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Abstract
A method is proposed to design the time dependence of the trap frequency and achieve in a
short time an adiabatic-like (frictionless) evolution of Bose–Einstein condensates governed by
the Gross–Pitaevskii equation. Different cases depending on the effective dimension of the trap
and the interaction regimes are considered. 2D traps are particularly suitable as the method can
be applied without the need to impose any additional time-dependent change in the strength of
the interatomic interaction or a Thomas–Fermi regime as it occurs for 1D and 3D traps.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In order to manipulate Bose–Einstein condensates for different
applications, it is important to study and control their response
to time-dependent changes of the confining fields. A natural
approach to avoid undesired excitations is to modify the trap
adiabatically, i.e. very slowly, so that, if the initial state is
in the ground state the final state will be the ground state as
well. However, this may require very long times and become
impractical. Faster changes are thus a desirable objective but
they will in general induce excitations and oscillations (inner
frictional heating [1]), so that the proportion of the ground
state in the final state may be small [2–4]. These difficulties
raise the question addressed in this communication: Is it
possible to change the trap in a very short time, taking the
condensate, up to a global phase, to the same state that would
be reached after a slow (adiabatic) process? This question
has been answered recently in the affirmative for cooling
expansions within the framework of the linear Schrödinger
equation [5]. For preliminary work see [6, 7]. The method
used to design the time dependence of the trap frequency
was based on Lewis–Riesenfeld invariants of motion [8] and
simple inverse scattering techniques that had been applied

for complex potential optimization [9]. Our objective here
is to analyse if and how the same techniques used in that
simple case can be adapted to nonlinear interactions and
systems described by a Gross–Pitaevskii (GP) equation. As
we shall see, the applicability of the method will depend
critically on the effective dimension of the trap. We shall first
discuss for simplicity with some detail one-dimensional (1D)
traps, and then 2D and 3D traps subjected to time-dependent
frequencies. By 1D traps we mean quasi-1D cigar-shaped
traps with tight (fixed) transversal confinement where the axial
frequency is varied in time; similarly 2D traps are quasi-2D
disc-shaped traps with tight, fixed, axial confinement in which
the transversal frequency is varied; and finally, the 3D traps
refer to harmonic traps with spherical symmetry. We assume
in all cases that a GP equation can be derived corresponding
to each dimensionality and use g generically for the coupling
parameter of the nonlinear term even though it is different for
the three cases [10].

2. One-dimensional traps

Our starting point is the effective 1D Gross Pitaevski equation
for the longitudinal (x) direction in an elongated cigar trap,
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g being the coupling parameter. The application of the
invariant concept here is not as simple as for the Schrödinger
equation [11], so we shall use instead an approach which leads
in that case to the same results. The idea is to assume for the
wavefunction the ansatz [12]

ψ(x, t) = e−β(t) e−α(t)x2
φ(x, t). (2)

Substituting this into equation (1), and using the scaling
ρ = x/b and redefined wavefunction ((ρ, t) = φ(x, t), we
get
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where the dot means derivative with respect to time. Let us
now impose that the coefficients in square brackets [· · ·] of the
last two terms vanish. This means that (we assume b real)

β = 1
2

ln b, α = − im
2h̄

ḃ

b
, (4)

and e−(α+α∗)x2
e−(β+β∗) = b−1. Suppose now that the coefficient

of b2ρ2( in (3) is made equal to mω2
0

/
(2b4) (for an alternative,

see the final discussion), where ω0 = ω(0). Using (4), this is
equivalent to imposing for b and ω(t) an Ermakov equation,

b̈ + ω(t)2b = ω2
0

b3
. (5)

It is useful to express the resulting wave equation in terms of
a new scaled time,

τ (t) =
∫ t

0

dt ′

b2
, (6)

and the wavefunction *(ρ, τ ) = φ(ρ, t),
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For g = 0, this is the Schrödinger equation of a time-
independent harmonic oscillator and admits, by separation
of variables, stationary solutions of the form *(ρ, τ ) =
e−iEnτ/h̄*n(ρ, 0). Choosing b(0) = 1, ḃ(0) = 0, the
‘auxiliary’ (7) and physical (1) oscillators coincide at t = 0,
so any instantaneous eigenstate at t = 0, with vibrational
quantum number n and energy En = h̄ω0(n + 1/2), evolves
according to a propagating mode determined by equations (2)
and (4) and the solution of the Ermakov equation b(t),

ψ(x, t) = b−1/2 e
im
2h̄

ḃ
b
x2

e−iEnτ (t)/h̄*n(x/b, 0). (8)

In general, this mode will not coincide with the instantaneous
eigenstate of the physical Hamiltonian H(t) = − h̄2

