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We analyze quantitatively the generation of a continuous beam of atoms by the periodic injection of indi-
vidual packets in a guide, followed by their overlapping. We show that slowing the packets using a moving
mirror before their overlapping enables an optimal gain on the phase space density of the generated beam. This
is interpreted as a Maxwell’s demon type strategy as the experimentalist exploits the information on the
position and velocity of the center of mass of each packet.
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Over the last thirty years, there has been very significant
and impressive progress in the experimental ability to in-
crease the phase space density of atomic clouds, enabling the
quantum degenerate regime to be reached �1�.

All these advances can be revisited in terms of informa-
tion entropy �2�. The powerful laser cooling technique �3�
decreases dramatically the temperature and the entropy of an
atomic cloud, at the expense of an increased disorder for the
photons leaving the laser mode through spontaneous emis-
sion to populate other modes. The entropy of the global sys-
tem made of �atoms+photons� increases as expected from
the second law of thermodynamics �4�. In the evaporative
cooling technique �5�, the disorder of the system made of all
particles involved from the beginning of the evaporation
ramp increases each time a particle is evaporated, since this
atom is no longer localized in the trapping region. Accord-
ingly, this technique yields a decrease of entropy for the
subsystem made of the remaining trapped particles. Some of
those techniques have also been implemented on atomic
beams �6�.

An optimized scheme for the implementation of informa-
tional cooling has been recently proposed in Ref. �7� and
experimentally demonstrated in Ref. �8�: in this scheme, the
increase of entropy of the radiation field in the scattering of a
photon is exactly compensated by the reduction of entropy
for the trapped atoms. Another strategy to increase the phase
space density consists in changing adiabatically, and there-
fore isentropically, the density of states experienced by the
atoms as demonstrated in �10�. The gain in information re-
sults from the transfer of population in the new set of low
energy levels. The entropy S is simply related to the phase
space density � by S=−NkB ln �+S0 �17�. If the shape of the
confining potential is modified adiabatically, S remains con-
stant, but S0 changes, which modifies in turn the phase space
density � �9,10�.

Conversely, information can be used directly to increase
the phase space density. This is realized in the stochastic
cooling technique applied on a beam of charged particles in a
storage ring �11�. Taking advantage of the particle’s charge,
information is extracted in one place and an adapted feed-
back action in another place is exerted later on. This tech-
nique seems at first sight to violate the Liouville theorem
which states the incompressibility of phase volume when

only conservative forces are involved. However particles be-
ing pointlike, there is a lot of empty space between them.
Each particle can in principle be manipulated individually to
increase the phase space density. This requires all informa-
tion about position and velocity of the particles. Such a pro-
cedure resembles Maxwell’s demon thought experiment �12�.
There is no violation of the second law of thermodynamics
since the measurement performed by the demon implies an
entropy increase �13�.

It is definitely more difficult to extract information on a
beam made of neutral particles. We show in this Brief Report
that a recently published optimization �14� of the technique
presented in Ref. �16� to generate a continuous beam by
periodically injecting packets of atoms in a guide is reminis-
cent of Maxwell’s demon strategy. The generation of an in-
tense and slow guided beam involves two conflicting re-
quirements: the high flux implies coupling packets at a high
repetition rate, and the low velocity requirement limits this
rate. An upward potential hill can be used to slow down the
beam �6�. However, a better strategy from the point of view
of the phase space density of the generated beam consists in
slowing down the packets by letting them undergo an elastic
collision with a moving potential barrier before their over-
lapping �14,15� �see Fig. 1�. The reason why this latter
scheme can be better than the former one in terms of entropy
is that it corresponds to the realization of a true Maxwell’s
demon with the use of information on the center of mass of
the packet before the overlapping.

For the sake of simplicity and without loss of generality,
the argument is presented quantitatively for a one-
dimensional system. However, all results derived in this
Brief Report are valid when one takes into account explicitly
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FIG. 1. �Color online� Schematic representation of the genera-
tion of a continuous beam by injecting packets into a guide �a�, and
by slowing them with a moving mirror �velocity V� before their
overlapping �b�.
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the transverse degrees of freedom, as long as the transverse
confinement is not modified or only modified adiabatically
by the presence of the mirror, and the initial velocity disper-
sion is the same on all degrees of freedom.

