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Reduction of local velocity spreads by linear potentials
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1Université de Toulouse, UPS, Laboratoire de Physique Théorique, IRSAMC, F-31062 Toulouse, France
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We study the spreading of the wave function of a Bose-Einstein condensate accelerated by a constant force both
in the absence and in the presence of atom-atom interactions. We show that, despite the initial velocity dispersion,
the local velocity dispersion defined at a given position downward can reach ultralow values and be used to probe
very narrow energetic structures. We explain how one can define quantum mechanically and without ambiguities
the different velocity moments at a given position by extension of their classical counterparts. We provide a
common theoretical framework for interacting and noninteracting regimes based on the Wigner transform of the
initial wave function that encapsulates the dynamics in a scaling parameter. In the absence of interaction, our
approach is exact. Using a numerical simulation of the one-dimensional Gross-Pitaevskii equation, we provide
the range of validity of our scaling approach and find a very good agreement in the Thomas-Fermi regime. We
apply this approach to the study of the scattering of a matter wave packet on a double barrier potential. We show
that a Fabry-Perot resonance in such a cavity with an energy width below the pK range can be probed in this
manner. We show that our approach can be readily transposed to a large class of many-body quantum systems
that exhibit self-similar dynamics.
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I. INTRODUCTION

Narrowing down the velocity spread of a packet of particles
or a beam is important in many techniques and experiments:
to induce, control or measure energy-dependent phenomena,
such as sharp resonances or energy thresholds; to probe,
by scattering, surfaces or interaction potentials with high
energy resolution; or to improve interferometers, spectroscopic
studies, and metrological devices such as atomic clocks. A
recent application example is the study of very low-energy
molecular collisions thanks to an accurate velocity control of
merged supersonic molecular beams [1].

Frequently the particles are produced at a preparation
chamber and interact with a material target or field elsewhere
after a free or guided flight. This means that the velocity spread
of interest is the one of the particles as they arrive at the
interaction region. The standard (global) velocity spread of
the ensemble of particles, irrespective of their location, is only
relevant inasmuch as it affects the local velocity spread, which,
as we shall see, may differ substantially from the global one.

In this paper we propose and characterize a method
to achieve a narrow local velocity distribution for one-
dimensional (1D) motion. Our main motivation is to set
high resolution collision experiments between ultracold atoms
and a well-localized obstacle, but the principles involved are
applicable beyond that goal. Local velocities and their statistics
may be defined in classical mechanics since trajectories
carry simultaneous position and velocity information, but in
quantum mechanics position and momentum do not commute.
This does not mean though that a quantum local velocity is
a meaningless concept [2]. A detailed analysis of specific
detectors to perform a local velocity measurement would be
necessary in order to determine the exact operators (i.e., the
specific quantization among the many possible) and/or positive

operator valued measures (POVMs) involved. This operational
approach is out of the scope of this paper. Instead we shall
adopt a simple phase-space Wigner-function description of the
dynamics and the corresponding Weyl rule of quantization to
specify the local quantum observables starting from classical
expressions, so that we shall treat formally quantum and
classical systems alike in phase space. In any case we shall
assume conditions in which the differences among different
quantization rules are negligible.

A well-known narrowing of the local velocity distribution
occurs for free motion. If a cloud of classical (noninteracting)
particles with an initial phase-space density without position-
momentum correlations and zero average position and velocity
is let to expand freely, faster particles will advance beyond the
slow ones, so that at a distant observation point the particles
that arrive at a specific instant of time have well-defined
velocities. Thus this type of free-motion-induced velocity
narrowing only applies to the instantaneous local velocity
distribution. The initial spread for all particles irrespective of
their location is actually constant in time, and implies that the
dominant, instantaneous (mean) velocity at the observation
point changes with time. In other words, the instantaneous
local velocity spread is small, but the spread in time of
the instantaneous local mean velocities may be large. This
limits severely the applicability and usefulness of free-motion
narrowing. If we are interested in a specific velocity range,
many, even most of the particles, i.e., those that do not
arrive at the “right” time interval to match our requirements,
should be discarded. Instead, we propose a mechanism so
that the velocities of all particles irrespective of their arrival
time is sharply defined. It only requires a constant force,
which for neutral cold atoms may be implemented by using
gravity or a magnetic field gradient on magnetically polarized
atoms.
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FIG. 1. A wave packet initially located at q = 0 and subjected
to a constant force evolves towards an interacting region located at
q = x.

We shall study the experimental situation depicted in Fig. 1.
In Secs. II and III, the general formalism to characterize
the velocity distribution at the obstacle location x is worked
out. In Sec. IV, we will apply it to noninteracting particles,
and in Sec. V to interacting particles in the Thomas-Fermi
regime. In Sec. VI, a full numerical study of the scattering
on a double-well potential from a carefully outcoupled matter
wave is carried out. It shows the possibility to investigate
matter-wave Fabry-Perot cavities.

