−Jb!aeX/2" + A2

−J−b!aeX/2" . !10b"

UII!x" is even and thus commutes with the parity operator.
As a result, the eigenfunctions have a well-defined parity.
The determination of the bound states is made by searching
for solutions such that &!x→ +#"=0, which implies that
A2

+=A2
−=0, with the extra conditions &!0"=0 for the odd so-

lutions and &!!0"=0 for the even solutions. For a given value
of a, the corresponding discrete spectrum is given by the
zeros (bn) of the Bessel function for the odd eigenfunction

and the zeros (b̃n) of its first derivative for the even solution,

Jbn
!a" = 0 and J

b̃n
! !a" = 0, !11"

with b̃0"b0" b̃1"b1" . . .. The eigenstates are

&n!x" = NnJbn
!ae−!'x'/2" !12"

for the eigenenergies En=−U0bn
2 /a2 and

&̃n!x" = ÑnJb̃n
!ae−!'x'/2" !13"

for the eigenenergies Ẽn=−U0b̃n
2 /a2, where Ñn is another

normalization factor. The subset of solutions (bn) coincides
with the eigenenergies of UI!x" because they satisfy the same
boundary conditions, &!0"=0 and &!x→+#"=0. The extra

subset (b̃n) results from the extra symmetry of the potential

UII!x"=UII!−x". The ground state is given by the first root b̃0

of the even solutions, that is, Ẽ0=−U0b̃0
2 /a2.

In contrast to UI!x", there is always at least one bound
state for the symmetric potential UII!x".6 The threshold ac
below which there is no bound state for UI!x" can now be
interpreted for the extended potential UII!x". The threshold
leads to the appearance of the first excited state of UII!x".
The comparison between the spectra of UII!x" and UI!x"
gives an example illustrating how boundary conditions influ-
ence the existence of at least one bound state for a one-
dimensional potential.

C. Scattering states of UII„x…
The scattering states are obtained for E"0 !b= i, is

purely imaginary, ,"0" and are discussed here only for
UII!x". An incident plane wave coming from −# gives rise to
reflected and transmitted waves. The asymptotic expansion
for large 'x' of Eq. !10b" yields

&!x" * A1
++a

2
,b e−ikx

-!1 + b"
+ A2

++a

2
,−b eikx

-!1 − b"
, !14a"

&!x" * A1
−+a

2
,b eikx

-!1 + b"
+ A2

−+a

2
,−b e−ikx

-!1 − b"
, !14b"

where the - function is defined by -!z"=-0
#tz−1e−tdt. We in-

fer the reflection probability 'r'2 as a function of the dimen-
sionless parameters a and b by setting A1

+=0,

'r'2 = .A2
−

A1
−.2

=
1
4
. Jb!a"

J−b!a"
+

Jb!!a"
J−b! !a"

.2

. !15"

The result, as shown in Fig. 2, exhibits reflection for small
values of , due to the fast variation of the de Broglie wave-
length .dB!x"=h /mv!x" as , approaches zero,

x

UII(x) UI(x)

U0

E0

E1

E2
E3

E4

α−1

Fig. 1. !Color online" Potentials UII!x" and UI!x" of depth U0 and charac-
teristic length !−1. UII!x" is plotted with five bound states !a=8.48" with
energies E4"E3"E2"E1"E0, and UI!x" is represented for the same pa-
rameters. This latter potential accommodates only two bound states with
energies E3 and E1.
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max+d.dB

dx
, =

4/

3/3

1
,

→
,→0+

+ # . !16"

The reflection probability displays a periodic structure as a
function of a, which is caused by a Fabry–Pérot cavity-like
resonance effect of the matter wave between the walls of the
potential well.

III. THE SUPERSYMMETRY FORMALISM AND ITS
APPLICATION TO EXPONENTIAL POTENTIALS

Supersymmetry !SUSY" applied to one-dimensional prob-
lems in quantum mechanics allows us to construct a family
of exactly solvable Hamiltonians from a given solvable
problem.3 In this section, we give a brief discussion of this
method and illustrate it for exponential potentials.

