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Dynamics of a classical gas including dissipative and mean-field effects
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By means of a scaling ansatz, we investigate an approximated solution of the Boltzmann-Vlasov equation
for a classical gas. Within this framework, we derive the frequencies and the damping of the collective
oscillations of a harmonically trapped gas and we investigate its expansion after releasing of the trap. The
method is well suited to study the collisional effects taking place in the system and in particular to discuss the
crossover between the hydrodynamic and the collisionless regimes. An explicit link between the relaxation
times relevant for the damping of the collective oscillations and for the expansion is established.
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The favored signature of Bose-Einstein condensation
weakly interacting gases is the time-of-flight expansion@1#.
In this technique, the asymmetric trapping potential
switched off and the evolution of the spatial density is mo
tored. After a long-time expansion, the observed inversion
the aspect ratio reflects the anisotropy of the initial confi
ment. In an ideal Bose-Einstein condensate~BEC!, this effect
is a direct consequence of the Heisenberg uncertainty
straint on the condensate wave function. For an interac
BEC, the inversion is also produced by the anisotropy of
pressure gradients caused by the hydrodynamic forces.
changes in the shape of the expanding gas can be chara
ized by scaling factors, which provide an easy quantitat
tool for the analysis of on-going BEC experiments. The
of equations for those factors have been derived in m
papers@2,3#. A similar effect has been predicted also for
Fermi gas in its superfluid phase@4#. A strong anisotropy has
been recently measured in the expansion of a highly deg
erate Fermi gas@5# close to a Feshbach resonance. Re
nance scattering can also give rise to anisotropic expan
in the normal phase as proven in the experiments of R
@6,7# carried out in a less degenerate regime. Some re
experiments on bosonic atoms above the critical tempera
have also reached the collisional regime investigating b
the oscillations of the low-lying quadrupole mode and t
expansion in asymmetric traps@8,9#.

So far analytic calculations for the expansion of a clas
cal gas have been limited to either the ballistic or to
hydrodynamic regime@3#. It is consequently important to
generalize such calculations in all intermediate collisio
regimes. This is precisely the main purpose of this paper.
begin by an outline of the theoretical description of the th
mal gas based on the Boltzmann-Vlasov equation. Our
proach relies on an approximated solution of this equation
means of a scaling ansatz. This solution is used through
the paper to investigate two kinds of related problems:
lowest collective oscillation modes and the time-of-flight e
pansion when the confinement is released.

The Boltzmann-Vlasov~BV! kinetic equation for the
phase-space distributionf (t,r ,v) takes the form
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5I coll@ f #, ~1!

whereUh(r )5(m/2)( iv i
2r i

2 is the harmonic trapping poten
tial. Interparticle interactions enter Eq.~1! in two different
ways @10#. On the one hand, they modify the effective p
tential through the mean-field termUmf which affects the
streaming part of the Boltzmann kinetic equation. The me
field potentialUmf is equal to 2gn for bosons andgn for two
fermion species @11#, where the coupling constantg
54p\2a/m is fixed by thes-wave scattering lengtha. The
mean-field term is linear ina and is nondissipative. On th
other hand, two-body interactions determine the collision
tegral I coll@ f # which is quadratic in the scattering length an
describes dissipative processes. Equation~1! is valid in the
semiclassical limit, namely, when the thermal energy is la
compared to the separation between the energy eigenva
of the potential@12,13#.

In this paper, we will treat the collision integral within th
relaxation-time approximation@12#. This model should suf-
fice to capture the essential physics of the problem. We c
sequently write

I coll@ f #'2
f 2 f le

t
, ~2!

where t is the relaxation time related to the average tim
between collisions andf le is the local equilibrium density in
phase space. As a consequence,f le has a spherical symmetr
in velocity space, i.e., it depends on the velocity through@v
2u(r )#2 whereu(r ) is the local velocity field.

The dynamics of the gas will be described by the follo
ing scaling ansatz for the nonequilibrium distribution fun
tion:

f ~ t,r i ,v i !5
1

)
j

~bju j
1/2!

f 0X r i

bi
,

1

u i
1/2S v i2

ḃi

bi
r i D C, ~3!

where f 0 is the equilibrium distribution function which sat
isfies the equation (I coll@ f 0#50)
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] f 0
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]Uh

]r
•

] f 0

]v
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]Umf

]r
•

] f 0

]v
. ~4!