We assume the successive packets to be identical and uni-
formly distributed over a rectangular surface in the one-
dimensional phase space. The packets are then characterized
by four parameters: the number of atoms N, the initial size
�x, the velocity dispersion �v, and the center of mass veloc-
ity vi. The phase space density of a given packet reads

�p =
N�

m�x�v
, �1�

where m denotes the mass of the atoms. Figure 2�a� repre-
sents a plot of �p in the one-particle phase space at different
times. As expected from the Liouville theorem, the surface
occupied by the packet remains constant. However its size in
position space increases with time as a result of the velocity
dispersion, or in other terms, velocity-position correlations
are produced in the course of the time evolution of the pack-
ets. We consider such packets launched periodically with a
constant time separation �. After a sufficient duration, they
overlap, thermalize, and form a continuous beam �16�. This
beam in thermodynamic equilibrium is characterized by an
atomic density N / �vi�� and the same velocity dispersion �v
as the one of the packets �18�. The phase space density of the
thermalized beam is given by

� =
N�

mvi��v
. �2�

The factor term N /vi� corresponds to the mean atomic den-
sity of the beam. From Fig. 2�a�, we immediately conclude
that ���p. This inequality reflects the Liouville theorem. It
can be interpreted physically using the concept of informa-
tion entropy �2�. Before overlapping, the packets are distin-
guishable �vi���x�, therefore the center of mass of each
packet is well defined. The overlapping accompanied by
elastic collisions between successive packets corresponds to
a loss of information on the center of mass of the packets.

This merging process yields an increase of entropy or
equivalently a decrease of the mean phase space density of
the beam generated from the packets compared to the one of
each packet.

An important feature of Eq. �2� is that the mean velocity
of the packet enters explicitly the expression of the phase
space density of the beam. In Ref. �14�, this velocity depen-
dence was exploited to realize a slow and intense guided
atomic beam. Each atomic packet was slowed down by
means of a moving mirror well synchronized with the motion
of the atomic packet. The overlapping occurred after this
manipulation of each packet. This experimental trick permits
one to ensure a high flux while having, in the end, a very low
mean velocity for the beam generated from the slowed pack-
ets.

Such a specific action on each packet is reminiscent of the
Maxwell’s demon thought experiment. In Maxwell’s scheme,
the apparent violation of the second law of thermodynamics
is made by exploiting information about particle’s velocity.
The experimentalist acts as a Maxwell’s demon by exploiting
all the information �position and velocity� on the center of
mass of each packet to synchronize the motion of a moving
mirror with which they will undergo an elastic collision �19�.
The macroscopic mirror absorbs the microscopic momentum
kick due to the reflection of the packet in the mirror’s frame.

The reflection of a succession of slowed packets is repre-
sented on Fig. 2�b�. In the single-particle phase space, it
corresponds essentially to a translation while keeping its vol-
ume constant. The phase space density of the beam generated
from those slowed packets is given by

�� =
N�

m�2V − vi���v
= �

vi

�2V − vi�
� � , �3�

where �2V−vi� represents the mean velocity of the beam
made of the packets that have been slowed down through
their interaction with the moving mirror. For the same re-
peating rate �−1, a significant gain on the phase space density
of the generated beam is therefore achievable.

The upper bound on phase space density of the beam
generated from packets is given by the phase space density
of each packet, ����p. This holds even if one uses time-
dependent potentials to manipulate them before their over-
lapping. In this context, there is no possible strategy to over-
come this limit �2�, since we do not use for each packet
information at a microscopic scale, i.e., on atoms individu-
ally.

For a given set of packet parameters �N ,vi ,�v ,�x�, one
may wonder what is the optimum choice of mirror velocity V
to maximize the phase space density �� of the beam gener-
ated from the slowed packets, and what is the expression for
this optimum depending on the experimental parameters.

To answer those questions, we will consider a specific
example which contains all the relevant physical ingredients.
As mentioned above, we model the initial packet by a uni-
form phase space density with an initial rectangular shape.
The coordinates of the four vertices are ��x /2,vi+�v /2�,
�−�x /2,vi+�v /2�, ��x /2,vi−�v /2�, and �−�x /2,vi
−�v /2�. The mirror velocity V has two constraints: the
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FIG. 2. �Color online� Representation in the single-particle
phase space of one-dimensional atomic packets periodically in-
jected in a guide �a� in the absence of slowing and �b� in the pres-
ence of slowing with the mirror moving at a velocity V �dashed
line�. For a sufficiently long propagation distance, packets have
merged and the thermal equilibrium for the corresponding beam is
reached.
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lowest velocity of the initial packet needs to be larger than
the mirror velocity vi−�v /2�V, and the lowest final veloc-
ity after interaction with the mirror should be positive to
ensure the propagation of the beam in a well-defined direc-
tion 2V−vi−�v /2�0. Let us introduce the dimensionless
parameters y=�v /vi, and z=V /vi that are related, respec-
tively, to the packet and the mirror. The two previous condi-
tions on the mirror velocity are recast in the form