II. GENERAL FORMALISM

The statistical analysis we perform is based on a double
average, over velocity and time, at the observation location.
To that end we follow, interchanging the roles of time and
position, the double averaging performed in [2] over position
and momentum at fixed time. The definition of the local
instantaneous averages over the arriving velocities could in
principle be carried out in several ways with different physical
implications. For a phase-space distribution W (q,p; t) nor-
malized to one at any time t when integrating over positions q

and momenta p, a local, instantaneous average at q = x and
time t may be defined as

vx(t) =
∫

dp v W (x,p; t)∫
dpW (x,p; t)

, (1)

where v = p/m and m is the mass of the particle. This
average is known in hydrodynamical formulations as the
“velocity field” (see, e.g., [3,4]), and it becomes operationally
meaningful if the velocities of the particles between x and
x + dx are probed instantaneously. The normalization factor
in the denominator is just the particle density divided by the
total number of atoms N . For many experiments and detectors
the particles arrive according to a certain time-dependent
flux and the relevant quantity is not the number of particles
present in dx with a specific velocity, but rather the number
of particles arriving (crossing x) with velocities between v

and v + dv in dt . This is given by NvW (x,p,t)dvdt so that
the local instantaneous mean velocity (and similarly for higher

moments) is defined as

v̄x(t) =
∫

dp v2W (x,p; t)∫
dp vW (x,p; t)

, (2)

where the denominator is now the current density Jx(t) or flux
(per particle) instead of the density. This is in particular the
average applicable for scattering experiments [5–8]. A basic
assumption is that all particles arrive from the left (all velocities
are positive at x) so Jx(t) � 0 and

∫
dtJx(t) = 1.

Let us first assume a packet of classical noninteract-
ing atoms described by a phase-space-density distribution
W (q,p; t) normalized to one. This can be translated into
quantum mechanics by means of phase-space quasidistribution
functions. For the problem at hand (a linear-in-q potential) the
Wigner function is a natural choice, since its propagator for
noninteracting particles is identical in classical and quantum
mechanics [2].

The fraction of the number of atoms d2N (v)
x (t) with a

velocity between v and v + dv that crosses the plane q = x

between t and t + dt is

d2N (v)
x (t) = W (x,p; t)vdpdt ≡ Px(v,t)dvdt. (3)

The probability distribution Px(v,t) represents the probability
density of particles in velocity space per unit time that crosses
the plane x at t . We assume that all particles have a positive
velocity when crossing x, so∫∫

Px(v,t)dvdt =
∫

Jx(t)dt = 1. (4)

The quantity Jx(t) corresponds to the local atomic flux divided
by N ,

Jx(t) = dNx(t)

dt
=

∫
d2N (v)

x (t)

dt
=

∫
W (x,p; t)vdp, (5)

where Nx is the probability of finding a particle at q > x. In
order to define local instantaneous averages it is convenient
to introduce the conditional probability density Px(v|t):
Px(v|t)dv represents the probability of finding the velocity
between v and v + dv for the particles that cross x between t

and t + dt . It is normalized to one,∫
Px(v|t)dv = 1. (6)

According to Bayes law, the simple relation,

Px(v,t) = Px(v|t)Jx(t), (7)

holds. The instantaneous mean local velocity at position x and
time t is given by

v̄x(t) =
∫

vPx(v|t)dv. (8)

Similarly, the instantaneous local mean square velocity reads

v2
x(t) =

∫
v2Px(v|t)dv. (9)

The mean local velocity is defined as an average over time of
the instantaneous mean local velocity,

〈v〉x =
∫∫

vPx(v,t)dvdt =
∫∫

v2W (x,p; t)dpdt

=
∫

v̄x(t)Jx(t)dt. (10)
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Similarly, the local variance of the velocity reads

(�vx)2 ≡ 〈(v − 〈v〉x)2〉x
=

∫∫
(v − 〈v〉x)2Px(v,t)dvdt

=
∫∫

(v − v̄x + v̄x − 〈v〉x)2Px(v,t)dvdt

=
∫∫

[(v − v̄x)2 + (v̄x − 〈v〉x)2]Px(v,t)dvdt

=
∫ [ ∫

(v − v̄x)2Px(v|t)dv + (v̄x − 〈v〉x)2

]
Jx(t)dt

=
∫ [

σ 2
v|x(t) + D2

v|x(t)
]
Jx(t)dt, (11)

where

σ 2
v|x(t) ≡ 1

Jx(t)

∫
(v − v̄x)2Px(v,t)dv,

(12)
D2

v|x(t) ≡ (v̄x − 〈v〉x)2,

are, respectively, the instantaneous local velocity variance
and the squared deviation of the instantaneous local mean
velocities with respect to the local average velocity. According
to Eq. (11), the variance of the velocity at x is the sum of two
terms: the time average of the instantaneous local variance and
the variance of the instantaneous mean velocities.

Introducing the velocity moments,

Vn = Vn(x,t) ≡
∫

vnW (x,p; t)dp, (13)

we may rewrite the above quantities as

Jx(t) = V1(x,t),

v̄x(t) = 1

Jx(t)

∫
v2W (x,p,t)dp = V2

V1
,

v2
x(t) = 1

Jx(t)

∫
v3W (x,p; t)dp = V3

V1
,

σ 2
v|x(t) = V3

V1
−

(
V2

V1

)2

,

〈v〉x =
∫ ∫

v2W (x,p,t)dpdt =
∫

dtV2(x,t),

D2
v|x(t) =

(
V2(x,t)

V1(x,t)
−

∫
V2(x,t ′)dt ′

)2

,

so computing the first three moments is enough to calculate
the local variance of the velocity (11). The global velocity
dispersion irrespective of the particle location is given by

�v(t) =
√∫

V2(x,t)dx −
(∫

V1(x,t)dx

)2

. (14)

III. THE TIME-DEPENDENT WIGNER FUNCTION
AND ITS VELOCITY MOMENTS

In the following, we study the dynamics of the ground state
wave function of a 1D harmonic trap of angular frequency