The scaling parameterbi gives the dilation along thei th
direction, while u i gives the effective temperature in th
same direction. The dependence off on time is contained in
the dimensionless scaling parametersbi and u i . Such an
ansatz generalizes the one used in Ref.@14#. We recall that in
this method the shape of the cloud does not enter explic
the equations. This is the reason why the solutions
equally valid for a dilute Bose gas above the critical te
perature, a dilute Fermi gas in its normal phase, and a c
sical gas.

Following Ref. @14#, one can derive the set of equatio
for the scaling parametersbi andu i ~see Appendix!:

b̈i1v i
2bi2v i

2 u i

bi
1v i

2jS u i

bi
2

1

bi)
j

bj
D 50, ~5!

u̇ i12
ḃi

bi
u i52

1

t
@u i2 ū #, ~6!

where the dimensionless parameterj5^Umf&0 /(^Umf&0
12m^v2&0/3) accounts for the mean-field interaction@15#

and ū5( iu i /3 is the average temperature, for a classical
^v2&053kBT/m. The parameterj is expected to be small fo
dilute gases (na3!1) since the ratioUmf /kBT scales as
(na3)1/3(nldb

3 )2/3, whereldb is the de Broglie wavelength
and n the mean density@14#. Equation~6! shows that the
dissipation occurs when the temperature is not isotropic
the relaxation timet has a finite value.

Equations~5! and ~6! are the main results of this pape
The collisionless regime is obtained by takingt05`. In this
limit, we have the simple relationu i5bi

22 between the scal
ing parameters, and we recover the equations derived in
@14#. In the opposite limit~hydrodynamic regime! local equi-
librium is always ensured because of the high collision ra
As a consequence, we haveu i5 ū5) jbj

22/3 and Eqs.~5! and
~6! can be recast in the form:

b̈i1v i
2bi2

v i
2

bi)
j

bj
2/3

1v i
2jS 1

bi)
j

bj
2/3

2
1

bi)
j

bj
D 50.

~7!

For j50 ~no mean field! we recover the equations first de
rived in Ref.@3#. Note that in both the collisionless and th
hydrodynamic regimes, the collisional term does not cont
ute since there is no dissipation in these limits. We next fo
our attention on the intermediate regimes where the collis
term enters explicitly the equations of motion.

Let us first study the breathing mode in the case o
spherical harmonic trapping with angular frequencyv0. In
this case, we find a solution withbi5b and u i5b22. For
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such a solution the collision term identically vanishes in
intermediate collisional regimes. Our approach can
readily generalized to lower dimensions leading to the f
quency v0@41j(d22)#1/2 for the monopole mode@14#,
whered is the dimension of space. In two dimensions t
mean field does not affect the frequency of the monopo
This comes out from the fact that in this case the ansatz i
exact solution of the BV equations, as already stressed
Ref. @16#.

We now consider a sample of atoms confined in a thr
dimensional cylindrically symmetric harmonic potential. W
denote the ratio between the axial and radial angular frequ
cies byl5vz /v' . Expanding Eqs.~5! and~6! around equi-
librium (bi5u i51) we get a linear and closed set of equ
tions which can be solved by looking for solutions of th
type eivt. The associated determinant yields the followi
dispersion law:

S A@v#1
1

t0
B@v# D S C@v#1

1

t0
D@v# D50, ~8!

where A@v#5v2(v22vcl1
2 )(v22vcl2

2 ), B@v#5v(v2

2vhd1
2 )(v22vhd2

2 ), C@v#5v(v22vcl
2 ), andD@v#5(v2

2vhd
2 ) and~cl! and~hd! refer to the collisionless and hydro

dynamics regimes, respectively. The coefficientt0 is the
value of the relaxation timet calculated at equilibrium and

vcl6
2 5

v'
2

2
@4~11l2!2l2j

6A161l4~42j!218l2~j2241j!#,

vcl
2 5v'

2 ~422j!,

vhd6
2 5

v'
2

3 F514l21j~11l2/2!

6
1

2
A~1018l212j1l2j!2272l2~41j!G ,

vhd
2 52v'

2 .

