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Spinning up and down a Boltzmann gas
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Using the average method, we derive a closed set of linear equations that describes the spinning up of an
harmonically trapped gas by a rotating anisotropy. We find explicit expressions for the time needed to transfer
angular momentum as well as the decay time induced by a static residual anisotropy. These different time
scales are compared with the measured nucleation time and lifetime of vortices by MetiedoWe find a
good agreement that may emphasize the role played by the noncondensed component in those experiments.

PACS numbse(s): 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.40.Db

. INTRODUCTION vector . Without loss of generality, we choose a rotation
around thez axis Q= (e, and the same origin for the rotat-
Superfluidity of a Bose-Einstein condensate is naturallying framefR’ as the one of the laboratory frarfe (see Fig.
investigated by its rotational properti¢$,2]. So far, two 1), In the following, quantities with a prime are evaluated in
experimental schemes have been successfully applied to gage rotating frame. Coordinates iR’ are linked to coordi-
eous condensates in order to generate quantized vortic@gtes in? just by a rotation of anglé=Qt:
[3,4]. The first one uses phase engineering by means of laser
beams whereas the second one is the analog of the “rotating x' cosQt  sinQt) [ x
bucket” experiment, initially suggested by String§si,6]. y | —sinOt  cosOt y/
In the latter, atoms are first confined in a static, axially
symmetric loffe-Pritchard magnetic trap upon which a non-The Lagrangian for the single-particle movement in the ro-
axisymmetric attractive dipole potential is superimposed bytating frame read§s]
means of a strirring laser beam. In this paper, we address the
guestion of the behavior of the noncondensed component for L'=mu "2+ im(QXr)2+mv - (QXr)— Ve, (2)
this experiment. We investigate the transfer of angular mo-
mentum to an ultracold harmonically confined gas by such dvhereVe, is the potential energy that describes the role of
time-dependent potential. We also study possible mecha&xternal forces. The correspondance between the laboratory
nisms for its dissipation. FirgSec. I) we recall the Lagra- and rotating frames for momentum, angular momentum, and
gian and the Hamiltonian formalism for a single particle in athe Hamiltonian is given by
rotating frame. In Sec. lll, we give the expression for the

D

!

rotating potential that has been used in our paper. We briefly , aL' o _
: ; - . . p'=——=mv' +mQXr=p,
expose analytical results for the single-particle trajectory in ENG
this potential in Sec. IV. The rest of the paper deals with the
crucial role played by collisions. A classical gas that evolves L'=rxp'=rxp=L,
in this potential thermalizes in the rotating frame, leading to
a finite value of its mean angular momentum. We investigate H=p VvV —-L =H-Q-L. (3)

this equilibrium state in Sec. V. In Sec. VI, we derive the
analytical expression for the time needed to spin up a clasNote that the angular momentum as well as the momentum
sical gas with an approach based on the average mgfod are the same in both frames, but the link between the mo-
We evaluate the time needed to transfer angular momentum

and thus we deduce the characteristic time for vortex nucle- AY

ation via angular momentum transfer from the uncondensed y'
to the condensed component. In Sec. VII, we consider a re-

lated problem: what is the time needed to dissipate a given

angular momentum by a static residual anisotropy? We have

in mind the role of the axial asymmetry of a magnetic trap Ot
(loffe-Pritchard or time-orbiting potential traps;duced by
the presence of gravity. The connection with decay of quan- z X
tum vortices is made in Sec. VIII.

 J

Il. A REMINDER ON THE ROTATING FRAME

In this section, we recall the Hamiltonian for a classical
particle in a rotating frame characterized by the fixed rotation FIG. 1. Rotating frame with respect to laboratory frame.
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mentum and the velocity differs. Using the Hamiltonian for- Single particle
malism, one can easily extract the equation of motion in the raectony’— stable Unstable Stable
rotating frame:

dv’ EoE 4 @ : 1 'Q i@,

m— = =+ -+ , .
dt ext cen cor uterasting Stable Unstable Therlljl:]nst:;';;aenucally
. Gas:

whereF,,; refers to the external force derived from the po- -

tential Vo, Feenis the centrifugal force:
FIG. 2. Stability diagram for the single particle and for an in-

Feer= —MOQX(QXr1)=—VVie (5)  teracting gas in the potential with a rotating anisotropy.