ω0 after its sudden release on a linear potential. The scaling
formalism developed hereafter is applied to a Bose-Einstein
condensate (BEC) in the Thomas-Fermi regime [10–12] and
to the Gaussian wave function for the noninteracting case.
However, it is worth noticing that it can be applied to the
class of many-body quantum systems that exhibit a self-
similar dynamics [13,14] as justified in Appendix A. In the
presence of a constant acceleration field γ , the time-dependent
Wigner function, W (x,p,t), can be obtained from the initial
Wigner function W0 through a proper scaling substitution (see
Appendix A),

W (x,p,t) = W0(X,P ), (15)

where we have used the following linear transformation,(
X

P

)
=

(
1/α 0
−mα̇ α

)(
x − η

p − mη̇

)
, (16)

with α and η two time-dependent functions. The matrix of
this transformation generates both a squeezing in momentum
space correlated to a shearing in position space. η accounts for
the center of the packet motion and obeys the Newton equation
η̈ = γ . The scaling factor α obeys a second-order differential
equation that depends on the system (see Appendix A):

α̈ = ω2
0

αp
, (17)

with p = 3 for a Gaussian wave function without interactions
or a Tonks-Girardeau gas [14–16], and p = 2 for the wave
function of a Bose-Einstein condensate in the Thomas-Fermi
regime. The X and P variables are useful to derive the velocity
moments in terms of their initial value V (0)

n (x):

Vn(x,t) =
∫ [

P

mα
+ u(X,t)

]n

W0 (X,P )
dP

α
, (18)

with u(X,t) = η̇ + α̇X. We find

V0(x,t) = V
(0)

0 (X)/α, (19)

V1(x,t) = uV
(0)

0 (X)/α, (20)

V2(x,t) = V
(0)

2 (X)
/
α3 + u2V

(0)
0 (X)/α, (21)

V3(x,t) = 3uV
(0)

2 (X)
/
α3 + u3V

(0)
0 (X)/α. (22)

To obtain this result, we have explicitly used the symmetry
property of the initial Wigner function: W0(x,p) = W0(x, −
p). The first three moments are therefore directly deduced from
two moments of the initial distribution. Interestingly, the first
two global velocity moments are readily obtained in a form
that depends explicitly on the initial condition and the scaling
parameters. We find 〈v〉(t) = η̇ and the velocity dispersion,

�v2(t) = �v2(0)

α2
+ 2ω2

0

p − 1
(1 − α1−p)�x2(0), (23)

using Eq. (17). With p = 3, we recover the fact that the velocity
dispersion remains constant and equal to its initial value in the
case of an interaction-free Gaussian wave packet. With p = 2
we obtain the explicit expression for the velocity dispersion
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at any time for a Bose-Einstein condensate in the Thomas-
Fermi regime. In particular, its limit for long time is equal
to �v(t → ∞) = √

2ω0�x(0) in agreement with the Virial
theorem [17,18].

IV. APPLICATION TO A NONINTERACTING GAS

Let us set the initial phase-space distribution as an uncor-
related product of Gaussians,

W0(x,p) = 1

2π

1

�x0�p0
e−x2/2�x2

0 e−p2/2�p2
0 , (24)

obeying �x0�p0 = �/2. For a classical ensemble � could be
an arbitrary constant whereas in quantum mechanics this is
Planck’s constant/2π . Using σ ≡ �x0 we find

V
(0)

0 (x) = 1√
2πσ

e−x2/2σ 2
,

V
(0)

2 (x) =
(

�

2mσ

)2

V
(0)

0 (x),

α(t) =
√

1 + ω2
0t

2,

u(x,t) = γ t + (x − γ t2/2)ω2
0t

/(
1 + ω2

0t
2
)
, (25)

with ω0 = �/(2mσ 2).
The quantities v̄x(t), v2

x(t), and σ 2
v|x(t) involve ratios of the

form Vn>1(x,t)/V1(x,t). Using Eqs. (20)–(22), one realizes
that these ratios depend only on V

(0)
2 (X)/V

(0)
0 (X), which is a

constant for a Gaussian Wigner function. In this way, we find

v̄x(t) = u2 + (u2t2 + σ 2)ω2
0

u
(
1 + ω2

0t
2
) , (26)

v2
x(t) = uv̄x(t) + 2σ 2ω2

0

1 + ω2
0t

2
. (27)

The first two global velocity moments are

〈v〉(t) =
∫

V1(x,t)dx = γ t, (28)

〈v2〉(t) =
∫

V2(x,t)dx = �
2

4m2σ 2
+ γ 2t2. (29)

To have a negligible fraction of negative velocities we simply
assume an observation point at x 	 σ and t > 0 hereafter, in
particular in all integrals. We now calculate the first velocity
moments. They can be written in the form,

Vj (x,t) := e−	fj , (30)

where the fj are given in Appendix B and

	 = m2σ 2(γ t2 − 2x)2

8m2σ 4 + 2�2t2
= − x2(1 − γ t2/2x)2

2σ 2(1 + �2t2/4m2σ 4)
(31)

is the phase that governs the behavior of the moments. In
particular 	 = 	′ = 0 (the primes denote time derivatives) at
tc = √

2x/γ , which is the time that a classical particle takes
to reach x if it is initially at rest at the origin. The second

0.02 0.025 0.03
9

8

7

6

t s

lo
g 1
0S
m
2
s3

FIG. 2. (Color online) Components of the integrand for the
local variance �v2

x : S = σ 2
v|x(t)Jx(t) (dashed red line), and S =

D2
v|x(t)Jx(t) (solid blue line). Parameters are as follows: γ =

0.6 m/s2, x = 201 μm, mass of rubidium-87. The initial state
is the ground state of a harmonic trap with angular frequency
ω0 = 2π × 150 Hz. The passage of a classical particle released from
the origin at t = 0 is at tc = 0.026 s.

derivative with respect to time at that instant is

	′′(tc) = 16gm2σ 2x

8m2σ 4 + 4�2x/γ
, (32)

which, keeping x/γ constant, i.e., for a fixed tc, grows with x.
In other words, the moments become narrower functions of t .

