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In this supplemental material, we discuss the general case of non vanishing angular momentum solutions,
providing more details on the derivation presented in the main text. We then establish that our solutions do
possess a non-trivial scaling property and we generalize the analysis to the quantum case. Finally, the Monte
Carlo numerical treatment is presented.

TIME-DEPENDENT SOLUTIONS WITH J 6= 0 FOR THE
CLASSICAL BOLTZMANN EQUATION

We start by the set of equations

∇r β = 0, (S1)

v2∂tβ + v ·∇r(γ ·v) = 0, for all v, (S2)

∂tγ + ∇r α + 2βF = 0, (S3)

∂tα + F · γ = 0. (S4)

The inverse effective temperatureβ thus depends on time
only, and the solution to Eq. (S2) is taken of the form
γ(r, t) = J ∧ r − β̇ r by a proper choice of velocity origin.
It can be shown thatJ is proportional to the angular momen-
tum〈r∧v〉, where the angular brackets denote averaging over
velocities at pointr. It has been noted in the main text thatJ

is constant and uniform. Eq. (S3) then reads

−β̈ r + ∇r α + 2βF = 0 (S5)

which can be readily integrated with respect to position:

α = α0(t) + 2βV + β̈
r2

2
. (S6)

The quantityα0(t) can be absorbed inV without changing the
resulting force, and will subsequently be set to 0. Inserting the
above expression into (S4) yields

2β̇ V + 2β ∂V
∂t +

...
β r2

2 = γ · ∇rV

= (J ∧ r) · ∇rV − β̇ r · ∇rV

which can be recast

β̇ (2 + r · ∇r)V + 2β
∂V

∂t
+

...
β

r2

2
= (J∧r)·∇rV. (S7)

The caseβ̇ = 0 is uninteresting since it leads to the equi-
librium distribution. The general solution to Eq. (S7) when
β̇ 6= 0 is of the form

V (r) =
1

2
ω2(t)r2 +

b

r2
, (S8a)

with
...
β + 4 ω2β̇ + 4 ω ω̇ β = 0, (S8b)

where the angular frequencyω can be time dependent, unlike
b, which has to bet independent, but can depend on polar an-
gleθ (defined from theJ direction). In the simpler case where

J = 0, the functionb can depend on both spherical angles,
provided it does not depend on the radial distancer = |r|.
The solution uncovered should haveb ≥ 0 for normalizabil-
ity. The mode under examination cannot be damped, since
from momentum and energy conservation, it belongs to the
kernel of the collision integral. We precise too that in practice,
theγ coupling term in the definition of the distribution func-
tion, can be measured by time-of-flight experiments. In such
setups, the confinement is removed att = 0, meaning here
thatω is set to 0, and the expanding size of the cloud is sub-
sequently monitored as a function of time. From Eq. (S8b),
we deduce that

...
β = 0 which implies that〈r2〉 evolves as a

quadratic function of time whose linear term is proportional
to the position-velocity correlations.

The structure of Eq. (S7) explains why the anharmonic term
in b/r2 was hitherto missed [1, 2]. For solving Eq. (S7), one
has to invert the operatorO = 2+r ·∇r. Power-laws inrn are
eigenfunctions ofO with eigenvaluen + 2, meaning that in
addition to the particular solution inr2, those withn = −2,
belonging to the kernel ofO, should be considered. They
have been omitted by previous authors. IfV is not of the form
(S8a), the only solution to Eq. (S7) iṡβ = 0, which implies
α = 2βV and we retrieve the barometric equilibrium case.

SCALING PROPERTIES OF f(r, v, t).

It is natural to rescale velocities by
√

T ∝ β−1/2, and to
perform that operation in the center-of-mass frame. In ad-
dition, upon integratingf(r, v, t) over v to get the particle
density, it appears thatβ1/2 sets the relevant length scale. We
thus define

ṽ =
√

βv +
γ

2
√

β
and r̃ =

r√
β

. (S9)

Computing the (a priori time-dependent) joint distribution
function of the couplẽr, ṽ, we have

f̃(r̃, ṽ, t) = exp

(
−α +

γ2

4β
− ṽ2

)
. (S10)

Remembering Eq. (S6) (withα0 = 0), this gives

f̃ = exp

(−r̃2

4
[...] +

(J ∧ r̃)2

4
− 2b

r̃2
− ṽ2

)
(S11)

where the term in square brackets is

[...] = 4 ω2β2 + 2 ββ̈ − β̇2. (S12)
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An immediate consequence of the evolution equation (S8b)
is that this term is constant (d[...]/dt = 0), so thatf̃(r̃, ṽ)
does not depend on time. Our solution corresponds to a ro-
tating cloud at angular frequencyJ/2 in the tilde position,
which implies a time-dependent frequencyJ/(2β) in real
space (faster rotation whenβ is small, and where thus the
cloud is more compact). In terms of particle density and main-
taining the same meaning as above for[...], we have

n(r̃) = π3/2 exp

(−r̃2

4
[...] +

(J ∧ r̃)2

4
− 2b

r̃2

)
, (S13)

which is Gaussian wheneverb = 0.