With V= —mQ2(x?+y?)/2, andF., is the Coriolis force:  term), and the last term is the contribution of the asymmetry.
The stability of the single-particle movement is extracted
Feor=—2mQXxV’. (6)  from the dispersion relation of E). We find a window of
. . instability around the value Q=w,, ie., for Q
e e aye® o1 SIS Y Tl For o1, he stably
essentially ensured by the harmonic trapping even if reduced
by the centrifugal force, whereas féI> w1+ € the Co-
riolis force plays a crucial role in the stabilization of the

In Bose-Einstein condensation experiments, the magneti¢ajectory. The latter effect is similar to magnetron stabiliza-
confinement is axially symmetric. In order to spin up thetion in a Penning trap for ionkL0]. Note that for an inter-
system, one possibility consists of breaking this symmetry byacting classical gas the motion of the center of mass is the
superimposing a small rotating anisotropy as initially sug-same as that for a single particle.
gested by Stringafb]. This breaking of the rotational invari-
ance of the external potential can be carried out experimen- V. EQUILIBRIUM STATE OF THE GAS
tally by adding a rotating stirring dipolar beam to the
magnetic field of the trap4]. This combination of light and
magnetic trapping induces the following harmonic externa
potential(see Fig. 1[9]:

lll. THE ROTATING TRAP

In practice, experiments are carried out in the so-called
IcoIIisionIess regime, since on average an atom undergoes
less than a collision during a transverse oscillation period.
However, collisions are of course essential to explain the

MwZ dynamics of the gas induced by the potentigl We con-
Vew=—5—L(1+ X' %2+ (1—e)y'2+\%2%], (7)  sider the situation in which a gas at a given temperafigris
initially at rest in the lab frame, and &0 the axial asym-
where we have defined the geometric paramkter,/w,, ~ MELY € iS spinned up at a constant angular velodyas
which is responsible for the shape of the cloud. For instance®XPlained above. 1f)<woy1—e€ one expects that elastic
if we sete=0, the trap is isotropic foh =1, cigar-shaped coII|s_|ons will ensure the_ t_hermahzafuon o_f the gas in t_hg
for A<1, and disk-shaped for>1. The potentia(7) is time rotating frame. Th_ls eqU|I|br!um state is defined since a mini-
dependent if expressed with laboratory coordinatey,¢), ~ Mum of the effective potential o= Vet Veenalways exists
but static in the rotating frame, i.e., in terms of (y',2). in this range of values fof). In Fig. 2, we compare the
stability of a single particléupper part of the diagranwith
that of the interacting gas. In the rotating frame, one can
compute equilibrium quantities by means of the Gibbs dis-

Let us first investigate the single-particle trajectory. Equadribution p that readg11]
tions in the laboratory frame and for the transverse coordi-
nates are given by p(r,v')=e

X o[ X ,[cos20t  sin20t | (X where’ is given by
y :_“’0( )_ w°<sin2(2t —cosZQt)<Y)' ©

IV. SINGLE-PARTICLE TRAJECTORY
—H’(r’,v’)/kBToy (10)

mv/2 2

> (XZ4y'2). (1

L, mQ
+Vext(x Y :Z)_

H'= 2

In the rotating frame, the corresponding equations are time
independent. They can be rewritten by means of the complexs regards statistical properties of the gas, the rotation is

quantity &' =x"+iy": equivalent to a reduction of the effective transverse frequen-
. B 5 — cies of the trap due to the contribution of the centrifugal
£ +200¢ + (w5~ Q)€ +ewpé’ =0, (9)  force. The Coriolis force plays no role for the equilibrium

_ state. During the thermalization, the mean angular momen-
where ¢ denotes the complex conjugate &f The second tum per particle increases from zero to its asymptotic value
term in Eq.(9) accounts for the Coriolis force, the centrifu- (L,). This last quantity is easily derived from the Gibbs dis-
gal force leads to a reduction of the harmonic strerigthd  tribution (10):
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2k ToQ (03— Q2) 3.0

<Lz>=mQ<X2+y2>=(wg_Qz)2_62wg' (12

Ind
2l
1

For typical experimental parameteisy/27=200 Hz, ()
=wel2, €=0.05, andT =1 uK, the angular momentum per
particle (L )/ =150, unlike the superfluid part for which,
for instance, the angular momentum is equdt foer particle
in the presence of one vortex.