We consider the Hamiltonian H=T+V!x", where T
=−!%2 /2m"d2 /dx2 is the kinetic energy term and V!x" is the
potential energy term. The eigenvalues and eigenfunctions
for the bound states satisfy H'&n0=En'&n0, with n
=0,1 ,2 , . . .. We introduce the potential V−!x"=V!x"−E0. The
corresponding Hamiltonian H−=T+V−!x" has the same
eigenfunctions, '&n

−0= '&n0 as H, and its eigenenergies, En
−

=En−E0, are translated with respect to those of H and are
therefore positive !En

−'0",

H−'&n
−0 = En

−'&n
−0 . !17"

The ground state of H− has zero energy, H−'&0
−0=0, so that

V−!x" =
%2

2m

&0"!x"
&0!x"

, !18"

where &0"!x" is the second derivative of the ground state
wave function, &0!x", with respect to the variable x. The
Hamiltonian H− can thus be recast in the form

H− = −
%2

2m
+ d2

dx2 −
&0"!x"
&0!x", . !19"

In this form the Hamiltonian can be factorized, that is, writ-
ten as H−=A+A−, where we have introduced the operators

A+ = −
%

/2m
++

d
dx

+
&0!!x"
&0!x", . !20"

This factorization can be viewed as a generalization of the
one developed for the analysis of the one-dimensional har-
monic oscillator.8

We introduce the superpotential2

W!x" = −
%

/2m

&0!!x"
&0!x"

. !21"

This potential is defined over the domain of values for which
V!x" remains finite. It has no divergence on this domain be-
cause the ground state wave function &0!x" has no nodes.
The relation between the superpotential W!x" and V−!x" is by
definition

V−!x" = W2!x" −
%

/2m
W!!x" . !22"

This relation suggests that we introduce another potential
defined as

V+!x" = W2!x" +
%

/2m
W!!x" . !23"

The Hamiltonian H+=T+V+!x" can also be simply expressed
in terms of the operators A+ :H+=A−A+.

The spectra !17" of H− and H+ are closely related. If we
use the expression for H+ in terms of the operators A+, we
can readily show that

H−A+'&n
+0 = En

+A+'&n
+0 , !24a"

H+A−'&n
−0 = En

−A−'&n
−0 . !24b"

Because E0
−=0, we conclude that A−'&n

−0 for n"0 are eigen-
states of H+ for the eigenvalues En

−. We can therefore write
'&m

+ 0=A−'&n
−0, so that Em

+ =En
−. Except for the ground state E0

−,
all the eigenenergies of H− and H+ coincide: En

+=En+1
− . Start-

ing from a given solvable potential with Nb bound states, we
can thus construct by iteration a new set of Nb exactly solv-
able potentials having, respectively, Nb−1, Nb−2, . . . ,0
bound states.

Supersymmetry also permits us to relate the reflection and
transmission coefficients when the two partner potentials,
V+, have continuous spectra. Let us assume for simplicity
that the potentials V+ are defined over the entire real axis,
and that the superpotential obeys the boundary conditions
W!x→ +#"=0.11 It follows that V+!x→ +#"=0. We con-
sider an incident plane wave eikx of energy E=%2k2 /2m com-
ing from x→−#. The scattering states that account for the
reflected and transmitted waves are

&+!k,x → − #" 1 eikx + r+!k"e−ikx, !25a"

&+!k,x → + #" 1 t+!k"eikx. !25b"

If we use Eqs. !24" and !25", we find r+!k"=−r−!k" and
t+!k"= t−!k", which implies that the partner potentials have
identical reflection and transmission probabilities #'r+!k"'2
= 'r−!k"'2 and 't+!k"'2= 't−!k"'2$.
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Fig. 2. !Color online" Reflection probability 'r'2 for the scattering states of
the potential UII!x" as a function of the dimensionless parameters a and b.
The large reflection domains at low energy !low ,=b / i" are a signature of
quantum reflection. The periodic structure is a matter-wave Fabry–Pérot-like
effect.
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A. Application to UI„x…
To use the formalism of supersymmetry, we introduce the

potential V−
!1"!x"=UI!x"−E0 and deduce from Eq. !21" the

corresponding superpotential W!1",

W!1"!x" = /U0e−!x/2
Jb0
! !ae−!x/2"

Jb0
!ae−!x/2"

