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In this supplemental material, we discuss the general cieerovanishing angular momentum solutions,
providing more details on the derivation presented in thénrtext. We then establish that our solutions do
possess a non-trivial scaling property and we generalieatialysis to the quantum case. Finally, the Monte
Carlo numerical treatment is presented.

TIME-DEPENDENT SOLUTIONSWITH J # 0 FOR THE J = 0, the functionb can depend on both spherical angles,

CLASSICAL BOLTZMANN EQUATION provided it does not depend on the radial distance |r|.
The solution uncovered should halve> 0 for normalizabil-
We start by the set of equations ity. The mode under examination cannot be damped, since
from momentum and energy conservation, it belongs to the
V.8 =0, (S1)  kernel of the collision integral. We precise too that in pice,
V20,6 + v Vy(vy-v) =0, forallw, (S2) the~ coupling term in the definition of the distribution func-
Oy + Vyea+26F = 0, (S3) tion, can be measured by time-of-flight experiments. In such

setups, the confinement is removed at 0, meaning here
thatw is set to 0, and the expanding size of the cloud is sub-

The inverse effective temperature thus depends on time S€duently monitored as a function of time. From Eq. (S8b),
only, and the solution to Eq. (S2) is taken of the form We deduce that = 0 which implies that(r?) evolves as a

~(r,t) = J Ar — B by a proper choice of velocity origin. guadratic function of time whose linear term is proportiona

It can be shown thaf is proportional to the angular momen- to the position-velocity correlations. .

tum (r Av), where the angular brackets denote averaging over Thezstructu_re of Eg. (S7) explains why the anharmonic term
velocities at point-. It has been noted in the main text that 1N 0/7~ was hitherto missed [1, 2]. For solving Eq. (S7), one
is constant and uniform. Eq. (S3) then reads has to invertthe operat@ = 2+r-V,.. Power-laws in" are

eigenfunctions of) with eigenvaluen + 2, meaning that in

—Br+V,.a+28F =0 (S5)  addition to the particular solution ir?, those withn = —2,
belonging to the kernel o®, should be considered. They
which can be readily integrated with respect to position:  have been omitted by previous authorsVIfs not of the form
) (S8a), the only solution to Eq. (S7) 5= 0, which implies
a = ap(t) + 28V + ﬁ% (s6) o =28V and we retrieve the barometric equilibrium case.

The quantityv (t) can be absorbed i without changing the
resulting force, and will subsequently be set to 0. Insgrtiire
above expression into (S4) yields

SCALING PROPERTIESOF f(r,v,t).

It is natural to rescale velocities byT ~« $~1/2, and to
. e o o
WV WG v BT =y VY Cition, Upon inegratg/(r.o. 1 over s 1 get the parice
. , T, U, v
= Ar) VeV = fr- V.V density, it appears that'/? sets the relevant length scale. We

which can be recast thus define

~ vy - r
. o2 v=+pv+—= and 7= —. (S9)
ﬁ(2+r-Vrﬂ/+QB%¥4—ﬁ%—=(JAT}V5V(Sn 2V VB

Computing the 4 priori time-dependent) joint distribution
The cased = 0 is uninteresting since it leads to the equi- function of the couple, v, we have

librium distribution. The general solution to Eq. (S7) when B 2
8 # 0is of the form f(r,v,t) = exp <a + Zﬁ - ~2> (S10)
V(r) = %uﬂ(t)ﬁ + %7 (S8a) Remembering Eq. (S6) (withy = 0), this gives
,
. ~2 2
with 5 + 40?3 + 4w B = 0, (S8b) fm%iq4+£%lgﬁ> (S11)

wherg the angular.frequencycan be time dependent, unlike where the term in square brackets is
b, which has to be independent, but can depend on polar an- ) .
gled (defined from theJ direction). In the simpler case where [..] = 4w?B% + 288 — 5% (S12)



An immediate consequence of the evolution equation (S8bJhe integrals are of Gaussian kind, similar to those calcu-
is that this term is constand[(..]/dt = 0), so that}’v(F, V) lated in the classical case and depend only on the quantity
does not depend on time. Our solution corresponds to a rd--.]. The last step consists in injecting the ansatz (S14) in
tating cloud at angular frequenc¥/2 in the tilde position, the L.h.s of the Boltzmann equation. We obtain a solution
which implies a time-dependent frequendy (23) in real  if the time-dependent parameters 3 and~ obey the same
space (faster rotation whe is small, and where thus the set of equations (S1,52,S3,54) as in the classical case. The

cloud is more compact). In terms of particle density and maintime-dependent solution has therefore been generalizibe to

taining the same meaning as abovel[fat, we have guantum Boltzmann equation.
~2 2
_ 3/2 - I AT)” 20
n(r) = m exp < 4 LI+ 4 )’ (513) COMPUTER SIMULATIONS

which is Gaussian whenever= 0. . . . . .
Our main goal here is to illustrate the reverse engineering

viewpoint, and to put to the test the relevance of the short-
TIME-DEPENDENT SOLUTION FOR THE QUANTUM cut to adiabaticity (STA) route in an interacting system. To
BOLTZMANN EQUATION this end, we have performed particle simulations of an open
system of hard disks, by using the Direct Simulation Monte
For the quantum Boltzmann equation [3, 4], the collisionCarlo (BSMC) method [5]. This is a many body algorithm
integral reads designed to generate the dynamics of a gas in the low density
limit, where the Boltzmann equation description applielse T