To check that the gas undergoes a full rotation, one can
search for a displacement of the critical temperature induced
by centrifugal forced6], or perform a time-of-flight mea- ]
surement. In the latter case, one expects that the ratio be- o . : : :
tweenx andz size scales as (2Q?/ w3) Y2 for long-time 0 50000 100000 150000
expansion. Ot

g
=1
)

Mean angular momentum (a.u.)
5 P
[l 1

I
[
1

FIG. 3. Mean angular momentum per particle as a function of
VI. TIME NEEDED TO REACH EQUILIBRIUM time.

In this section we derive the expression for the titpe  ward expansion of the dispersion relation, one extracts the
needed to reach the equilibrium state in the rotating coordismallest eigenvalue that drives the relaxation for a given col-
nate system. In other words,, corresponds to the time lisional regime. First we focus on the regime in which ex-
needed to build correlations betweenv,, y, andv,. To  periments are performed: collisionlessqr=10) and with
estimate this time, we use the classical Boltzmann equatiore2<(22/w(2). DenotingtffpL as the time needed to spin up the
Our analysis relies on the use of the average method as egas in this regime, we find
plained in Ref.[7]. For instance, the equation f@x'v,, )

—Y'vy) involves(x'y’), which itself is coupled tgdx'v . tCL:8_T(2) (13)
+y'vy ) and so on. Terms that do not correspond to a con- W 2\ wg)

served quantity in a binary elastic collision lead to a nonzero o _ )
contribution of the collisional integral. For instance, a mean! he result is independent of the geometrical aspect ratio of
value such agv,v,) involves the occurence of quadrupole (e traph as physically expected. Using the same numerical
deformations in the velocity distribution that make the con-Values as in the preceding section, we deduce that this time is
tribution (v,v /1 con) # 0. Here | oo stands for the collisional V€Y longt,;=15 s. Note that to transfer juét of angular
kernel of the Boltzmann equatiofL2]. At this stage, we momentum per particle, one needs only 100 ms. This time is

. P, . n the order of the nucleation time for vortices that has been
perform a Gaussian ansatz for the distribution function. Aﬁergxperimentally observed by the ENS grdd]. One should

linearization this quadrupolar contribution results in the so- ; .
called relaxation-time approximatida2,13; nevertheless be careful since the noncondensed component is
actually a Bose gas rather than a classical one that evolves in
a nonharmonic potential because of the mean-field potential
M due to the condensed component.
T In the hydrodynamic limit, the characteristic time for

spinning up is

<UX’Uy’|coII>: -

This method leads to a closed set of<XIB3 linear equations HD s 2
(see the Appendix and furthermore provides an explicit link tup = (2 wy).

between the relaxation timeand the collisional rate in the g far this regime is not accessible for ultracold atom experi-
sample. . _ ments since inelastic collisions prevent the formation of very
It is worth emphasizing that the dynamic transfer of an-high-density samples. We recover here the special feature of
gular momentum to a classical gas by rotating a superimthe hydrodynamic regime, i.e., the time needed to reach equi-
posed axial anisotropy involves a coupling between all quadtibrium increases with the collisional rate. In Fig. 4 we have
rupole modes. The average method is fruitful in the senseeported the evolution of,, as a function ofwyr from a
that it yields a closed set of equations when one deals witlhhumerical integration of the 2813 system. The smallest
only quadratic moments, namely, monopole mode, scissorglue is obtained between the collisionless and hydrody-
mode, quadrupole modes, etc. Noninertial forces are linear inamic regimes, as is usual for the relaxation of a thermal gas
position or velocity, and thus give rise only to quadratic mo-[7].
ments using the average method.
Although unimportant for equilibrium properties, the Co- V!l TIME NEEDED TO DISSIPATE A GIVEN ANGULAR
riolis force plays a crucial role for reaching equilibrium. Fig- MOMENTUM
ure 3 depicts a typical thermalization of the gas in the rotat- |n this section, we consider a gas with a given angular
ing frame, leading to the equilibrium valugl?2) of the  momentum, obtained for instance as explained before, in a
angular momentum, obtained by a numerical integration oktatic harmonic trap. If this gas evolves in an axially sym-
the 13< 13 set of equations. After a tedious but straightfor-metric trap, the angular momentum is a conserved quantity.
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different curves for the relaxation of angular momentum de-
pending on the value o€ with respect toe.. For e<e.
(long-dashed ling one has a purely damped relaxation; in
10000 - the limiting casee<e., tyownr™= 1/(25%37). On the contrary

