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Sending multiple messages on qubits encoded in different vibrational modes of cold atoms or ions

along a transmission waveguide requires us to merge first and then separate the modes at input and output

ends. Similarly, different qubits can be stored in the modes of a trap and be separated later. We design the

fast splitting of a harmonic trap into an asymmetric double well so that the initial ground vibrational state

becomes the ground state of one of two final wells, and the initial first excited state becomes the ground

state of the other well. This might be done adiabatically by slowly deforming the trap. We speed up the

process by inverse engineering a double-function trap using dynamical invariants. The separation

(demultiplexing) followed by an inversion of the asymmetric bias and then by the reverse process

(multiplexing) provides a population inversion protocol based solely on trap reshaping.

DOI: 10.1103/PhysRevLett.111.213001 PACS numbers: 32.80.Qk, 03.75.Be, 37.10.Gh, 37.10.Vz

Introduction.—One of the main goals of atomic physics
is to achieve an exhaustive control of atomic states and
dynamics [1]. The ultracold domain is particularly suitable
for this aim as it provides a rich scenario of quantum states
and phenomena. Atom optics and atomtronics [2] intend to
manipulate cold atoms in circuits and devices for applica-
tions in metrology, quantum information, or fundamental
science. These devices are frequently inspired by electronics
(e.g., the atom diode [3,4], the transistor [2], atom chips [5]),
or optics (e.g., beam splitters [6] or multiplexing [7,8]).

In this Letter we shall focus on a cold-atom realization
of multiplexing, a basic process in modern telecommuni-
cations. Multiplexing is the transmission of different
messages via a single physical medium. A multiplexer
combines signals from several emitters into a single me-
dium, whereas a demultiplexer performs the reverse opera-
tion. The concept of multiplexing is relevant for quantum
information processing (for its use in quantum repeaters,
see [9,10], or for trapped ions [11]). We envision here
optical or magnetic waveguides for atoms holding several
transverse orthogonal modes [12–15]. If the qubit is
encoded in the internal state of the atom, several qubits
may be carried out simultaneously by different modes. To
develop such a quantum-information architecture, fast
multiplexers or demultiplexers that could join the modes
from different waveguides into one guide, or separate
them, are needed. We shall discuss trap designs for demul-
tiplexing since the multiplexer would simply operate in
reverse. For a proof of principle, we propose the simplified
setting of a single initial harmonic trap for noninteracting
cold atoms whose first two eigenstates will be separated, as

in the first step of Fig. 1, into two different wells. In a
complete demultiplexing process, the final wells should be
independent, with negligible tunneling. The challenge is to
design the splitting (a) without final excitation of higher
vibrational levels, (b) in a short time, and (c) with a
realizable trap potential. Condition (a) may be achieved
by an adiabatic asymmetric splitting [16,17] in which, for
moderate bias compared to the vibrational quanta, the
initial ground state becomes the ground state of the well
with the lowest energy, and the excited state becomes the
ground state of the other well. This adiabatic approach
generally fails to satisfy condition (b), which we shall
implement applying ‘‘shortcuts to adiabaticity’’ [18–21].
As for (c), we shall make use of a simple two-level model
for the shortcut design, and then map it to a realistic
potential recently implemented to realize an atomic
Josephson junction [22]. Finally, several applications,
such as separation of multiple modes, population inversion,
or controlled excitation, will be discussed.
Slow adiabatic and fast adiabatic processes.—Suppose

that a harmonic potential evolves adiabatically into two
well-separated and asymmetric wells as in the first step of
Fig. 1. To accelerate the dynamics we shall use a moving
two-level approximation based on a (yet-unspecified) pro-
cess where a symmetrical potential evolves from an initial

FIG. 1. Population inversion using trap deformations in three
steps: demultiplexing, bias inversion, and multiplexing.
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harmonic trap to a final double well. Then, we construct a
time-dependent orthogonal bare basis jLðtÞi ¼ ð01Þ,jRðtÞi ¼ ð10Þ of left and right states, obtained by a linear

combination of the instantaneous ground and first excited
states. An approximate two-mode Hamiltonian model for a
generally asymmetrical process is written in this basis as