, !26"

and the potential V+
!1"!x"=2#W!1"!x"$2+E0−UI!x". V+

!1"!x" is a
smooth potential that behaves as 1x−2 as x→0 and decays as
exp!−!x" for !x01 #see Fig. 3!a"$.12 Similarly, we introduce
V−

!2"!x"=V+
!1"!x"− !E1−E0"=2#W!1"!x"$2−UI!x"+2E0−E1,

whose ground state wave function is

&0
!2" ) A−&1 ) &1! −

&0!&1

&0
, !27"

from which we deduce the explicit form of the superpoten-
tial,

W!2" = −
%

/2m

&0!&0&1" − &0"&1 − &0!&1!" + &0!&0!&1

&0!&0&1! − &0!&1"
. !28"

As before, the potential V+
!2"!x"=2#W!2"!x"$2−V−

!2"!x" has the
same spectrum as V−

!2"!x" except for the ground state. In Fig.
3!a", we plot UI!x" for a=11.75, !=1, and show that this
potential has three bound states !Nb=3". We have also plot-
ted the supersymmetric partners V+

!1"!x"+E0, whose two
bound states correspond to the first two excited states of
UI!x", and V+

!2"!x"+E1, whose unique bound state corre-
sponds to the second excited state of UI!x".

B. Application to UII„x…
The supersymmetric potential associated with U!x" is di-

rectly deduced from the ground state wave function &̃0!x",

W!1"!x" = sgn!x"/U0e−!'x'/2
J

b̃0
! !ae−!'x'/2"

Jb̃0
!ae−!'x'/2"

. !29"

Interestingly, we can derive the entire supersymmetric family
as in the previous example starting from a potential that has
a singularity in its first derivative.13 From Eq. !21", we ob-
serve that if the potential has the differentiability class Cn

!the n first derivatives exist and are continuous", the super-
symmetric potential has a differentiability class Cn+1. If we
repeat the same procedure as before, we readily derive the
family of supersymmetric potential partners (Ṽ+

!n") of U!x"
#see an example in Fig. 3!b"$. The supersymmetric partner
Ṽ+

!1" has a double well shape. Supersymmetry applied to the
potential UII!x" thus generates a family of exactly solvable
double well potentials. This connection between single well
and double well supersymmetric partners is discussed in Ref.
14. We note that there are not many examples of analytically
solvable double well potentials. We mention, for instance,
the potentials of the form V!x"=k!'x'−a"2.15

The scattering reflection and transmission probabilities for
the potential Ṽ+

!1"!x" are the same as those for the potential
UII!x". In particular, Eq. !15" gives the reflection probability
for any value of the parameter a.

IV. APPROXIMATION METHODS

So far, the results we have obtained are exact. In the fol-
lowing, we approximate the ground state energy of UI!x" and
UII!x" using the variational method and check the accuracy
of this method and test the accuracy of various semiclassical
quantization formulas for the whole spectrum.

A. The variational method

To implement the variational method, we choose a set of
trial wave functions (12!x"). We will consider a family of
trial wave functions that depend on the parameter 2. The
minimum of the expectation value of the Hamiltonian H
= p2 /2m+U!x" for these trial functions gives an upper bound
for the ground state energy. The functional form of the trial
ground state has to be chosen appropriately to obtain a good
approximation of the ground state energy E0,

min
2

!212'H'120" ' E0. !30"

1. Application to UI!x"
Because UI!x" has an infinite repulsive barrier at x=0, the

ground state wave function vanishes at x=0. We first choose
the family of functions,

12!x" = + 2
/
,1/4 x

23/2e−x2/422
, !31"

which is normalized to unity and obeys the same boundary
condition 12!0"=0 and 12!+#"=0 as the ground state. This
guess is inspired by the first excited wave function of the

E2
E1

E0

UI(x)

V (1)
+ (x) + E0

V (2)
+ (x) + E1

x

UII(x)

Ṽ (1)
+ (x) + Ẽ0

x

Fig. 3. !Color online" !a" The potential UI!x" with three bound states and its
first two supersymmetric partners V+

!1"!x"+E0 and V+
!2"!x"+E1!a=11.75". !b"

UII!x" with three bound states and its first supersymmetric partner Ṽ+
!1"!x"

+ Ẽ0, which has a double well shape !a=4.5".
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one-dimensional harmonic oscillator. We now have to calcu-
late the expectation value of H for the wave functions
(12!x"). This quantity is a function of U0 and the dimension-
less variables a and 3=!2 //2,

EI!3" = 212'H'120 = Ec!3" + Ep!3" . !32"

We find

Ec!3" =
%2

2m
3

0

# .d12

dx
.2

dx =
%2

2m

3
422 =

3U0

2a232 , !33a"

Ep!3" = − U04e32
!1 + 232"erfc!3" −

23
//

5 . !33b"

The minimization of the total energy is obtained for 3=30,
which depends only on a,

.dEI

d3
.