] for e> €. (solid ling), one has a damped oscillating behavior;
in the limiting casee>e., tygown=47, and the oscillating
frequency is equal tewy. Moreover, as we use a linear
analysis, this decay time does not depend on the specific
initial value of the angular momentum.

up

(o)

VIIl. CONNECTION WITH DECAY OF QUANTUM

- ———r ——rrrt VORTICES
0.1 1 10

1000

We now apply the results derived above to a recent ex-
periment[4] which determined the decay time of a quantum
FIG. 4. Time needed to reach equilibrium by rotation of a smallVortex when it is placed in a trap with a small fixed anisot-
anisotropy. A minimum ot,,, is obtained in-between the collision- "OPY. For this expriment the axial asymmetry induced by
less and the hydrodynamic regimes. gravity is on the order of 1% and the collisional rate is such
that wg7=10. The corresponding decay time of the angular
In contrast, if a small asymmetiy exists between theand ~ momentum of the thermal component is evaluated from Eqg.
y spring constants, the angular momentum is no longer &% tci be ~500 rlnf' This \;alue is of the same order as the
conserved quantity and it is thus dissipated. We g}, the typlct)::l observehd ! eh(;ne of a vortex. ar directly rel
typical time for the relaxation of the angular momentum. course, the study we present so far Is not directly rel-
This problem is very different from the one we faced previ-evam for the superfluid itself, but |t.can_reasonabl_y describe
ously since the rotating frame is not an inertial frame. Wethe thermal part. Indeed, one possmk_a interpretation may be
thus expectt o7 tu,. As in the previous treatment, this that the thermal part acts as a reservoir of angular momentum
own up* l - .
problem can be compputed with the average method. The coﬁnd thus ensures the stablllty of the vortex as long as this
responding equations are nothing but the scissors mod@€mal part is itself rotating. Moreover, when the angular
equations[2], i.e., a linear set of four equations involving momentum of the thgrma! partis zero, a d_|SS|pat|ve coupling
(XY}, (Xvy—Y0,), (Xvy+Yo,), and(v,v,) (see the Appen- between the Bose Einstein condensate with a vortex and the
' y X/ y X/ xUy
dix). Searching a solution of this system of the form expthermal gas can take place: .
(—\t), one finds In a recent papdrl5], Fedichev and Shlyapnikov propose
' a scenario for such a dissipative mechanism. It relies on the

mot

1 scattering of thermal excitations by the vortex, leading to the
=—(1-1-€€f), motion of the vortex core to the border of the condensate.
A=g-(1-41 2/ €2) (14) tion of th t to the border of th densat
The main assumption for this calculation is that the thermal
where the critical anisotropy is related toand wg by e, part is not rotating. Actually, our paper provides a justifica-

— 1/(4wy7) and where we assumé<1. In Fig. 5, we plot tior! of this_assumption b_y stressing_ t_he key role played by
residual axial anisotropy in the confining trap.

A IX. CONCLUSION

. &> ec
i I FE Y e=e In this paper we have investigated the transfer and dissi-
; N ---- e<g, pation of angular momentum for a classical gas in all colli-
~ sional regimes. We derive very different time scales for both
3 ~ processes. The short time required to dissipate angular mo-
M S~ mentum suggests a high sensitivity of the experiment de-

---------- scribed in Ref[4] to the presence of a residual static anisot-
ropy (see different time scales between Figs. 3 andl®
particular, the competition between a rotating and a static
anisotropy explains why no evidence for rotation of the clas-
sical gas was found in Ref4], and may give relevence to

Mean angular momentum (a.u.)
/
’

° 500 1000 1500 2000 the scenario proposed in R¢L5].
ot
FIG. 5. Decay of angular momentum due to a small residual ACKNOWLEDGMENTS
anisotropy. We distinguish three different regimes: e, damped
oscillations(solid line), e= ¢, (small dashed linethe frontier with | acknowledge fruitful discussions with V. Bretin, F.
the region of purely damped decay< €., long dashed line Chevy, J. Dalibard, K. Madison, A. Recati, S. Stringari, and
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2