H2�2ðtÞ ¼ @

2

�ðtÞ ��ðtÞ
��ðtÞ ��ðtÞ

 !
; (1)

where, for the double well configuration, �ðtÞ is the tun-
neling rate, and @�ðtÞ the relative gap, or bias, between the
two wells. For the initial harmonic potential at t ¼ 0,
�ð0Þ ¼ 0 and �ð0Þ ¼ !0. The instantaneous eigenvalues

are E�
� ðtÞ ¼ �ð@=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ðtÞ þ �2ðtÞp
, and the normalized

eigenstates
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�
jRðtÞi;

(2)

where the mixing angle � ¼ �ðtÞ is given by tan� ¼
�ðtÞ=�ðtÞ. The boundary conditions on �ðtÞ and �ðtÞ are
�ð0Þ ¼ !0; �ð0Þ ¼ 0; �ðtfÞ ¼ 0; �ðtfÞ ¼ �f;

(3)

which correspond, at time t ¼ 0, to a harmonic well, and at
time tf to two independent wells with asymmetry bias @�f.

To design a fast but still adiabatic process, we shall first
assume the simplifying conditions: �ðtÞ ¼ � constant and
�=�ð0Þ � 1. Thus �ð0Þ � �=2 and the initial eigenstates
essentially coincide with the ground and first excited states
of the harmonic oscillator. For a constant �, the adiabatic-

ity condition reads [16] jð� _�ðtÞÞ=ð2ð�2 þ �ðtÞ2Þ3=2Þj � 1.
Imposing a constant value c for the adiabaticity parameter
and using the boundary conditions for � in Eq. (3),

we fix the integration constant and the value of c, c ¼
ð!0=ð2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

0 þ �2
q

tfÞÞ. The ‘‘fast adiabatic’’ solution of

the differential equation for �ðtÞ takes finally the form

�faðtÞ¼ ðð!0�ðtf� tÞÞ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2t2fþ!2

0tð2tf� tÞ
q

ÞÞ. However,
to keep adiabaticity, c � 1 should hold, so this protocol
is limited by tf � ð1=2�Þ � ð1=!0Þ. We shall now work

out an alternative, faster protocol based on invariants in
which the boundary conditions on �ðtÞ and �ðtÞ will be
satisfied exactly.

Invariant-based inverse engineering.—For the
Hamiltonian in Eq. (1), there is a dynamical invariant IðtÞ
of the form [19]

IðtÞ ¼ @

2
�0

cos�ðtÞ sin�ðtÞei’ðtÞ
sin�ðtÞe�i’ðtÞ � cos�ðtÞ

 !
; (4)

where ’ðtÞ and �ðtÞ are auxiliary (azymuthal and polar)
angles, and �0 is an arbitrary constant with units of
frequency. The eigenvectors of IðtÞ multiplied by Lewis-
Riesenfeld phase factors provide two orthogonal solutions
of the time-dependent Schrödinger equation [19]. To in-
verse engineer the Hamiltonian, we design the invariant
first and then deduce the Hamiltonian from it. The bound-
ary conditions ½H2�2ðtÞ; IðtÞ� ¼ 0 will be applied at the
interval ends tb ¼ 0, tf, so that the eigenvectors of IðtbÞ
andH2�2ðtbÞ coincide. The role of the invariant is therefore
to drive the initial eigenstates of H2�2ð0Þ to the eigenstates
of H2�2ðtfÞ. In our application this implies a unitary map-

ping from the first two eigenstates of the harmonic oscil-
lator to the ground states of the left and right final wells.
From the invariance property i@ð@IðtÞ=@tÞ �

½H2�2ðtÞ; IðtÞ� ¼ 0, it follows that

�ðtÞ ¼ � _�ðtÞ= sin’ðtÞ;
�ðtÞ ¼ ��ðtÞ cot�ðtÞ cos’ðtÞ � _’ðtÞ:

(5)

The commutativity of IðtÞ and H2�2ðtÞ at boundary times
tb ¼ 0, tf imposes the conditions