30

= 0 with .d2EI

d32 .
30

" 0. !34"

Figure 4 compares the relative error 4= 'Eexact
−EI!30"' / 'Eexact' of the estimate of the ground state energy as
a function of a. The poor accuracy for small U0 is due to the
inappropriate functional form of the trial function that does
not reproduce well the large extension of the wave function
for small a. This interpretation can be confirmed by using the
family of normalized wave functions of the form 1̄2!x"
=2xe−x/2 /23/2. These wave functions have a longer tail for
large x than those of (12!x") and yield a better estimate for
the energy for small low a, that is, for a small trap depth as
illustrated in Fig. 4. The variational method allows an ap-
proximate determination of the threshold value ac below
which there is no bound states. We find ac

var*2.5142 as the
lowest bound of a above which a solution of the equivalent
of Eq. !34" for the family (1̄2!x") exists. This value differs by
#4.5% from the exact value. If U0 is increased, the wave
function becomes more localized, and the estimate for the

ground state energy is much better with the trial wave func-
tions of the family (12!x"), as shown in Fig. 4.

2. Application to UII!x"
The minimization of the Hamiltonian expectation value

for the potential UII!x" is performed in the subspace of
Gaussian trial functions,

1̃2!x" = + 1
2/

,1/4 1
21/2e−x2/422

. !35"

This family of trial functions is inspired by the ground state
wave function of the one-dimensional harmonic oscillator
and has no node as expected for the ground state of a poten-
tial well. We find, for example, E!30"*−0.545U0 for a=5,
which differs from the exact value by about 1%.

The variational method also allows for the determination
of the first excited state. For this purpose, we have to choose
a family that has the same symmetry as the state considered
and is orthogonal to the family of states used for the deter-
mination of the ground state. The extension of the trial func-
tions used for UI!x" to the family (1̂2!x'0"=12!x" and
1̂2!x*0"=−12!−x") provides a new family that is orthogo-
nal to the family (1̃2), has one node, and is thus appropriate
for the determination of the first excited state by the varia-
tional method. This calculation is exactly the one performed
on the half space x'0 for UI!x", whose accuracy is summa-
rized for an example in Fig. 4. Thus, the search for an ap-
proximation to the ground state energy of UI!x" using the
variational principle gives an estimate of the first excited
state of the symmetric extension UII!x" of UI!x".

B. Semiclassical quantization formulas

To obtain an approximate determination of the entire spec-
trum, we rely on semiclassical quantization methods. The
most commonly used is the Wentzel–Kramers–Brillouin
!WKB" quantization condition.16–20 We use here the
Einstein–Brillouin–Keller quantization approach, which
properly takes into account the boundary conditions19,21,22

6 pdx = +n +
(

4
,h , !36"

where ( is the Maslov index that accounts for the total phase
loss during one period in units of / /2.23,24 A smooth wall
gives a contribution to ( of 1 and a sharp wall of 2.25 For
UI!x", there is a sharp wall at x=0 and a smooth one for x
"0 so that (=1+2=3. The calculation of the action 7pdx
for UI!x" combined with Eq. !36" gives an implicit equation
for the eigenenergies,

+n +
3
4
,/

a
= F!yn" , !37"

with F!y"=/1−y2−y cos−1!y", yn=exp!−!xn /2", and U!xn"
=E. Semiclassical approaches are supposed to work better
for large quantum numbers. We compare in Fig. 5 the exact
energies of UI!x" with a=32 and !=1 such that UI!x" ac-
commodates ten bound states with the approximate values
obtained from Eq. !37". We observe an accuracy which gets
better up to the fifth level but then gets worse.