Herej is the parameter accounting for the mean-field effec
The solution of Eq.~8! interpolates the frequencies of th
low-lying modes for all collisional regimes ranging from th
collisionless to the hydrodynamic one. As the confinemen
cylindrically symmetric around thez axis, we can label the
modes by their angular azimuthal numberM. The first factor
of the left-hand side of Eq.~8! gives the frequencies of th
two M50 modes, while the second factor gives that of t
quadrupole (M562) mode. The roots ofA and C have
already been obtained in Ref.@14#, and correspond to the
frequencies of the low-lying modes of a collisionless gas
the presence of mean field. Equation~8! for j50 has been
derived in Ref.@17# and the corresponding frequencies ha
8-2
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been investigated experimentally@8#. For j51, correspond-
ing to ^gn0&0@^v2&0, we find vcl6

2 5vhd6
2 , vcl

2 5vhd
2 , and

the frequencies coincide with the ones predicted for a Bo
Einstein condensate in the Thomas-Fermi regime@18#.

So far, we have not given the explicit link between t
relaxation time entering Eq.~8! and the collision rate. Fol-
lowing Ref.@17#, we can establish this link for a classical g
by means of a Gaussian ansatz for the equilibrium distri
tion function f (r ,v,t). One obtainst055/(4g) where g
52(2p)21/2nmaxsvth is the classical collision rate wher
v th5(kBT/m)1/2 is the thermal velocity,nmax is the peak den-
sity, ands is the cross section which is assumed to be
locity independent. For bosons the link between the sca
ing length and the cross section iss58pa2 whereas for two
fermion species one hass54pa2.

We now establish the set of equations that describe
time-of-flight expansion. In the collisionless regime whe
the mean free path is very large with respect to the size of
trapped cloud and in the absence of mean-field contribut
we readily obtain the exact equationsb̈i5v i

2/bi
3 which admit

the solutionsbi(t)5(11v i
2t2)1/2, leading to an isotropic

density and velocity distributions after a long-time expa
sion.

When the effect of collisions is important the physics
the expansion changes dramatically. As an example, the
dial directions of a cigar-shaped cloud expand faster than
longitudinal one, resulting in a final anisotropic velocity di
tribution. So far, an analytic approach has been propo
only in the full hydrodynamic regime@3#. However, this ap-
proach assumes that the hydrodynamic equations are al
valid during the expansion. In general, this cannot be
case since the density decreases during the expansion, r
ing the effect of collisions. Alternatively, the expansion of
interacting Bose gas aboveTc has been investigated b
means of Monte Carlo simulations@19#.

In our approach, we provide an interpolation between
two opposite collisionless and hydrodynamic regimes us
the scaling formalism. The decrease of the collision rate d
ing the expansion yields a nonconstant relaxation ti
t(bi ,u i) that depends explicitly on the scaling paramet
reflecting the changes of the density and the temperature
ing the expansion. As a result, the expansion is describe
the following set of six nonlinear equations:

b̈i2v i
2 u i

bi
1v i

2jS u i

bi
2

1

bi)
j

bj
D 50,

u̇ i12
ḃi

bi
u i52

1

t~bi ,u i !
S u i2

1

3 (
j

u j D . ~9!

The dependence of the relaxation timet on the scaling pa-
rameters is obtained by noting that the collision rateg scales
as nT1/2. Using the scaling transformationn→n0() jbj )

21

and T→T0ū, wheren0 and T0 are the initial density and
temperature, respectively, we deduce
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t~bi ,u i !5t0S)
j

bj D S 1

3 (
k

ukD 21/2

, ~10!

where t0 is the average time of collisions at equilibrium
@20#. Since both results~8! for the dispersion of the linea
oscillations and Eqs.~9! and ~10! for the expansion have
been derived starting from the same scaling equations~5!
and ~6!, the relaxation timet0 entering the two processes
the same. As a consequence, the combined investigatio
the expansion and of the quadrupole oscillations can prov
a useful check of consistency of the approach and, poss
useful constraints on the value of the cross section.