Louolf, f] = /dQQ vy ;2% v — v DSMC method is based on the discretization of both time and
space. In the evolution of the system, the free flow of paasicl
o) is considered to be uncoupled from collisions during a char-
{f(l V() +ef(1)A+ef(2) acteristic, small, time intervak. Besides, space is discretized
in cells of size smaller than the mean free path, and pasticle
—fFR)A+efA")(1+ef(2)], within the same cell collide with a probability proportidia

their relative velocity. Large number of particles can be af
wheree = 1 (resp. -1) describes a bosonic (resp. fermionic)forded, which improves the statistical accuracy of theltesu
gas, andlo/d%Q is the differential cross section. In close Inthe simulations presented here, a system with: 9-10°
analogy with our previous treatment, we shall search fora soparticles has been considered. No boundary conditions have

lution of the form to be imposed, as we are studying an open system confined by
1 an external potential, taken harmonic of the faud{t) r2/2.
fo(r,v,t) = R TNy B (S14) Firstof all, we successfully checked the validity and esdiste

of the oscillating solutions predicted in the static confireat
with 3 again a linear combination of collisional invariants  case ¢ = 0). In a second step, we tested the STA protocol.
The ultimate goal is to obtain an evolution of the (inverse)
temperature given by Eq. (10), which sets the target. We thus
wish to see if, by choosing(¢) to be the solution of Eq. (9b)
whereg is given by Eq. (10), the system follows the predicted
behavior with a temperature that is independent of spack, an
of the targeted form (10). We note in passing that the saiutio
of Eg. (9b) can be obtained analytically, and reads

Y(r,v,t) = —a(r,t) — ﬂ(t)v2 —~(r,t)-v (S15)

The parameter is an effective chemical potential and is a pri-
ori time-dependent. The ansafg shall be included the ker-
nel of the quantum collision integradl.;[fo] = 0.This latter
property can be readily demonstrated by noticing that:

fo(1) fo(2") (X + e fo(1))(1 +£fo(2)) - .
= eIV (1) 3(2) fo (1) fo(2). (S16) WSA(t) = ﬁi {wg@z T %} . (s19)
As shown hereafter, the chemical potential is a function of

the quantity[...| which appears in Eq. (S12). To show this Hence, for any particular time dependghtthe associated
property we use a series expansion of the distribution fanct is known.

The initial state was chosen so that the initial velocities o

1= /drdv; = /drdvi the particles obeyed a Gaussian distribution with zero mean
ehE —e 1 —een—= and temperatur@(0) = T; = (2kpf;)~". The initial po-
_ /drdve“*z i =S sition of the particles, decoupled from their velocitiesres
generated from the barometric law, with a probability pnepo

n=0

- tional toexp[—w?r?/(2kpT;)]. This provides the initial con-
_ an(eu)n+l /drdvef(nJrl)E' (S17) dition at¢ = 0. The system was then left to evolve during
ot a timety, with a time dependent confinement given by Eq.
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FIG. S1: Comparison of the predicted (dashed line) and nmedsu
temperatured’/T; in the Monte Carlo simulations (open squares).
The trap frequencw(t)/w; [as given by Eq. (S18) whergé(t) is
the target, Eq. (10) of the main text], is shown by the cortiral
line. The inset provides a measure of ‘non-adiabaticityy ahows
T'(t)/w(t) normalized byT; /w;, which equals 1 both at= 0 and

t = ty. Here the protocol is slowt§ = 20/w;) and there are 54.9
collisionsper particlein the time spart .
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FIG. S2: Same as Fig. S1 for a faster proto¢gl£ 10/w;). There
are here 27.43 collisions per particle between 0 andt = ty.

(S18). The temperature is measured locally at ppifrom
the variance of the velocity distribution. It was always tidu

to ber independent, in agreement with Eq. (S1).

When the transformation is slow (i.&; > w; '), the sys-

tem evolves withl'(t) /T; close tow(t)/w;, as expected for

an adiabatic transformation (see Fig. S1). Upon increasing
the speed of the process (Figs. S2 and S3), we obtain sig-
nificant non adiabatic effects (see the insets), but the mea-
sured? is always in remarkable agreement with the target:
the squares (simulation data) and dashed line accurately su
perimpose, which proves the effectiveness of the STA route.
We emphasize here that the collision rate has been modified,
from small values to the collisional regime displayed, wath

similar agreement in all cases.
-

FIG. S3: Same as Figs. S1 and S2#pclose tor (see main text).
Here, each particle undergoes on average 10.96 collisietvgelen
t = 0andt = ty.
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