The standard WKB estimate for the energies is signifi-
cantly improved by taking into account higher order correc-

a

∆

100 101 102 10310−4

10−3

10−2

10−1

100
ac

Fig. 4. !Color online" The relative error, 4= 'Eexact−EI!30"' / 'Eexact', of the
estimate of the ground state energy using the Gaussian ansatz in Eq. !35"
(12) !triangles", and the exponential ansatz (1̄2) !squares" as a function of
the dimensionless parameter a. For a less than the critical value ac*2.405,
the UI!x" does not accommodate any bound states. At the crossing of the
square and triangle curves, the well is still shallow and accommodates only
two bound states.
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tions in % to the standard WKB quantization condition. This
approximation method is referred to as the JWKB quantiza-
tion condition.27 The first correction, 5, is given by

+n +
(

4
, =

1
h6 pdx + 5 , !38"

where

5 = −
1

24/
+ %2

2m
,1/2 $

$E+3x1

x2 U"!x"
#E − U!x"$1/2dx, . !39"

We use the explicit form of UI!x" to obtain

+n +
3
4
, = F!yn" −

1

12/a/1 − yn

. !40"

Compared to the WKB results, we obtain an improved accu-
racy for the entire spectrum !see Fig. 5".

If we combine the supersymmetry formalism with the
WKB method, we can work out the SWKB quantization
condition.28–30 This semiclassical quantization formula reads
as

3
xmin

xmax

!2m#En
− − W2!x"$"1/2dx = n%/ , !41"

where xmin and xmax are the turning points for the W2!x"
potential defined by En

−=W2!xmin"=W2!xmax". The SWKB ap-
proach yields the exact bound state spectra for all shape in-
variant potentials, that is, when the pair of the SUSY partners
V+ and V− are similar in shape and differ only in the
parameters.31,32 The potential UI!x" is not shape invariant
and, thus, provides an interesting example of the accuracy of
the SWKB spectrum prediction. By construction, the SWKB
approach requires knowledge of the ground state wave func-
tion and, thus, gives the exact ground state energy. As a
result, it provides the best estimate for the deep energy states,
as shown in Fig. 5. Among the three semiclassical approxi-
mation methods we have discussed, the JWKB expression
turns out to be the most accurate for the states near the con-
tinuum. These conclusions on the relative range of validity

and accuracy of the various semiclassical quantization ex-
pressions are general.

We consider the highest bound state for a deeper
potential.34 For the WKB, JWKB, and SWKB approximation
methods, the deeper the last bound state, the better the esti-
mate. The JWKB method systematically gives a better ac-
count of the energy of the last state. This result is well known
in molecular physics.27 The JWKB quantization condition
for the highest vibrational levels of a molecular potential can
be further improved using the Gribakin and Flambaum
formula33 for the scattering length.35,36

The WKB quantization rule for UII!x" yields

+n +
1
2
, /

2a
= F!yn" , !42"

where yn=exp!−!xn /2" and U!xn" is the energy of the nth
state. Because UII!x" has two smooth walls, (=1+1=2. As
expected, the odd values of n coincide with the energies
determined by applying the WKB quantization condition to
UI!x" #see Eq. !37"$. This example provides illustrates the
importance of the Maslov index. An extra subset of energies
is obtained that corresponds to the even values of n, includ-
ing the ground state n=0, which has an energy lower than
the ground state for UI!x" !see Fig. 1".

V. DISCUSSION

We have discussed the application of supersymmetry to
the potentials UI!x" and UII!x", and illustrated the importance
of exact solutions to test approximate methods. The same
approach can be used to analyze the family of potential wells
of the form 'x' defined either on the positive real axis as UI or
on the whole real axis as UII. In addition to the pedagogical
value of these examples, a discussion of supersymmetry
complements the traditional teaching of quantum mechanics
at the undergraduate level. It answers such basic and impor-
tant questions as can two potential wells have the same spec-
trum and different shape? Is it possible to construct the po-
tential shape knowing its reflection and transmission
probabilities for all incident energies? Does there exist a
transparent potential? It generalizes the factorization proce-
dure of the stationary Schrödinger equation introduced for
the harmonic oscillator, enlarges the class of exactly solvable
potentials, and provides new approximation methods for
quantization rules.
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