We may now calculate the local variance as

(�vx)2 =
∫ ∞

0
dtV3 −

[∫ ∞

0
dtV2

]2

. (33)

Laplace’s (or steepest descent) approximation gives for the in-
tegrals

∫
e−	f dt ∼ e−	(tc)f (tc)

√
2π/	′′(tc) and (�vx)2 ∼ 0

in sharp contrast with the fixed-time (and time-independent)
global velocity variance 〈v2〉(t) − (〈v〉(t))2 = �

2/(4m2σ 2)
calculated with the Wigner function [see Eqs. (28) and (29)].

In Fig. 2 we show the two components that, when integrated,
make (�vx)2 [see Eq. (11)]: In our configuration the local
velocity variance is dominated by the squared deviation of
the local instantaneous mean. The parameters are chosen
as specified in the caption for realistic conditions on initial
velocity width, acceleration, and observation distance. For
these parameters the local variance (�vx)2(0.5 mm) = 8.22 ×
10−10 (m/s)2, is already more than two orders of magnitude
smaller than the global variance (�v)2 = 3.4 × 10−7 (m/s)2.

The two variances (global and local) are quite different
because of their distinct physical content. (�v)2 is independent
of x, γ or t and corresponds to measuring the velocities of all
the particles of the statistical ensemble, wherever they are, at
a given instant. Since all particles are equally accelerated their
initial velocity differences remain the same at any time. (�v)2

x

results instead from local velocity measurements weighted by
Px(v,t). This distribution can be narrowly peaked when the
velocities at x are predominantly due to the common effect of
γ x rather than to the effect of the initial spread of the initial
conditions. Specifically we have that, at position x, the velocity
of a particle that at time 0 was at x0 with velocity v0, is

vx =
√

γ (x − x0) + v2
0, (34)
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i.e., any difference due to the the initial conditions is washed
out for a large xγ , which leads to velocity uniformity. The
conditions x 	 σ and xγ 	 σ 2

v , where σ 2
v is the initial variance

of the velocity, guarantee the dominance of the first term
and lead to a local velocity spread suppression. Note that,
when σ and σv are related by the minimum uncertainty
product relation, i.e., σv = �/(2mσ ), very small or very big
σ values require a distant x to wash out the differences in
the arriving velocities. Indeed, all previous results can be
translated formally into quantum mechanics by interpreting
W as the Wigner function and the dynamical variables
according to Weyl’s quantization rule. In the Weyl-Wigner
framework the dynamical variable δ(x − q)v corresponds
to the flux operator Ĵx = (1/2)(v̂δ(x − q̂) + δ(x − q̂)v̂) and,
more generally, vnδ(x − q) to Hermitian operators with matrix
elements,

〈p|O(n)|p′〉 =
(

p + p′

2m

)n

〈p|x〉〈x|p′〉, (35)

in momentum space. As other quantization rules are possible,
the above results, which are based on one of them, may be
questioned because of their nonuniqueness. However, actual
measurements typically imply an averaging that tends to
smooth the differences among the different rules. Moreover
the conditions of the experiment discussed are such that at each
instant the local quantum field is essentially monochromatic.
This again washes out differences among quantization rules:
As interferences do not play any major role for our setting
and the effects of the noncommutativity of position and
momentum are negligible, a classical-like interpretation of the
results is justified. This is in fact the usual approach for most
time-of-flight experiments.

V. APPLICATION TO A BOSE-EINSTEIN CONDENSATE
IN THE THOMAS-FERMI REGIME

Unlike the Gaussian case, the Wigner function of the wave
function associated with a Bose-Einstein condensate in the
Thomas-Fermi regime cannot be worked out analytically. In
this section, we compare numerics with the scaling approach
to obtain the different velocity moments accurately. The
parabolic profile of the condensate in the Thomas-Fermi
regime has been used to deduce Eqs. (15) and (17) (see
Appendix A) that gives the time evolution of the scaling
parameter. However, a numerical study is necessary to validate
the determination of the velocity moments with the scaling
approach since the parabolic profile does not encapsulate the
smooth edge of the wave function [19]. We show in the
following that the knowledge of the initial Wigner function
computed numerically is sufficient to obtain all required
information on the dynamics and in particular on the different
velocity moments with a high accuracy.

The initial wave function is found by evolving the 1D
time-dependent Gross-Pitaevskii (GP) equation in imaginary
time using a split-step Fourier method [20]. In practice, we use
an initial Gaussian trial wave function with a mean quadratic
size evaluated from the expected parabola shape and we iterate
until the final wave function is stationary with respect to
real-time evolution. The mean-field wave function corresponds
to that of a Bose-Einstein condensate with N rubidium-87

atoms (scattering length asc = 5 nm) held in a harmonic
trap of angular frequency ω0 = 2π × 150 Hz. The Thomas-
Fermi regime is reached when χ = Nasc/a0 	 1 where a0 =
(�/mω0)1/2 is the length scale associated with the harmonic
confinement (χ = 1 corresponds to N ≈ 176 atoms).