�ðtbÞ sin½�ðtbÞ�ei’ðtbÞ þ �ðtbÞ cos½�ðtbÞ� ¼ 0;

�ðtbÞ sin½�ðtbÞ�e�i’ðtbÞ þ �ðtbÞ cos½�ðtbÞ� ¼ 0;

�ðtbÞ sin½�ðtbÞ� sin½’ðtbÞ� ¼ 0:

(6)

Taking into account Eq. (3), we get from Eq. (6),

�ð0Þ ¼ �=2; ’ð0Þ ¼ �; �ðtfÞ ¼ �; _�ðtfÞ ¼ 0:

(7)

These conditions lead to indeterminacies in Eq. (5). To
resolve them we apply l’Hôpital’s rule repeatedly and find
additional boundary conditions,

_�ð0Þ ¼ €�ð0Þ ¼ _’ð0Þ ¼ 0; �
:::ð0Þ ¼ �!0

_�ð0Þ;
€’ð0Þ ¼ � _�ð0Þ; ’ðtfÞ ¼ �=2; _’ðtfÞ ¼ ��f

3
;

(8)

with _�ð0Þ � 0. At intermediate times, we interpolate the
angles assuming a polynomial ansatz, �ðtÞ ¼ P

5
j¼0 ajt

j

and ’ðtÞ ¼ P
4
j¼0 bjt

j, where the coefficients are found

by solving the equations for the boundary conditions.
Thus we obtain the Hamiltonian functions �invðtÞ and
�invðtÞ from Eq. (5). Figure 2 provides an example of
parameter trajectories.
Mapping to coordinate space.—Our purpose now is to

map the 2� 2 Hamiltonian into a realizable potential,

Vðx; tÞ ¼ 1

2
m!2x2 þ V0cos

2

�
�ðx� �xÞ

dl

�
: (9)

This form has already been implemented [22] with optical
dipole potentials, combining a harmonic confinement due
to a crossed beam dipole trap with a periodic light shift
potential provided by the interference pattern of two
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mutually coherent laser beams. The control parameters are
in principle the frequency !, the displacement �x of the
optical lattice relative to the center of the harmonic well,
the amplitude V0, and the lattice constant dl, but in the
following examples we fix dl and �x; the other two pa-
rameters offer enough flexibility and are easier to control
as time-dependent functions. To perform the mapping, we
minimize numerically F½V0ðtÞ; !ðtÞ� ¼ ½�idðtÞ � �ðtÞ�2 þ
½�idðtÞ � �ðtÞ�2, using the simplex method. The functions
�idðtÞ and �idðtÞ are designed according to the shortcuts
discussed before, and �ðtÞ and �ðtÞ are computed as �ðtÞ¼
�ð2=@ÞhLðtÞjHjRðtÞi¼�ð2=@ÞhRðtÞjHjLðtÞi, �ðtÞ ¼ ð2=@Þ
hRðtÞjH ��jRðtÞi ¼ �ð2=@ÞhLðtÞjH ��jLðtÞi, where
H ¼ HðV0ðtÞ; !ðtÞ; �x; dlÞ ¼ �ð@2=2mÞð@2=@x2Þ þ V is
the full Hamiltonian in coordinate space with a kinetic
energy term and the potential (9) and �ðtÞ ¼ ½E�

� ðtÞ þ
Eþ
� ðtÞ�=2 is a shift defined from the first two levels E� of

H to match the zero-energy point between the coordinate

and the two-level system. Finally, jRðtÞi ¼ ðjgðtÞi þ
jeðtÞiÞ=21=2 and jLðtÞi ¼ ðjgðtÞi � jeðtÞiÞ=21=2 form the
base, where jgðtÞi is the ground state and jeðtÞi the first
excited state of the symmetrical Hamiltonian
H0ðV0ðtÞ; !ðtÞ; �x ¼ 0; dlÞ, defined as H but with �x ¼
0, which we diagonalize numerically. In our calculations,
�ðtÞ and �ðtÞ become indistinguishable from their ideal
counterparts. Figure 3 depicts V0ðtÞ and !ðtÞ for the pa-
rameters of Fig. 2. We use 87Rb atoms and a lattice spacing
dl ¼ 5:18 �m. The sharp final increase of V0ðtÞ makes the
two wells totally independent, but for most applications
this strict condition may be relaxed to avoid intrawell
excitations.