1

2
+

y

4
� z � 1 −

y

2
. �4�

To maximize the flux of the continuous beam resulting
from the overlapping of the periodically injected atomic
packets, one needs to maximally decrease the time period �
between two successive packets �14�. However, � cannot be
chosen arbitrary small since the mirror is moving faster than
the slowed packets and should not push and thus accelerate
some of them while interacting with the next packet. In the
following, we denote �min the minimum repeating time that
enables the mirror to slow down a given packet while not
affecting the preceding slowed packet. This quantity depends
on ��x /vi�, y, and z. To work out its explicit expression, we
model the mirror by an infinitely high and thin potential
barrier. The mirror is periodically moving at a velocity V
over a distance allowing the slowing of all atoms of each
packet and we assume that it acts on a given packet as soon
as it is released �see Fig. 2�b��. We find

�min�y,z� =
�x

vi

�z − 1 − y/2�
�2z − 1 − y/2��z − 1 + y/2�

. �5�

Using this result with Eqs. �1� and �3�, we infer the maxi-
mum increase in phase space density,

Rmax�y,z� =
�max�

�p
=

�x

�2V − vi��min�y,z�
. �6�

For the given experiment, the dimensionless parameter y
is fixed. The optimum value of the mirror velocity V* is
obtained by maximizing Rmax�y ,z� as a function of z. Taking
into account the constraints �4�, the equation �Rmax�y ,z� /�z
=0 gives a unique solution z*�y�:

V* = viz*�y� =
vi

6
�2 + y + �2�2 − y − y2� , �7�

and the domain in y for which a solution exists is y�2 /3.
This condition simply means that the initial mean velocity
has to be large enough compared to the velocity dispersion,
as intuitively expected.

As illustrated on Fig. 3�a� by plotting z*�y� from Eq. �7�,
a remarkable feature of the optimal velocity for the mirror is
that it is nearly constant over its validity domain and ap-
proximately equal to 2vi /3. We conclude from Eq. �3� that an
optimal use of the mirror technique permits to gain a factor
on the order of three on the phase space density generated
from the packets compared to the value obtained in the same
conditions but in the absence of the mirror.

Figure 3�b� shows that when �v /vi tends to zero, the
phase space density of the continuous flow tends to its upper
bound, i.e., the phase space density of the individual packets.
This corresponds to a situation where the slowed packets
cover the single atom phase space in a quasicompact manner.

In practice, two effects tends to reduce the gain on the
phase space density of a beam generated from slowed packet
compared to the one without slowing �14�: �i� the finite
thickness of the mirror, and �ii� a free propagation of the
packets before their interaction with the mirror. We evaluate
separately their effect in the following.

We denote �m the thickness of the mirror. For example,
�m�10 cm in the experiment described in Ref. �14�. The
calculations performed previously can be readily adapted to
take into account the size of the mirror. In the limit y→0, the
maximum gain on phase space density Rmax� (y ,z*�y�) satu-
rates to 1 / �1+�m /�x�. Indeed, the incompressible distance
�m dictates an upper limit on the achievable atomic density.
In addition, the optimal mirror velocity V* tends to vi as �m
increases, which reflects the reduction of the gain on phase
space density resulting from the limit on the atomic density.

Another experimental parameter to be considered lies in
the fact that the atomic cloud cannot usually be slowed down
just after its injection, but has to propagates freely over a
distance D before interacting with the mirror �20�. For ex-
ample, one has D�25 cm in Ref. �14�. In this instance and
assuming that �m=0 for the sake of simplicity, the general
expression for the maximum of the ratio �� /�p takes the form

Rmax� �y,z,D� =
Rmax�y,z�
1 + yD/�x

. �8�

This result just reflects the fact that the packets have spread
during their free propagation before interacting with the mir-
ror, which reduces as expected the gain compared to the one
without free flight. From Eq. �8�, we conclude that the opti-
mal velocity V* is the same as the one calculated Eq. �7�.

In conclusion, we have investigated quantitatively an op-
timal strategy to produce a continuous beam with individual
packets, in order to maximize the phase space density of the
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FIG. 3. �a� The optimal mirror velocity z*�y�=V* /vi normalized
to vi is plotted as a function of the dimensionless parameter y
=�v /vi, and �b� the corresponding maximum phase space density
R

max
* =Rmax(y ,z*�y�)=�� /�p of a beam generated from the packet

after their optimal slowing down and normalized to the packet ini-
tial phase space density, is plotted as a function of y.
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beam. The use of a mirror to slow down the packets before
their overlapping can be interpreted as a Maxwell’s demon
type strategy, where the mirror acts as an active valve that
modifies the properties of the packet by reducing its mean
velocity. This study exemplifies, in the context of an atomic
beam made of neutral atoms, the usefulness of the link be-
tween information, entropy, and phase-space densities for de-
signing optimal strategies.
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