2m
∂2

∂x2 +
1
2mω(t)2x2, unless b(t) = [ω0/ω(t)]1/2 and ḃ(t) = 0, up to
the global phase factor e−iEnτ (t)/h̄. This motivated our proposal
of an inverse method in [5]: given the initial ω0 and final

frequencies ωf = ω(tf ), the intermediate trajectory ω(t) is
left undetermined at first and the boundary conditions

b(0) = 1, ḃ(0) = 0, (9)

b(tf ) = (ω0/ωf )1/2, ḃ(tf ) = 0 (10)

are imposed at initial and final times t = 0, tf (they also
imply a vanishing b̈ at these two times to satisfy equation (5)).
b(t) is then interpolated with some functional form, e.g. a
polynomial with enough coefficients to satisfy all conditions,
and finally ω2(t) is calculated from the Ermakov equation (5).
It is possible to generate in this manner very fast phase-space
conserving cooling processes where ω2(t) takes during some
time interval negative values and the trap becomes an expulsive
potential.

If g $= 0, the coefficient of the nonlinear term in
the auxiliary equation is generally time dependent. Thus,
imposing ḃ(tf ) = 0 eliminates the phase factor e−α(tf )x2

but nothing guarantees that *(τ (tf )) is proportional to the
instantaneous eigenstate of the GP equation at tf . A way out,
in principle, is to make the coupling coefficient time dependent
with the aid of a Feshbach resonance as g(t) = g0/b(t), with
g0 constant. The resulting auxiliary equation has then time-
independent coefficients,
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mω2
0

2
ρ2* + g0|*|2*, (11)

and can be solved in the form e−iµτ (t)/h̄*(x/b, 0), where µ is
the chemical potential for the initial trap, so that

ψ(x, t) = b−1/2 ei(m/2h̄)(ḃ/b)x2
e−iµτ (t)/h̄*(x/b, 0), (12)

and the same inverse method described for the Schrödinger
equation can now be applied to design a fast frictionless
process for the ground state condensate. One can easily check
that, keeping b(t) = bf constant for t > tf , which results in
ω(t) = ωf and g = g0(ωf /ω0)

1/2 for t > tf , the solution
ψ(x, t) of (1) given by (12) becomes stationary, with a new
scaled chemical potential µ/b(tf )2.

Another special case is a ‘Thomas–Fermi’ (TF) limit,
keeping g constant. Using a modified Ermakov equation and
a different time scaling

b̈ + ω(t)2b = ω2
0

b2
, τ (t) =

∫ t

0

dt ′

b
, (13)

render an auxiliary equation with time-independent
coefficients for the nonlinear and harmonic potential terms.
If g|*|2/(h̄ω0) % 1, the kinetic term may be neglected,

ih̄
∂*

∂τ
= mω2

0

2
ρ2* + g|*|2*. (14)

This equation can also be solved by separation of variables,
*(x/b, τ ) = e−iµτ/h̄*(x/b, 0), and ψ(x, t) takes again the
form of equation (12), with different values for µ, τ , b and
the initial wavefunction. Note that this TF approximation is
carried out in the auxiliary equation, and not at the level of the
original GP equation, since that would imply a frozen density
[2, 12]. From the modified Ermakov equation in (13), the
inversion method to find a frictionless trajectory ω(t) requires
in this 1D-TF scenario to change the boundary condition at
tf in (10) to b(tf ) = (ω0/ωf )2/3, with b̈(0) = b̈(tf ) = 0 as
before.
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Figure 1. The squared frequency ω2(t) for an expansion from ω0 = 250 × 2π Hz to ωf = 2.5 × 2π Hz in tf = 6 ms: (a) polynomial form
b =

∑5
j=0 aj t

j ; (b) exponential of a polynomial b = exp
∑5

j=0 cj t
j . In both figures: 1D, TF (solid, red line); 2D, or 1D with

g(t) = g0/b(t), or 3D with g(t) = g0b(t) (dotted, blue line); 3D, TF (dot-dashed, magenta line). (Colour online.)
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Figure 2. b corresponding to figure 1, b(tf ) = (ω0/ωf )2/ν , with ν = 3 (solid, red), ν = 4 (dotted, blue) and ν = 5 (dot-dashed, magenta).
(a) Polynomial b and (b) b is the exponential of a polynomial. (Colour online.)

3. Two- and three-dimensional traps

In this section, we adapt the analysis of Kagan, Surlov and
Shlyapnikov [2] to the inverse method. The manipulations in
1D suggest for 2D and 3D a wavefunction ansatz of the form

ψ(r, t) = b−d/2 ei(mr2/2h̄)(ḃ/b) φ(r, t), (15)

where d is the dimension, r = (x2 + y2)1/2 in 2D or
r = (x2 + y2 + z2)1/2 in 3D. This form guarantees an auxiliary
equation without first spatial derivatives.

