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Spinning up and down a Boltzmann gas

D. Guéry-Odelin
Laboratoire Kastler Brossel, De´partement de Physique de l’Ecole Normale Supe´rieure, 24 Rue Lhomond,

F-75231 Paris Cedex 05, France
~Received 2 March 2000; revised manuscript received 27 April 2000; published 14 August 2000!

Using the average method, we derive a closed set of linear equations that describes the spinning up of an
harmonically trapped gas by a rotating anisotropy. We find explicit expressions for the time needed to transfer
angular momentum as well as the decay time induced by a static residual anisotropy. These different time
scales are compared with the measured nucleation time and lifetime of vortices by Madisonet al. We find a
good agreement that may emphasize the role played by the noncondensed component in those experiments.

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.40.Db
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I. INTRODUCTION

Superfluidity of a Bose-Einstein condensate is natura
investigated by its rotational properties@1,2#. So far, two
experimental schemes have been successfully applied to
eous condensates in order to generate quantized vor
@3,4#. The first one uses phase engineering by means of l
beams whereas the second one is the analog of the ‘‘rota
bucket’’ experiment, initially suggested by Stringari@5,6#.

In the latter, atoms are first confined in a static, axia
symmetric Ioffe-Pritchard magnetic trap upon which a no
axisymmetric attractive dipole potential is superimposed
means of a strirring laser beam. In this paper, we address
question of the behavior of the noncondensed componen
this experiment. We investigate the transfer of angular m
mentum to an ultracold harmonically confined gas by suc
time-dependent potential. We also study possible mec
nisms for its dissipation. First~Sec. II! we recall the Lagra-
gian and the Hamiltonian formalism for a single particle in
rotating frame. In Sec. III, we give the expression for t
rotating potential that has been used in our paper. We bri
expose analytical results for the single-particle trajectory
this potential in Sec. IV. The rest of the paper deals with
crucial role played by collisions. A classical gas that evolv
in this potential thermalizes in the rotating frame, leading
a finite value of its mean angular momentum. We investig
this equilibrium state in Sec. V. In Sec. VI, we derive t
analytical expression for the time needed to spin up a c
sical gas with an approach based on the average method@7#.
We evaluate the time needed to transfer angular momen
and thus we deduce the characteristic time for vortex nu
ation via angular momentum transfer from the unconden
to the condensed component. In Sec. VII, we consider a
lated problem: what is the time needed to dissipate a gi
angular momentum by a static residual anisotropy? We h
in mind the role of the axial asymmetry of a magnetic tr
~Ioffe-Pritchard or time-orbiting potential traps! induced by
the presence of gravity. The connection with decay of qu
tum vortices is made in Sec. VIII.

II. A REMINDER ON THE ROTATING FRAME

In this section, we recall the Hamiltonian for a classic
particle in a rotating frame characterized by the fixed rotat
1050-2947/2000/62~3!/033607~6!/$15.00 62 0336
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vector V. Without loss of generality, we choose a rotatio
around thez axis V5Vez and the same origin for the rota
ing frameR8 as the one of the laboratory frameR ~see Fig.
1!. In the following, quantities with a prime are evaluated
the rotating frame. Coordinates inR8 are linked to coordi-
nates inR just by a rotation of angleu5Vt:

S x8

y8
D 5S cosVt sinVt

2sinVt cosVt D S x

yD . ~1!

The Lagrangian for the single-particle movement in the
tating frame reads@8#

L85 1
2 mv821 1

2 m~V3r !21mv8•~V3r !2Vext, ~2!

whereVext is the potential energy that describes the role
external forces. The correspondance between the labora
and rotating frames for momentum, angular momentum,
the Hamiltonian is given by

p85
]L8

]v8
5mv81mV3r5p,

L 85r3p85r3p5L ,

H85p8•v82L85H2V•L . ~3!

Note that the angular momentum as well as the momen
are the same in both frames, but the link between the m

FIG. 1. Rotating frame with respect to laboratory frame.
©2000 The American Physical Society07-1



r-
th

o-

e
he
b
g

-
e
e

na

c

a
rd

im
pl

-

ry.
ed

ced

e
a-

the

led
oes

od.
the

c
he
ni-

an
is-

is
en-
al

m
en-
lue
is-

n-
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mentum and the velocity differs. Using the Hamiltonian fo
malism, one can easily extract the equation of motion in
rotating frame:

m
dv8

dt
5Fext1Fcen1Fcor, ~4!

whereFext refers to the external force derived from the p
tential Vext, Fcen is the centrifugal force:

Fcen52mV3~V3r !52“Vcen ~5!

with Vcen52mV2(x21y2)/2, andFcor is the Coriolis force:

Fcor522mV3v8. ~6!