In the following, we consider the time evolution of the wave
function resulting from an abrupt release of the condensate
on the slope (V (x) = mγx, γ = 0.6 m/s2), the case of a
progressive outcoupling is addressed in Sec. VI. We compare
the results obtained by a full integration of the Gross-Pitaevskii
equation with those resulting from the scaling approach
[Eqs. (23) and (17)]. In the course of the propagation, the
interaction energy is converted into kinetic energy as illustrated
in Fig. 3, and more precisely it is responsible for the increase
of velocity dispersion. After 5 ms of propagation for a
BEC initially in the Thomas-Fermi regime, already 80% of
the interaction energy has been transferred. Figure 4 shows
the evolution of the velocity dispersion depending on the
number of atoms. The impressive agreement demonstrates the
efficiency of the scaling approach.

The numerical integration of the GP equation with the
split-Fourier method is quite efficient even though the time
step should be smaller for large-size wave function (large N ).
However, the computation of the Wigner function turns out
to be rapidly cumbersome since the required grid in phase
space has a size that should increase with time to guarantee a
good accuracy. We now compare the first two nonzero velocity
moments V0(x,t) and V2(x,t) obtained after 5 ms of time
evolution on the slope from the full numerical procedure of
the dynamics (integration of the Gross-Pitaevskii equation +
calculation of the Wigner function at time t = 5 ms) with
the result of the scaling approach for which we use only the

E
k
in
/E

to
t,

E
p
ot
/E

to
t,

E
in

t/
E

to
t

543210

Time [ms]

1.5

1

0.5

0

−0.5
Epot/Etot

Eint/Etot

Ekin/Etot

FIG. 3. Evolution of the kinetic (Ekin, dotted line), potential
(Epot, dashed line), and interaction energy (Eint, solid line) of a
Bose-Einstein condensate as a function of time during its propagation
over the slope (energies are normalized to the total energy Etot =
Ekin + Epot + Eint). Parameters are as follows: The initial wave
function corresponds to that of a Bose-Einstein condensate of
rubidium-87 in the Thomas-Fermi regime with N = 17 600 atoms
initially at equilibrium in a harmonic potential of angular frequency
ω0 = 2π × 150 Hz. At time t = 0, the trapping potential is suddenly
removed and the packet experiences the acceleration (γ = 0.6 m/s2)
due to the linear potential.
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FIG. 4. Time evolution of the global velocity dispersion
�v(t)/�v(0) of a Bose-Einstein condensate for three different
values of the atom number N = 8800, 17 600, 35 200. Solid lines,
theoretical prediction using the scaling approach [see Eq. (23)]; dotted
lines, numerical integration of the Gross-Pitaevskii equation; dashed
line, theoretical asymptote at long time.

computing of the initial Wigner function combined with the
time evolution of the scaling parameter [Eqs. (16) and (17)].
Results are summarized in Fig. 5 for N = 35 200 atoms.
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FIG. 5. Velocity moments V0(x,t = 5 ms) (density profile) and
V2(x,t = 5 ms) for N = 35 200 atoms, where the positions are ex-
pressed in the center-of-mass coordinates x ′ = x − η: full numerical
procedure including the time evolution (solid line) and result of
the scaling approach based only on the initial Wigner function
(dotted line).

TABLE I. Numerical values of ε(N ).

N 176 880 1760 8800 17600 35200

ε 0.278 0.0741 0.0397 0.0132 0.0104 0.009

To compare quantitatively the velocity moments, we define
the relative error after 5 ms of propagation:

ε(N ) =
∣∣∣∣1 − �2v(t = 5 ms)

�1v(t = 5 ms)

∣∣∣∣ , (36)

in which �1v is the velocity dispersion extracted by the full
numerical approach, and �2v is the one resulting from the
rescaled initial Wigner function. Results are summarized in
Table I.

The larger the interaction parameter χ (∝N ), the better
the agreement. We conclude that our scaling approach gives
a good account of the evolution of the wave function of a
Bose-Einstein condensate in the Thomas-Fermi regime. As
the validity of our approach is now well demonstrated, we
can extend its use for a much larger time. We introduce
in the following the quantity Mx which characterized the
improvement of the local monochromaticity as a function of
the distance from the original trap:

Mx = �vx

〈v〉x =
√∫ ∞

0 V3(x,t)dt − ( ∫ ∞
0 V2(x,t)dt

)2∫ ∞
0 V2(x,t)dt

. (37)

To calculate the moments involved in the local monochro-
maticity quantity Mx , we use the scaling laws provided
by Eqs. (21) and (22). The evolution of this quantity as a
function of the distance is plotted in Fig. 6. We recover
here quantitatively the main result of this section; the local
monochromaticity increases with the distance even for a many-
body wave function with large repulsive interaction. This is
to be contrasted with the global velocity dispersion which
increases as shown in Fig. 4. An interacting BEC evolving in
the presence of a constant force can therefore be used as a local

120100806040200
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M
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FIG. 6. Local monochromaticity as a function of the distance
x at which it is measured. These data have been obtained for a
Bose-Einstein condensate in the Thomas-Fermi regime with N =
35 200 atoms; other parameters are identical to those of Fig. 3.
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FIG. 7. Matter-wave probing of a Fabry-Perot resonance. The
total reflection probability is plotted as a function of the double barrier
height: for an incoming plane wave (solid line) with the velocity
v0 that coincides with the resonance (s = 4.02), and for an incident
wave packet with a velocity dispersion of 600 μm/s (dashed line) and
20 μm/s (dotted line).

probe in a scattering experiment. In the following section, we
give a concrete example in which the outcoupling of the wave
function from its original trap is performed progressively to
amplify the local monochromaticity including in the case of a
Bose-Einstein condensate in the Thomas-Fermi regime.