Figure 4 demonstrates perfect transfer for the ground (a)
and the excited state (b) using the very same protocol in
both cases, the one depicted in Figs. 2 and 3. (Thanks to the
superposition principle, the same protocol would produce a

perfect demultiplexing for any linear combination of the
ground and excited states.) Initial and final states are
represented, solving the Schrödinger equation with the
potential (9). We stop the process 2 ms before the nominal
time tf, as the fidelity reaches a stable maximum there and

a further increase of V0 is not required. We also include the
results for the protocol in which ! is kept constant and
V0ðtÞ is a linear ramp (with the same durations as the
shortcut protocols). For this linear protocol the final state
includes a significant density in the ‘‘wrong’’ well. This
simple linear-V0 approach needs tf * 0:7 s to become

adiabatic and produce the same fidelity, 0.9997, found for
a shortcut protocol ten times faster, tf ¼ 0:07 s, the right-

most point in Fig. 5(a). Figure 6 compares the populations
in the instantaneous basis of the (full, coordinate-space)
Hamiltonian for the shortcut and the linear protocols when
the system starts in the ground state, corresponding to
Fig. 4(a). The shortcut protocol implies a transient ex-
change between ground and (first) excited levels but finally
takes the system to the desired ground state. In contrast to
the linear protocol, the excitation is permanent leading to a
poor final fidelity.
In the two-level model, tf may be reduced arbitrarily, but

in the coordinate space Hamiltonian, levels 0–1 will only
be ‘‘independent’’ as long as higher levels are not excited.
These excitations are the limiting factor to shorten the
times further with the current mapping scheme. Some
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FIG. 2 (color online). (a) �invðtÞ and (b) �invðtÞ. �ð0Þ ¼ 2��
78 Hz, �f ¼ 190 s�1, _�ð0Þ ¼ 190 s�2, and tf ¼ 55 ms.
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FIG. 4 (color online). (a) Ground state at t ¼ 0 (long-dashed,
blue line); final state with the shortcut (solid, blue line, indis-
tinguishable from the ground state of the final trap); final state
with linear ramp for V0ðtÞ and ! ¼ 2�� 78 Hz (short-dashed,
magenta line). (b) Same as (a) for the first excited state.
Parameters like in Fig. 3 at t ¼ 53 ms. The linear ramp for
V0ðtÞ ends in the same value used for the shortcut.
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FIG. 3. Lattice height V0, and trap frequency !=ð2�Þ using
invariant-based engineering and mapping. �x ¼ 200 nm.
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FIG. 5 (color online). Fidelities with respect to the final ground
state starting at the ground state (a) and with respect to the final
first excited state starting at the excited state (b) versus final time
tf, via shortcuts (F

inv
g and Finv

e , blue circles), or linear ramping of

V0ðtÞ (Flin
g and Flin

e , red triangles). The fidelity is computed at

2 ms less than the nominal tf. Other parameters as in Figs. 2–4.
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guidance is provided by the Anandan-Aharonov relation

tf > h=ð4�EÞ, where �E is the time average of the stan-

dard deviation [23].
Discussion.—Vibrational multiplexing may be com-

bined with internal-state multiplexing [11] to provide a
plethora of possible operations. Motivated by the prospec-
tive use of multiplexing or demultiplexing for quantum
information processing, we have applied shortcuts-to-
adiabaticity techniques to speed up the spatial separation
of vibrational modes of a harmonic trap. A similar
approach would separate n modes into n wells so as to
deliver more information into different processing sites.
The number of modes that could be separated will depend
on the asymmetric bias in relation to other potential pa-
rameters: the bias among the extreme wells should not
exceed the vibrational quanta in the final wells. The bias
determines possible speeds, too, as smaller biases gener-
ally imply longer times.