Note that all formulas of the system~3! are still valid even
for a time-dependent rotation vectorV.

III. THE ROTATING TRAP

In Bose-Einstein condensation experiments, the magn
confinement is axially symmetric. In order to spin up t
system, one possibility consists of breaking this symmetry
superimposing a small rotating anisotropy as initially su
gested by Stringari@5#. This breaking of the rotational invari
ance of the external potential can be carried out experim
tally by adding a rotating stirring dipolar beam to th
magnetic field of the trap@4#. This combination of light and
magnetic trapping induces the following harmonic exter
potential~see Fig. 1! @9#:

Vext5
mv0

2

2
@~11e!x821~12e!y821l2z2#, ~7!

where we have defined the geometric parameterl5vz /v0,
which is responsible for the shape of the cloud. For instan
if we set e50, the trap is isotropic forl51, cigar-shaped
for l!1, and disk-shaped forl@1. The potential~7! is time
dependent if expressed with laboratory coordinates (x,y,z),
but static in the rotating frame, i.e., in terms of (x8,y8,z).

IV. SINGLE-PARTICLE TRAJECTORY

Let us first investigate the single-particle trajectory. Equ
tions in the laboratory frame and for the transverse coo
nates are given by

S ẍ

ÿ
D 52v0

2S x

yD 2ev0
2S cos 2Vt sin 2Vt

sin 2Vt 2cos 2Vt D S x

yD . ~8!

In the rotating frame, the corresponding equations are t
independent. They can be rewritten by means of the com
quantityj85x81 iy8:

j̈812V i j̇81~v0
22V2!j81ev0

2j̄850, ~9!

where j̄ denotes the complex conjugate ofj. The second
term in Eq.~9! accounts for the Coriolis force, the centrifu
gal force leads to a reduction of the harmonic strength~third
03360
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term!, and the last term is the contribution of the asymmet
The stability of the single-particle movement is extract
from the dispersion relation of Eq.~9!. We find a window of
instability around the value V5v0, i.e., for V
P@v0A12e;v0A11e#. For V,v0A12e, the stability is
essentially ensured by the harmonic trapping even if redu
by the centrifugal force, whereas forV.v0A11e the Co-
riolis force plays a crucial role in the stabilization of th
trajectory. The latter effect is similar to magnetron stabiliz
tion in a Penning trap for ions@10#. Note that for an inter-
acting classical gas the motion of the center of mass is
same as that for a single particle.

V. EQUILIBRIUM STATE OF THE GAS

In practice, experiments are carried out in the so-cal
collisionless regime, since on average an atom underg
less than a collision during a transverse oscillation peri
However, collisions are of course essential to explain
dynamics of the gas induced by the potential~7!. We con-
sider the situation in which a gas at a given temperatureT0 is
initially at rest in the lab frame, and att50 the axial asym-
metry e is spinned up at a constant angular velocityV as
explained above. IfV,v0A12e one expects that elasti
collisions will ensure the thermalization of the gas in t
rotating frame. This equilibrium state is defined since a mi
mum of the effective potentialVeff5Vext1Vcen always exists
in this range of values forV. In Fig. 2, we compare the
stability of a single particle~upper part of the diagram! with
that of the interacting gas. In the rotating frame, one c
compute equilibrium quantities by means of the Gibbs d
tribution r that reads@11#

r~r 8,v8!}e2H8(r8,v8)/kBT0, ~10!

whereH8 is given by

H85
mv82

2
1Vext~x8,y8,z!2

mV2

2
~x821y82!. ~11!

As regards statistical properties of the gas, the rotation
equivalent to a reduction of the effective transverse frequ
cies of the trap due to the contribution of the centrifug
force. The Coriolis force plays no role for the equilibriu
state. During the thermalization, the mean angular mom
tum per particle increases from zero to its asymptotic va
^Lz&. This last quantity is easily derived from the Gibbs d
tribution ~10!:

FIG. 2. Stability diagram for the single particle and for an i
teracting gas in the potential with a rotating anisotropy.
7-2
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SPINNING UP AND DOWN A BOLTZMANN GAS PHYSICAL REVIEW A62 033607
^Lz&5mV^x21y2&5
2kBT0V~v0

22V2!

~v0
22V2!22e2v0

4
. ~12!

For typical experimental parametersv0/2p5200 Hz, V
5v0/2, e50.05, andT051 mK, the angular momentum pe
particle ^Lz&/\.150, unlike the superfluid part for which
for instance, the angular momentum is equal to\ per particle
in the presence of one vortex.