VI. GAIN OBTAINED FROM A
PROGRESSIVE OUTCOUPLING

In this section, we compare the matter-wave probing of a
very thin Fabry-Perot resonance associated with a repulsive
double barrier [21,22] using two different protocols: First
we consider a wave packet at a constant velocity with a
well-defined velocity dispersion and in the absence of other
extra external potential [see Fig. 7(a)]; second we consider a
situation in which the matter wave is accelerated by a linear
potential towards the double barrier [see Fig. 8(b)] and for
which atoms can also be progressively outcoupled from their
original trap [23–27].

The double barrier potential is modeled by a sinusoidal
potential located at x = d:

Udb(x) = 2sER(1 − cos (2π (x − d)/dR))


(x − d + dR)
(d + dR − x), (38)

where ER = h2/(2md2
R) = mv2

R/2, 
 is the Heaviside step
function [
(x < 0) = 0 and 
(x � 0) = 1]. The numerical
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FIG. 8. Matter-wave probing of a Fabry-Perot resonance placed
on a slope. The total reflection probability is plotted as a function of
the double barrier height: For an incoming plane wave (solid line)
with the velocity v0 that coincides with the resonance (s = 4.02),
for an incident wave packet with a velocity dispersion of 600 μm/s
outcoupled in 80 ms (dashed line), and for a Bose-Einstein condensate
in the Thomas-Fermi of velocity dispersion 2 mm/s outcoupled in
100 ms (dotted line).

simulations presented hereafter are performed with the real-
istic values d = 201 μm, dR = 0.48 μm, vR = h/(mdR) =
9.565 mm/s [7,28]. The Fabry-Perot resonance that is probed
has an energy E0 = mv2

0/2 with v0 = 1.62vR = 15.53 mm/s
for a barrier height of 16.08ER = 6.13E0. The width of this
resonance is E0/1000 (i.e., 0.36 pK in temperature units!)
that corresponds to a velocity dispersion 8.3 μm/s. For
comparison, let us recall that the typical order of magnitude
of the velocity dispersion achievable with a rubidium BEC is
2 mm/s [7].

To scan the resonance we vary the height of the double
barrier by adjusting the parameter s for a fixed incoming
velocity. The result obtained by considering an incident plane
wave of wave vector k0 = mv0/� is plotted as a reference by
a solid line in Figs. 7(b) and 8(b). The resonance appears at
s = 4.02. Interestingly, the width in energy of the reflection
probability as a function of s is significantly larger than that
of the resonance. Indeed, from a Gaussian fit of the reflection
probability, we find a variance in s equal to �s = 0.008. This
means that experimentally if the double barrier is realized by
optical means, the intensity should be stabilized at a level better
than one per thousand, and not much better than the resonance
width E0/1000. This feature facilitates the detection of the
resonance.
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Figure 7(b) contains also the total reflection probability
about the resonance for an incident wave packet of mean
velocity v0 and with a velocity dispersion �v = 600 μm/s
(dashed line) and 20 μm/s (dotted line). The probability
reflection of an incident packet with a velocity dispersion
already more than three times smaller than that of a BEC
remains very close to one. This is to be contrasted with the case
of a packet that has a velocity dispersion 100 times smaller than
that of a BEC (i.e., on the order of the width of the resonance).
In this latter case, the presence of the resonance can be clearly
seen as expected since about 38% of the atoms are reflected.

We now consider the probing of the same resonance
by a wave packet that is accelerated by a constant force
from its original trap located at x = 0. The potential energy
experienced by the atoms now reads [see Fig. 8(a)]

U (x,t) = mγ (x − d) − U0e
−t/τ e−2x2/w2

0 + Udb(x). (39)

The Gaussian term accounts for the trap potential which
accommodates the initial wave function. The exponential
form for the time dependence of the trap depth was used
in Ref. [29] to outcouple progressively atoms from a Bose-
Einstein condensate into a guide. The slope has been chosen so
that a particle launched with a zero velocity at x = 0 arrives at
x = d with a velocity v0, i.e., γ = v2

0/(2d) = 0.6 m/s2, i.e., an
energy that coincides with that of the Fabry-Perot resonance.

The analytical formalism developed in the previous sections
is the appropriate one for τ → 0, i.e., for an instantaneous
release of the wave function from its originating trap and a
subsequent propagation on the slope. We have already shown
that the position-velocity correlation that builds up during
such an evolution generates a small local velocity dispersion
downward. As demonstrated below on a specific example, an
even better strategy consists of releasing the atoms from the
trap progressively as done for the generation of guided atom
lasers [28–32]. In such a protocol, the initial conditions of each
atom is nearly the same, i.e., atoms are released nearly at the
same position with a velocity very close to zero. This favors a
very thin local velocity dispersion after propagation.

We illustrate this idea with the dashed curve of Fig. 8(b) that
corresponds to the total reflection probability of a wave packet
(without atom-atom interactions) with an initial velocity
dispersion equal to 600 μm/s and that has been outcoupled
in τ = 80 ms. About 40% of the atoms are reflected when
the height of the double barrier is varied. In contrast with the
scattering on the double barrier, in the absence of slope, of
a packet having the same velocity dispersion, the thin Fabry
resonance can here be probed with accuracy. This illustrates
clearly the importance of both a progressive outcoupling and
the building up of position-velocity correlation in the course
of the propagation on the slope.