The time evolution of the aspect ratioR'(t)/Rz(t)
5lb'(t)/bz(t) in the absence of the mean field is depict
in Fig. 1 for different values of the productv't0 and for an
initial aspect ratiol50.1. In the collisionless regime (t0
5`) the aspect ratio tends asymptotically to unity, reflecti
the isotropy of the initial velocity distribution. For other co
lisional regimes, the asymptotic aspect ratio is larger tha
as a consequence of collisions during the expansion. We
a continuous transition from the collisionless to the hydrod
namic prediction as we decreaset0 from infinity to zero. We
then conclude that in general the expansion cannot be
scribed with either the hydrodynamic or the collisionless p
diction @21#, but requires a full solution of our equations~9!.
Similar conditions have been already encountered exp
mentally for classical or almost classical gases@9#. We also
note that it is very important to take into account the tim
dependence of the relaxation time, accounted for by the s
ing law ~10!. For example, by simply usingt5t0 during the
whole expansion, the curvev't50.1 of Fig. 1~solid line!
would be shifted upward and the resulting prediction wou
be much closer to the hydrodynamic curve~dotted line!.

Let us finally comment on the effect of quantum statist
on the calculation of the relaxation time. For a Bose gas
temperature aboveTc the problem has been investigated
Ref. @22# where it has been shown that statistical effects
not play a significant role~see also Ref.@23#!. In contrast, the
relaxation time in a harmonically trapped dilute Fermi g
has been shown to be strongly affected by Pauli blocking

FIG. 1. Aspect ratio as a function of the normalized timev't
for different collisional regimes~initial aspect ratiol50.1): colli-
sionless ~dashed line,t0→`), intermediate collisional regime
~solid line, v't050.1), and hydrodynamic regime~dotted line,
t0→0).
8-3
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low temperature@24#. The effects of collisions in a strongl
interacting Fermi gas, including the unitarity limit, have be
recently addressed in Ref.@25#.

In conclusion, we have provided a generalization of
scaling approach to the dynamics of dilute gases by inc
ing the effects of collisions. This generalization is expec
to be important in view of the possibility of tuning the sca
tering length using Feshbach resonances as well as fo
accurate thermometry of the gas after expansion. Former
plications have been already reported in Ref.@23#.
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APPENDIX: EQUATIONS

We define the following ansatz for the nonequilibriu
distribution function: f (r ,v,t)5G f 0„R(t),V(t)… with Ri

5r i /bi , Vi5(v i2ḃi r i /bi)u i
21/2, andG5P jbj

21u j
21/2. The

dependence on time is contained in the parametersbi andu i .
Following Ref. @14#, we substitute this ansatz into Eq.~4!
and use the equation for the equilibrium distributionf 0. We
find that
A

s.
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H Vi

] f 0

]Ri
S u i

1/2

bi
2

1

biu i
1/2

1

P jbj
D

2
] f 0

]Vi
F Ri

u i
1/2S b̈i1v i

2bi2
v i

2

bi

1

P jbj
D 1Vi S 1

2

u̇ i

u i
1

ḃi

bi
D G J

5I coll . ~A1!

Performing the integration in phase space, we calculate
average moment ofRiVi , namely, *RiVi@Eq. ~A1!#
d3Rd3V/N. This leads to Eq.~5!. Note that this equation is
not affected by the collision integral since the quantity te
RiVi is conserved by collisions.

To derive Eq.~6!, we consider instead the average m
ment ofVi

2 . This yields

u̇ i

u i
12

ḃi

bi
5

m

NGkBT0
E Vi

2I colld
3Rd3V, ~A2!

whereT0 is the equilibrium temperature. Different from Eq
~5!, Eq. ~A2! depends explicitly on the collision integral. I
order to calculate the right-hand side of Eq.~A2!, we use the
relaxation time-approximationI 52( f 2 f le)/t0. The first
term gives*Vi

2f d3Rd3V5NGkBT0 /m. To obtain a relation
among the temperature-scaling parameters one uses the
tity ^v2&5^v2& le , from which we deduce thatū5( iu i /3
emerges to be the average temperature of the sample.
contribution of the local equilibrium term to the second te
is obtained noting that, at local equilibrium,u i

le5 ū:

*Vi
2f led

3Rd3V5Ḡ*Vi
2f 0(R̄,V̄)d3Rd3V5NGūkBT0 /(mu i).

Hence Eq.~A2! can be recast in the form~6!.
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