To check that the gas undergoes a full rotation, one
search for a displacement of the critical temperature indu
by centrifugal forces@6#, or perform a time-of-flight mea-
surement. In the latter case, one expects that the ratio
tweenx and z size scales as (12V2/v0

2)21/2 for long-time
expansion.

VI. TIME NEEDED TO REACH EQUILIBRIUM

In this section we derive the expression for the timetup
needed to reach the equilibrium state in the rotating coo
nate system. In other words,tup corresponds to the time
needed to build correlations betweenx, vy , y, and vx . To
estimate this time, we use the classical Boltzmann equa
Our analysis relies on the use of the average method as
plained in Ref.@7#. For instance, the equation for^x8vy8
2y8vx8& involves ^x8y8&, which itself is coupled tôx8vy8
1y8vx8& and so on. Terms that do not correspond to a c
served quantity in a binary elastic collision lead to a nonz
contribution of the collisional integral. For instance, a me
value such aŝvx8vy8& involves the occurence of quadrupo
deformations in the velocity distribution that make the co
tribution ^vx8vy8I coll&Þ0. Here,I coll stands for the collisiona
kernel of the Boltzmann equation@12#. At this stage, we
perform a Gaussian ansatz for the distribution function. Af
linearization this quadrupolar contribution results in the
called relaxation-time approximation@12,13#:

^vx8vy8I coll&52
^vx8vy8&

t
.

This method leads to a closed set of 13313 linear equations
~see the Appendix!, and furthermore provides an explicit lin
between the relaxation timet and the collisional rate in the
sample.

It is worth emphasizing that the dynamic transfer of a
gular momentum to a classical gas by rotating a super
posed axial anisotropy involves a coupling between all qu
rupole modes. The average method is fruitful in the se
that it yields a closed set of equations when one deals w
only quadratic moments, namely, monopole mode, scis
mode, quadrupole modes, etc. Noninertial forces are linea
position or velocity, and thus give rise only to quadratic m
ments using the average method.

Although unimportant for equilibrium properties, the C
riolis force plays a crucial role for reaching equilibrium. Fi
ure 3 depicts a typical thermalization of the gas in the ro
ing frame, leading to the equilibrium value~12! of the
angular momentum, obtained by a numerical integration
the 13313 set of equations. After a tedious but straightfo
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ward expansion of the dispersion relation, one extracts
smallest eigenvalue that drives the relaxation for a given c
lisional regime. First we focus on the regime in which e
periments are performed: collisionless (v0t.10) and with
e2!V2/v0

2. Denotingtup
CL as the time needed to spin up th

gas in this regime, we find

tup
CL5

8t

e2 S V

v0
D 2

. ~13!

The result is independent of the geometrical aspect ratio
the trapl as physically expected. Using the same numeri
values as in the preceding section, we deduce that this tim
very long tup

CL.15 s. Note that to transfer just\ of angular
momentum per particle, one needs only 100 ms. This tim
on the order of the nucleation time for vortices that has b
experimentally observed by the ENS group@14#. One should
nevertheless be careful since the noncondensed compon
actually a Bose gas rather than a classical one that evolve
a nonharmonic potential because of the mean-field poten
due to the condensed component.

In the hydrodynamic limit, the characteristic time fo
spinning up is

tup
HD51/~2e2v0

2t!.

So far this regime is not accessible for ultracold atom exp
ments since inelastic collisions prevent the formation of v
high-density samples. We recover here the special featur
the hydrodynamic regime, i.e., the time needed to reach e
librium increases with the collisional rate. In Fig. 4 we ha
reported the evolution oftup as a function ofv0t from a
numerical integration of the 13313 system. The smalles
value is obtained between the collisionless and hydro
namic regimes, as is usual for the relaxation of a thermal
@7#.