With ρ = r/b and a notation for the wavefunctions
parallel to the 1D case there results, by substituting (15) into
the 2D or 3D GP equations,
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b2
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2m
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+
m

2

[
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]
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g
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where the Laplacian depends on the dimension, * = *(ρ, τ ),
and τ has not been specified yet. (This equation includes the
case d = 1 too by substituting r → x and the Laplacian by a
second derivative.)

In 2D, the ordinary Ermakov equation (5) and the τ in
equation (6) are the optimal choice since all coefficients in
the auxiliary equation (assuming a constant g) become time
independent, even outside the Thomas–Fermi regime,

ih̄
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= − h̄2

2m
-ρ* +

mω2
0

2
ρ2* + g|*|2*. (17)

This is then the ideal situation for designing a frictionless
process by shaping b and ω exactly as in the 1D Schrödinger
equation, i.e. using (9) and (10).

Finally, the case d = 3 is considered. It is somewhat
similar to 1D, in the sense that the generic case leads to time-
dependent coefficients in the auxiliary equation. Similarly to
1D, by using equations (5) and (6) the time independence of the
coefficients in the auxiliary equation would require now a time-
dependent coupling of the form g(t) = g0b(t); alternatively, in
the Thomas–Fermi regime and with g constant, all coefficients
become time independent with

b̈ + ω(t)2b = ω2
0

b4
, τ (t) =

∫ t

0

dt ′

b3
, (18)

and in this case the boundary condition for b(tf ) in (10)
should be modified to b(tf ) = (ω0/ωf )2/5, assuming again
b̈(0) = b̈(tf ) = 0.

4. Examples

Let us consider an expansion reducing the frequency 100 times
from 250 × 2π Hz to 2.50 × 2π Hz in 6 ms. This time is too
short for the condensate to follow any ω(t) adiabatically at all
times [5] but with our designed trajectories and thanks to the
expulsive interval which accelerates the spreading, the final
state would indeed be the same, up to a global phase, than
the state obtained if a slow process could be implemented for
such an expansion. For the regular Ermakov equation (5),
a polynomial b(t), and ω0 % ωf , a simple estimate is that
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a repulsive time interval is necessary for tf < 1/(2ωf ).
Figure 1 shows frequency trajectories for the different cases
discussed before and two different ansatz of b. Higher powers
of b on the right-hand side of the Ermakov-like equations
(corresponding to higher dimensions in the TF regime) imply
a smaller increment for b during the expansion, see figure 2,
which makes the change of ω smoother as well. It is
remarkable that for a fixed g (for 2D, or the TF regimes in
1D and 3D), the nonlinearity does not play any role in the
design of optimal (frictionless) frequency trajectories. They
only depend on the initial and final frequencies, the available
time tf and the functional form chosen for b(t).

5. Discussion

We will provide here some complementary details and relate
the results to other works. An important remark on the TF
approximation used for 1D and 3D geometries is that the
nonlinear coupling cannot be arbitrarily strong. The condition
g|*|2/(h̄ω0) % 1 should be compatible with the derivation
of the 1D GP equation [10] in a weak interaction limit, i.e.
as |ψ |2 ( 1, where as is the s-wave scattering length.

For completeness, we should mention an alternative to
the steps given after equation (4). We may as well impose
that the coefficient multiplying ρ2b4* must vanish instead
of becoming a non-zero constant [13–15]. This amounts to
imposing b̈ +ω(t)2b = 0 instead of the Ermakov equation (5).
Proceeding as in section 2 with τ given by equation (6), the
resulting auxiliary equation becomes

ih̄
∂*

∂τ
= − h̄2

2m

∂2*

∂ρ2
+ gb|*|2*, (19)

which is not an equation for the harmonic oscillator but
for a condensate without confining external fields and with
a, generically, time-dependent nonlinear coupling factor.
Adapting the time dependence of g as g(t) = g0/b(t),
this method provides, from known analytical solutions of
equation (19) with a constant factor g(t)b(t) = g0, explicit
solutions that have been used in the context of soliton dynamics
[13–15]. While the solutions ψ(x, t) for the same ω(t) and
initial conditions should of course be equivalent to the ones
obtained with the ordinary Ermakov equation, we find the
latter better suited for the application of our inverse technique.

In summary, it is possible to take a Bose–Einstein
condensate in a very short time from an initial harmonic

trap to a final one without excitations, by choosing the
time dependence of the frequency according to the Ermakov
equation or its modifications after matching the time
dependence of a scaling factor to suitable boundary conditions.
In 1D and 3D traps, this requires either a simultaneous change
of the time dependence of the coupling, or a Thomas–Fermi
type of regime. 2D traps are privileged in this respect and
do not require either of these conditions. Their peculiar
symmetry properties were already noticed by Pitaevskii and
Rosch [16]. Indeed, the 2D geometry allows for an extension
of the present results beyond the GP equation framework
by expanding perturbatively the field operator around the
condensate wavefunction, and treating the perturbation with
an ansatz parallel to (15) and the same phase [2].
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