TIME-DEPENDENT SOLUTION FOR THE QUANTUM
BOLTZMANN EQUATION

For the quantum Boltzmann equation [3, 4], the collision
integral reads

Icoll[v|f, f ] =

∫
d2Ω dv2

dσ

d2Ω
|v2 − v| ×

[
f(1′)f(2′)(1 + εf(1))(1 + εf(2))

−f(1)f(2)(1 + εf(1′))(1 + εf(2′))

]
,

whereε = 1 (resp. -1) describes a bosonic (resp. fermionic)
gas, anddσ/d2Ω is the differential cross section. In close
analogy with our previous treatment, we shall search for a so-
lution of the form

f0(r, v, t) =
1

e−µ+Σ(r,v,t) − ε
, (S14)

with Σ again a linear combination of collisional invariants

Σ(r, v, t) = −α(r, t) − β(t)v2 − γ(r, t) · v (S15)

The parameterµ is an effective chemical potential and is a pri-
ori time-dependent. The ansatzf0 shall be included the ker-
nel of the quantum collision integralIcoll[f0] = 0.This latter
property can be readily demonstrated by noticing that:

f0(1
′)f0(2

′)(1 + εf0(1))(1 + εf0(2))

= e−2µeΣ(1)+Σ(2)f0(1)f0(2)f0(1
′)f0(2

′). (S16)

As shown hereafter, the chemical potential is a function of
the quantity[...] which appears in Eq. (S12). To show this
property we use a series expansion of the distribution function

1 =

∫
drdv

1

e−µ+Σ − ε
=

∫
drdv

eµ−Σ

1 − εeµ−Σ

=

∫
drdveµ−Σ

∞∑

n=0

εnenµ−nΣ

=

∞∑

n=1

εn(eµ)n+1

∫
drdve−(n+1)Σ. (S17)

The integrals are of Gaussian kind, similar to those calcu-
lated in the classical case and depend only on the quantity
[...]. The last step consists in injecting the ansatz (S14) in
the l.h.s of the Boltzmann equation. We obtain a solution
if the time-dependent parametersα, β andγ obey the same
set of equations (S1,S2,S3,S4) as in the classical case. The
time-dependent solution has therefore been generalized tothe
quantum Boltzmann equation.

COMPUTER SIMULATIONS

Our main goal here is to illustrate the reverse engineering
viewpoint, and to put to the test the relevance of the short-
cut to adiabaticity (STA) route in an interacting system. To
this end, we have performed particle simulations of an open
system of hard disks, by using the Direct Simulation Monte
Carlo (DSMC) method [5]. This is a many body algorithm
designed to generate the dynamics of a gas in the low density
limit, where the Boltzmann equation description applies. The
DSMC method is based on the discretization of both time and
space. In the evolution of the system, the free flow of particles
is considered to be uncoupled from collisions during a char-
acteristic, small, time intervalδt. Besides, space is discretized
in cells of size smaller than the mean free path, and particles
within the same cell collide with a probability proportional to
their relative velocity. Large number of particles can be af-
forded, which improves the statistical accuracy of the results.

In the simulations presented here, a system withN = 9·105

particles has been considered. No boundary conditions have
to be imposed, as we are studying an open system confined by
an external potential, taken harmonic of the formω2(t) r2/2.
First of all, we successfully checked the validity and existence
of the oscillating solutions predicted in the static confinement
case (̇ω = 0). In a second step, we tested the STA protocol.
The ultimate goal is to obtain an evolution of the (inverse)
temperature given by Eq. (10), which sets the target. We thus
wish to see if, by choosingω(t) to be the solution of Eq. (9b)
whereβ is given by Eq. (10), the system follows the predicted
behavior with a temperature that is independent of space, and
of the targeted form (10). We note in passing that the solution
of Eq. (9b) can be obtained analytically, and reads

ω2(t) =
1

β2

{
ω2

i β2
i +

β̇2

4
− ββ̈

2

}
. (S18)

Hence, for any particular time dependentβ, the associatedω
is known.

The initial state was chosen so that the initial velocities of
the particles obeyed a Gaussian distribution with zero mean
and temperatureT (0) = Ti = (2kBβi)

−1. The initial po-
sition of the particles, decoupled from their velocities, were
generated from the barometric law, with a probability propor-
tional toexp

[
−ω2

i r
2/(2kBTi)

]
. This provides the initial con-

dition at t = 0. The system was then left to evolve during
a time tf , with a time dependent confinement given by Eq.
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FIG. S1: Comparison of the predicted (dashed line) and measured
temperaturesT/Ti in the Monte Carlo simulations (open squares).
The trap frequencyω(t)/ωi [as given by Eq. (S18) whereβ(t) is
the target, Eq. (10) of the main text], is shown by the continuous
line. The inset provides a measure of ‘non-adiabaticity’, and shows
T (t)/ω(t) normalized byTi/ωi, which equals 1 both att = 0 and
t = tf . Here the protocol is slow (tf = 20/ωi) and there are 54.9
collisionsper particlein the time spantf .
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FIG. S2: Same as Fig. S1 for a faster protocol (tf = 10/ωi). There
are here 27.43 collisions per particle betweent = 0 andt = tf .

(S18). The temperature is measured locally at pointr from
the variance of the velocity distribution. It was always found

to ber independent, in agreement with Eq. (S1).

When the transformation is slow (i.e.tf ≫ ω−1
i ), the sys-

tem evolves withT (t)/Ti close toω(t)/ωi, as expected for
an adiabatic transformation (see Fig. S1). Upon increasing
the speed of the process (Figs. S2 and S3), we obtain sig-
nificant non adiabatic effects (see the insets), but the mea-
suredT is always in remarkable agreement with the target:
the squares (simulation data) and dashed line accurately su-
perimpose, which proves the effectiveness of the STA route.
We emphasize here that the collision rate has been modified,
from small values to the collisional regime displayed, witha
similar agreement in all cases.
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FIG. S3: Same as Figs. S1 and S2 fortf close toτ0 (see main text).
Here, each particle undergoes on average 10.96 collisions between
t = 0 andt = tf .
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