VII. TIME NEEDED TO DISSIPATE A GIVEN ANGULAR
MOMENTUM

In this section, we consider a gas with a given angu
momentum, obtained for instance as explained before,
static harmonic trap. If this gas evolves in an axially sy
metric trap, the angular momentum is a conserved quan

FIG. 3. Mean angular momentum per particle as a function
time.
7-3
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D. GUÉRY-ODELIN PHYSICAL REVIEW A 62 033607
In contrast, if a small asymmetrye exists between thex and
y spring constants, the angular momentum is no longe
conserved quantity and it is thus dissipated. We calltdown the
typical time for the relaxation of the angular momentu
This problem is very different from the one we faced pre
ously since the rotating frame is not an inertial frame. W
thus expecttdownÞtup. As in the previous treatment, thi
problem can be computed with the average method. The
responding equations are nothing but the scissors m
equations@2#, i.e., a linear set of four equations involvin
^xy&, ^xvy2yvx&, ^xvy1yvx&, and^vxvy& ~see the Appen-
dix!. Searching a solution of this system of the form e
(2lt), one finds

l5
1

4t
~12A12e2/ec

2!, ~14!

where the critical anisotropy is related tot and v0 by ec

51/(4v0t) and where we assumeec
2!1. In Fig. 5, we plot

FIG. 4. Time needed to reach equilibrium by rotation of a sm
anisotropy. A minimum oftup is obtained in-between the collision
less and the hydrodynamic regimes.

FIG. 5. Decay of angular momentum due to a small resid
anisotropy. We distinguish three different regimes:e.ec damped
oscillations~solid line!, e5ec ~small dashed line! the frontier with
the region of purely damped decay (e,ec , long dashed line!.
03360
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different curves for the relaxation of angular momentum d
pending on the value ofe with respect toec . For e,ec
~long-dashed line!, one has a purely damped relaxation;
the limiting casee!ec , tdown.1/(2e2v0

2t). On the contrary
for e.ec ~solid line!, one has a damped oscillating behavio
in the limiting casee@ec , tdown.4t, and the oscillating
frequency is equal toev0. Moreover, as we use a linea
analysis, this decay time does not depend on the spe
initial value of the angular momentum.

VIII. CONNECTION WITH DECAY OF QUANTUM
VORTICES

We now apply the results derived above to a recent
periment@4# which determined the decay time of a quantu
vortex when it is placed in a trap with a small fixed aniso
ropy. For this expriment the axial asymmetry induced
gravity is on the order of 1% and the collisional rate is su
that v0t.10. The corresponding decay time of the angu
momentum of the thermal component is evaluated from
~14! to be;500 ms. This value is of the same order as t
typical observed lifetime of a vortex.

Of course, the study we present so far is not directly r
evant for the superfluid itself, but it can reasonably descr
the thermal part. Indeed, one possible interpretation may
that the thermal part acts as a reservoir of angular momen
and thus ensures the stability of the vortex as long as
thermal part is itself rotating. Moreover, when the angu
momentum of the thermal part is zero, a dissipative coupl
between the Bose Einstein condensate with a vortex and
thermal gas can take place.

In a recent paper@15#, Fedichev and Shlyapnikov propos
a scenario for such a dissipative mechanism. It relies on
scattering of thermal excitations by the vortex, leading to
motion of the vortex core to the border of the condensa
The main assumption for this calculation is that the therm
part is not rotating. Actually, our paper provides a justific
tion of this assumption by stressing the key role played
residual axial anisotropy in the confining trap.

IX. CONCLUSION

In this paper we have investigated the transfer and di
pation of angular momentum for a classical gas in all co
sional regimes. We derive very different time scales for b
processes. The short time required to dissipate angular
mentum suggests a high sensitivity of the experiment
scribed in Ref.@4# to the presence of a residual static anis
ropy ~see different time scales between Figs. 3 and 5!. In
particular, the competition between a rotating and a st
anisotropy explains why no evidence for rotation of the cl
sical gas was found in Ref.@4#, and may give relevence to
the scenario proposed in Ref.@15#.
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APPENDIX

Hereafter, the 13313 closed set of equations that d
scribes the dynamic of a classical gas induced by the rota
potential~7!:

d^x8y8&
dt

2^x8vy8
8 1y8vx8

8 &50, ~A1!

d^x822y82&
dt

22^x8vx8
8 2y8vy8

8 &50, ~A2!

d^x821y821z82&
dt

22^x8vx81y8vy81z8vz8&50,

~A3!

d^x821y8222z82&
dt

22^x8vx81y8vy822z8vz8&50,

~A4!

d^x8vy82y8vx8&
dt

22v0
2e^x8y8&

1
4V

3
^x8vx81y8vy81z8vz8&

1
2V

3
^x8vx81y8vy822z8vz8&50, ~A5!

d^x8vy81y8vx8&
dt

12~v0
22V2!^x8y8&

12V^x8vx82y8vy8&22^vx8vy8&50, ~A6!

d^x8vx82y8vy8&
dt

1~v0
22V2!^x822y82&

1
2v0

2e

3
^x821y821z82&22V^x8vy81y8vx8&

1
v0

2e

3
^x821y8222z82&2^vx8

2
2vy8

2 &50, ~A7!