We have also performed the progressive outcoupling (over
100 ms) of an interacting BEC with a velocity dispersion
even larger on the order of 2 mm/s [18]. Note that the long
outcoupling times are also optimal to reduce the contamination
of the transverse excited states in real systems [18,28,29,31].
The result is plotted as a dotted line in Fig. 8(b). The total
reflection probability is about 30%. Once again the initial
source is very far from an ideal one and has a “very” large
instantaneous velocity width. The situation may appear as even

worse since the interaction energy is converted into kinetic
energy in the course of the propagation as already discussed in
Sec. V. However, the benefit of the building up of the position-
velocity correlation is dominant. An instantaneous outcoupling
of the BEC yields a 10% total reflection probability, a value that
would correspond in the absence of a slope to that of a wave
packet having a dispersion velocity on the order of 50 μm/s,
that is, 40 times smaller than that of the BEC. An extra gain of
a factor three on the total reflection probability is here obtained
from the progressive outcoupling. Interestingly, this technique
avoids completely any limitation in energy dictated by the
chemical potential. The shape of the total reflection probability
as a function of the height of the double barrier is radically
different in the case of an interacting BEC compared to that
obtained in the absence of atom-atom interactions [compare
dotted and dashed lines in Fig. 8(b)]. This results from the sharp
border of the inverse parabolic shape of the BEC assumed in the
Thomas-Fermi regime and its conversion in position-velocity
correlation in the course of the propagation.

In conclusion, we have shown how it is possible to decrease
the velocity dispersion at a given position using a linear
potential. This method works efficiently also in the presence of
repulsive interaction. It provides a method to circumvent the
limitations that may appear in outcoupling processes [22,34]
and to improve the local monochromaticity of a matter-wave
source.

In Ref. [33], the author proposed to investigate an atom-
blockade effect with a Fabry-Perot cavity in close analogy
with the Coulomb blockade effect of electronic transport.
An incident atom laser with a very thin velocity dispersion
would be reflected or not from a Fabry-Perot cavity depending
on the presence or not of an atom in the cavity. Such an
experiment appeared as out of reach for a long time because
of the very small velocity dispersion (<50 μm/s) required for
its demonstration. Exploiting the position-velocity correlation
that builds up in the propagation over a slope we have shown
that this level of accuracy can now be achieved with the
current state of the art. This work therefore paves the way for
ultrahigh resolution in matter-wave probing, the observation
of nonlinear atom optical effects, and the observation of the
interplay between atom tunneling and atom-atom interactions
[35,36].
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APPENDIX A: SCALING WIGNER SOLUTION

This appendix justifies the scaling form of the Wigner
function of Eq. (15) for both a one-body wave function and a
Bose-Einstein condensate in the Thomas-Fermi regime.

We consider a cloud of atoms in a harmonic trap. At time
t = 0, the confinement is suddenly removed and the packet
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experiences a uniform accelerating force. For a noninteracting
gas, the initial Wigner function, W0(x,p), obeys the stationary
Liouville equation,

p∂xW0 − m2ω2
0x∂pW0 = 0. (A1)

Multiplying this by p/N , where N is the total number of
particles, and integrating over p yields

∂x

(∫
p2W0dp

)
+ m2ω2

0xn0(x) = 0, (A2)

where n0(x) is the linear density defined by

n0(x) = N

∫
W0(x,p)dp with

∫
n0(x)dx = N. (A3)

Multiplying Eq. (A2) by x/N and integrating over x provides
the usual momentum relation associated with the harmonic
oscillator 〈p2〉0 = m2ω2

0〈x2〉0.
For t > 0, the packet is released on a slope, i.e., on a linear

potential U (x) = −mγx. The equation of evolution of the
time-dependent Wigner function now reads

∂tW + (p/m)∂xW + mγ∂pW = 0. (A4)

We look for the solution of this time-dependent equation using
a scaling ansatz: W (x,p,t) = W0(X,P ) with X = [x − η]/α
and P = α(p − mη̇) − mα̇(x − η) [10], where α and η are
time-dependent functions to be determined with boundary
conditions,

η(0) = 0, η̇(0) = 0, α(0) = 1, α̇(0) = 0, (A5)

so that P (t = 0) = p and X(t = 0) = x. Let’s calculate the
derivative of X and P variables with respect to x, p, and t :

∂tX = −(α̇X + η̇)/α,

∂xX = 1/α,

∂tP = mα̇η̇ − mαη̈ + mX(α̇2 − αα̈) + α̇P/α, (A6)

∂xP = −mα̇,

∂pP = α.

We deduce the following derivative of the phase-space distri-
bution :

∂tW = ∂tX∂XW0 + ∂tP ∂P W0,

∂xW = ∂xX∂XW0 + ∂xP ∂P W0, (A7)

∂pW = ∂pP ∂P W0.

Combining Eqs. (A7) and (A4), we get

�X∂XW0 + �P ∂P W0 = 0, (A8)

with

�X = (∂tX + (p/m)∂xX) = P/(mα2),

�P = (∂tP + (p/m)∂xP + mγ∂pP )

= −mα(η̈ − γ ) − mXαα̈. (A9)

The integration of Eq. (A8) over X and P yields the equation
for the packet center η̈ = γ . Multiplying Eq. (A8) by XP and
integrating over X and P provides the equation fulfilled by the

α scaling parameter:

α̈ = 〈P 2〉0

m2〈X2〉0

1

α3
≡ ω2

0

α3
, (A10)

whose solution is α(t) = (1 + ω2
0t

2)1/2. For the ground state
we find ω0 = �/(2mσ 2) where σ = �x0.