APPENDIX 2w
+ To(l—)\z—ﬂz)<x’2+y’2+z’2>

Hereafter, the 1813 closed set of equations that de-

scribes the dynamic of a classical gas induced by the rotating w3
potential(7): +?(1+2)\2—QZ)<X’2+y’2—22’2>
M_ v V=0 Al —<v2,+1)2,—202,>—2(2<x'v =Y vy)=0
dt <X Uyr y UX,>— , (Al) X y z y X ’
(A9)
d<X/2_y’2> 2< ;o ’ l> 0 (AZ) d< >
e —— X r ) =Y, Ux'Uy’
dt UV 7Y Uy %4—ewg(x'vy/—y’vxf>+2§2<v)2(,—v)2,,>
d<X/2+y/2+2/2> , ’ ’ Dol
at —2(x'vy+y'vy+2'v,)=0, +(w(2,—02)(x’vy,+y’vxr)=—¥, (A10)
(A3)
d<U2/_Uzr>
d X72_|_ 72_2212 X y 2_02 ’ ! _
< )(/jt >_2<X’er+y’Uy/—22’Uz/>:0, dt T2(wo= Q) (X v =y Uy/> 89<Ux/vy/>
(A4) 460)(2)
+ 3 <X’UX/+y,Uy/+Z,UZI>
d<X’Uy’_y’UXI>_2 2 <X, ,>
dt WXy 2 ew? ( 2 2
€Ewg , , , Uy vy/>
40 + 3 (X'vy+Yy'vy—2z vz,>=—f,
+?<X vty vy +z'vy) (ALD)
2Q) 2 2 2
+ ——X'vy+y'vy—22'v,)=0, A5 d(U oyt I> ’ ’
3 (X ty'vy vz1) (A5) %4—26&%& v =Y vyr)
d<X,U /+y,U /> 2w2
%Jrzmg—ﬂz)(x'y’) +TO(ZH\Z—292)<x’vx,+y’uy,+z’uz,)
+ZQ<X’UXI_y,Uyr>_2<UX/Uy/>:O, (A6) 20)3
-I—T(l—)\z—ﬂz)<x’vx,+y’vyr—22’vzr)=0,
d<X,U /_y,U I>
xdt y +(wé_92)<xrz_y/2> (A]_Z)
2wl d(v?, +v2, —202)
- 30 (X'24y"242'2) = 20(X vy +Y vyr) - dyt  +2ewd(X v~y vy
2 2
wQE 4w
+T°<x'2+y'2—2z'2>—<v§,—u§,>=o, (A7) +To(l—)\z—ﬂz)(x’vx/+y’vy,+z’vzl>
2w3(1 272—0?)( 27'0,)
d(X'vy+y'vy+7Z'v,) ) +T +2\— X'vy+Y'vy—22'v,
+ewg(x'2—y'?)
dt 0
(v2,+v2,—20v%)
2-20%4N% , - = (A13)
Tw()(x +y'+2z'%) T
1-02—)\2 One can show from the Gaussian ansatz that the relaxation
+ T(,,g<x'2+y'2—22’2> time 7 is the same for all quadrupolar contributions. In this

system, linear terms i) account for the Coriolis force
whereas quadratic terms 1 are due to centrifugal force
contributions. All quadrupolar modes are involved in this
(A8) system. In order to enlighten the physics of this system, let

_<Ui/+U§/+U§/>_29<eryr_y,vxr>:0,
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us consider some limiting cases. One can check the consemngular momentum. In addition the system gives rise to three
vation of energy in the rotating frame(?’)/dt=0. The independent linear systems on quadrupolar qu%ntitizes: one
stationary state, obtained by setting all time derivatives ofOr the m=2(xy) mode, another one fom=2(x"—y"),
moments to zero, is nothing but the equipartition lésee and finally them=02mode that describes the coupllng2 be-
Ref. [11], See 4& (1-02+e)(x'2)=(1- 02— &)(y'?) tween monopole ({“)) and quadrupole moden{=04x
e " 5 +y?—22%)) [7]. Finally, one can recover the scissors mode
=\ Yz >:<vx’>:<vy'>:<vz’>' If e=0 and2=0, the trap  equations for a classical gas by considering the €ased
is axially symmetric and one recovers the conservation of thand e+ 0 [2]: Egs.(Al), (A5), (A6), and(A10).
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