d^x8vx81y8vy81z8vz8&
dt

1ev0
2^x822y82&

1
222V21l2

3
v0

2^x821y821z82&

1
12V22l2

3
v0

2^x821y8222z82&

2^vx8
2

1vy8
2

1vz8
2 &22V^x8vy82y8vx8&50,

~A8!
03360
t

g

d^x8vx81y8vy822z8vz8&
dt

1ev0
2^x822y82&

1
2v0

2

3
~12l22V2!^x821y821z82&

1
v0

2

3
~112l22V2!^x821y8222z82&

2^vx8
2

1vy8
2

22vz8
2 &22V^x8vy82y8vx8&50,

~A9!

d^vx8vy8&
dt

1ev0
2^x8vy82y8vx8&12V^vx8

2
2vy8

2 &

1~v0
22V2!^x8vy81y8vx8&52

^vx8vy8&
t

, ~A10!

d^vx8
2

2vy8
2 &

dt
12~v0

22V2!^x8vx82y8vy8&28V^vx8vy8&

1
4ev0

2

3
^x8vx81y8vy81z8vz8&

1
2ev0

2

3
^x8vx81y8vy822z8vz8&52

^vx8
2

2vy8
2 &

t
,

~A11!

d^vx8
2

1vy8
2

1vz8
2 &

dt
12ev0

2^x8vx82y8vy8&

1
2v0

2

3
~21l222V2!^x8vx81y8vy81z8vz8&

1
2v0

2

3
~12l22V2!^x8vx81y8vy822z8vz8&50,

~A12!

d^vx8
2

1vy8
2

22vz8
2 &

dt
12ev0

2^x8vx82y8vy8&

1
4v0

2

3
~12l22V2!^x8vx81y8vy81z8vz8&

1
2v0

2

3
~112l22V2!^x8vx81y8vy822z8vz8&

52
^vx8

2
1vy8

2
22vz8

2 &

t
. ~A13!

One can show from the Gaussian ansatz that the relaxa
time t is the same for all quadrupolar contributions. In th
system, linear terms inV account for the Coriolis force
whereas quadratic terms inV are due to centrifugal force
contributions. All quadrupolar modes are involved in th
system. In order to enlighten the physics of this system,
7-5
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us consider some limiting cases. One can check the con
vation of energy in the rotating framed^H8&/dt50. The
stationary state, obtained by setting all time derivatives
moments to zero, is nothing but the equipartition law~see
Ref. @11#, See 44!: (12V21e)^x82&5(12V22e)^y82&
5l2^z2&5^vx8

2 &5^vy8
2 &5^vz8

2 &. If e50 andV50, the trap
is axially symmetric and one recovers the conservation of
er

.E

ys

ri,

03360
er-

f

e

angular momentum. In addition the system gives rise to th
independent linear systems on quadrupolar quantities:
for the m52,̂ xy& mode, another one form52,̂ x22y2&,
and finally them50 mode that describes the coupling b
tween monopole (̂r 2&) and quadrupole mode (m50,̂ x2

1y222z2&) @7#. Finally, one can recover the scissors mo
equations for a classical gas by considering the caseV50
andeÞ0 @2#: Eqs.~A1!, ~A5!, ~A6!, and~A10!.
e-
p,
-
01.
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@7# D. Guéry-Odelin, F. Zambelli, J. Dalibard, and S. Stringa

Phys. Rev. A60, 4851~1999!.
@8# L.D. Landau and E.M. Lifshitz,Mechanics, 3rd ed. ~Perga-
-

.

.

mon, Oxford, 1980!, Vol. 1, Sec. 39.
@9# Another proposal for such a potential based on the tim

orbiting potential is under investigation by the Oxford grou
see J. Arlt, O. Marago`, E. Hodby, S.A. Hopkins, G. Hechen
blaikner, S. Webster, and C.J. Foot, e-print cond-mat/99112

@10# L.S. Brown and G. Gabrielse, Rev. Mod. Phys.58, 233~1986!.
@11# L.D. Landau and E.M. Lifshitz,Statistical Physics, 3rd ed.

~Pergamon, Oxford, 1980!, Vol. 5, Secs. 26 and 34.
@12# K. Huang,Statistical Mechanics, 2nd ed.~Wiley, New York,

1987!.
@13# U. Al Khawaja, C.J. Pethick, and H. Smith, e-prin

cond-mat/9908043.
@14# J. Dalibard~Private communication!.
@15# P.O. Fedichev and G.V. Shlyapnikov, Phys. Rev. A60, R1779

~1999!.
7-6