Let us now consider a Bose-Einstein condensate in the
Thomas-Fermi regime. Initially the BEC is trapped in a
harmonic trap of angular frequency ω0 and its wave function
normalized to the number of atoms reads �(x,0) = n

1/2
0 (x),

where n0 is the atomic density:

n0(x) = (
μ − mω2

0x
2
/

2
)/

g, (A11)

where g accounts for the strength of the interactions. At
time t > 0, we propose to describe the dynamics using the
ansatz,

�(x,t) = 1

α1/2
n

1/2
0

(
x − η

α

)
eiS(x,t). (A12)

To obtain the expression of the scaling parameter α and of the
phase S(x,t) we shall use the hydrodynamic equations. The
continuity equation for the density n(x,t) = |�(x,t)|2 yields
the expression for the velocity field [11],

∂tn + ∂x(nvx) = 0 =⇒ vx = η̇ + α̇
x − η

α
. (A13)

The phase S can be directly inferred from the velocity field
through the relation vx = �∂xS/m:

S(x,t) = m

�

(
η̇(x − η) + α̇

(x − η)2

2α

)
. (A14)

The Euler equation for the velocity field in the Thomas-Fermi
regime reads

m∂tvx = ∂x

(
−1

2
mv2 − Vext(x) − gn(x,t)

)
. (A15)

Combining Eqs. (A11), (A12), and (A15), we find the
equations fulfilled by the center position of the packet η and
the one for scaling parameter α,

η̈ = γ and α̈ = ω2
0

α2
. (A16)

Instead of the α3 denominator that we found for the noninter-
acting gas in Eq. (A10), we have now α2, so the solution cannot
be written explicitly. However, as α̇ = ω0[2(1 − α−n+1)/
(n − 1)]1/2, the long time asymptotics, as t 	 1/ω0, is quite
simple: α̇ ∼ ω0 for the noninteracting gas (n = 3) and α̇ ∼√

2ω0 for the TF regime (n = 2). Once the mean-field energy is
released, the cloud expansion proceeds as a free expansion with
a rate of change corresponding to an effective initial frequency√

2ω0, a fingerprint of the interactions that, remarkably, does
not depend on g.

The time-dependent Wigner function associated with
�(x,t) can be recast in terms of the initial Wigner
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function:

W (x,p,t) = 1

Nπ�

∫
�∗(x + y,t)�(x − y,t)e2ipy/�dy

= 1

Nπ�α

∫ [
n0

(
x + y − η

α

)
n0

(
x−y−η

α

)]1/2

× e2ipy/�+iS(x−y,t)−iS(x+y,t)dy

= W0(X,P ). (A17)

Interestingly enough, this result coincides with the one of the
collisionless Vlasov equation [37]. This may appear surprising
at first sight since the Vlasov equation is a semiclassical
equation in the presence of a mean-field term. However, the
quadratic form of the density profile that enters the mean-field
potential term enables one to conserve the equivalence between
the equation of evolution for the Wigner function and the
Vlasov equation. In this sense, this is a direct consequence of
the initial harmonic confinement assumption.

The expression used above for the Wigner is the one
associated with a pure state. This is valid in the absence
of interactions and also for the mean-field description of a
Bose-Einstein condensate but it cannot be applied directly to
a many-body wave function. In this latter case, the Wigner
function is defined through the one-body reduced density
matrix, g1(x,y; t) [9]:

W (x,p,t) = 1

π�

∫
g1(x + y,x − y,t)e2ipy/�dy. (A18)

A large class of many-body quantum systems exhibits
self-similar dynamics [13,38]. This includes the Calogero-
Sutherland model [39], the Tonks Girardeau gas [14,16],

certain Lieb-Liniger states [40], Bose-Einstein condensate
[10,41] even in the presence of dipolar interactions [42],
strongly interacting gas mixtures [43], etc. The self-similar
dynamics can be written in our context as

g1(x,y; t) = 1

α
g1

(
x − η

α
,
y − η

α
; 0

)
ei(S(x,t)−S(y,t)), (A19)

yielding once again W (x,p,t) = W0 (X,P ).

APPENDIX B: f FUNCTIONS

We may calculate the fj functions in Eq. (30) making use
of Eqs. (20)–(25). An alternative route is to write down the
Wigner function explicitly making use of the known phase-
space propagator,

W (x,p; t) =
∫∫

dx0dp0W (x0,p0; 0)

× δ

(
x − x0 − v0t − γ t2

2

)
δ(v − v0 − γ t)

= 1

π�
e
− (p−mγ t)22σ2

�2 e
− (x−pt/m+γ t2/2)2

2σ2 , (B1)

for W (x0,p0,0) = 1
π�

e
− p2

0 2σ2

�2 e
− x2

0
2σ2 . The end result is

W (x,p,t) = W (x0,p0,0) for phase-space points connected
by classical trajectories (Liouville’s theorem). Note that, in
general, x0 �= X and p0 �= P . An explicit calculation, however,
shows the equality of this Wigner function with W0(X,P ).

f1 = mσt(8γm2σ 4 + γ �
2t2 + 2�

2x)√
2π (4m2σ 4 + �2t2)3/2

, (B2)

f2 = mσ {64γ 2m4σ 8t2 + 16�
2m2σ 4[σ 2 + γ t2(γ t2 + 2x)] + �

4t2[4σ 2 + (γ t2 + 2x)2]}
2
√

2π (4m2σ 4 + �2t2)5/2
, (B3)

f3 = mσt(8γm2σ 4 + γ �
2t2 + 2�

2x)

4
√

2π (4m2σ 4 + �2t2)7/2
{64γ 2m4σ 8t2 + 16�

2m2σ 4[3σ 2 + γ t2(γ t2 + 2x)] + �
4t2[12σ 2 + (γ t2 + 2x)2]}. (B4)
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