A previous work [16] dealt also with splitting operations
and shortcuts to adiabaticity, but the objective was the
opposite to our aim here. Since adiabatic following from
a harmonic trap to an asymmetric double well collapses the
ground state wave to one of the twowells, a ‘‘fast-forward’’
(FF) technique [24,25] was applied to avoid the collapse
and achieve perfect, balanced splitting, as required, e.g.,
for matter-wave interferometry. The idea was that for a fast
nonadiabatic shortcut, the perturbative effect of the asym-
metry becomes negligible. The stabilizing effect of inter-
actions was also characterized within a mean-field
treatment. In the present Letter, the objective is to send
each mode of the initial harmonic trap as fast as possible to
a different final well, so we needed a different methodol-
ogy. Instead of FF, which demands an arbitrary control of
the potential function in position and time, we have re-
stricted the potential to a form with a few controllable
parameters (in practice we have let only two of them
evolve in time). Inverse engineering of the Hamiltonian
is carried out for a two-level model using invariants of
motion, and the resulting (analytical) Hamiltonian is then
mapped to real space. The discrete Hamiltonian is useful as
it provides a simple picture to understand and design the
dynamics at will. In future work we shall increase the
number of levels in the discrete model and test alternative

potential functions. The method provides also a good basis
to apply optimal control theory (OCT), which comple-
ments invariant-based engineering (see, e.g., [26]) by
selecting among the fidelity-1 protocols according to other
physical requisites. As for interactions and nonlinearities,
they will generally spoil a clean multiplexing or demulti-
plexing process, so we have only examined linear dynam-
ics here.
An application of the demultiplexing schemes discussed

in this work is the population inversion of the first two
levels of the harmonic trap without making use of internal
state excitations [27]. This is useful to avoid decoherence
effects induced by decay, or for species without an appro-
priate (isolated two-level) structure. The scheme is based
on the three steps shown in Fig. 1. A mechanical excitation
of the ground state level into the first excited state of a fixed
anharmonic potential was implemented by shaking the trap
along a trajectory calculated with an OCT algorithm [28].
Our proposed approach relies instead on a smooth potential
deformation. This type of inversion could be applied to
interacting Bose-Einstein condensates as long as the initial
states are pure ground or excited levels. The production of
twin-atom beams from the excited state is an outstanding
application [29].
Asymmetric double wells may also be used for other

state-control operations such as preparing nonequilibrium
Fock states through a ladder excitation process. The vibra-
tional number may be increased by one at every step. Each
excitation would start and finish with demultiplexing and
multiplexing operations from the harmonic oscillator to the
double well and vice versa, as described in the main text.
Between them the two wells are independent and their
height or width can be adjusted to produce the desired
level ordering. For an even-to-odd vibrational number
transition, this requires an inversion of the bias, as in
Fig. 1; transitions from odd to even levels are performed
by deepening the left well until the initially occupied level
on the right well surpasses one of the levels in the left well.
The steps may be repeated until a given Fock state is
reached. Operating in reverse mode, a given excited state
could be taken down to the ground state, as in sideband
cooling, just with trap deformations.
Open questions left for future work include optimizing

the robustness of parameter trajectories versus noise and
perturbations [30], or finding time bounds in terms of
average energies, similar to the ones for harmonic trap
expansions [31] or transport [32]. The present results
may also be applied for optical waveguide design [33], or
to two-dimensional systems as a way to generate vortices.
This work was supported by the National Natural

Science Foundation of China (Grant No. 61176118),
Grants No. 12QH1400800 IT472-10, No. BFI-2010-255,
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a fellowship from UPV/EHU.
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FIG. 6 (color online). Populations of the states for the short-
cuts (a) and the linear ramp for V0ðtÞ (b). Ground state (P0, solid
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and D. Guéry-Odelin, Phys. Rev. A 80, 041605
(2009).

[16] E. Torrontegui, S. Martı́nez-Garaot, M. Modugno, Xi
Chen, and J. G. Muga, Phys. Rev. A 87, 033630 (2013).

[17] J. Gea-Banacloche, Am. J. Phys. 70, 307 (2002).

[18] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D.
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