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Matter-wave scattering on an amplitude-modulated optical lattice
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We experimentally study the scattering of guided matter waves on an amplitude-modulated optical lattice.
We observe different types of frequency-dependent dips in the asymptotic output density distribution. Their
positions are compared quantitatively with numerical simulations. A semiclassical model that combines local
Floquet-Bloch bands analysis and Landau-Zener transitions provides a simple picture of the observed phenomena
in terms of elementary Floquet photon absorption-emission processes and envelope-induced reflections. Finally,
we propose and demonstrate the use of this technique with a bichromatic modulation to design a tunable
subrecoil velocity filter. Such a filter can be transposed to all species since it does not rely on a specific internal
level configuration of the atoms.
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I. INTRODUCTION

Cold atoms interacting with time-modulated optical lattices
display a wide variety of quantum and classical dynamics.
These include the observations of dynamical localization [1,2],
chaos-assisted tunneling [3,4], the Anderson metal-insulator
transition in momentum space [5], dynamically controlled
tunneling [6–8], matter wave engineering [9–12], and the
probing of gapped modes in degenerate quantum gases [13,14].

In this article we propose and demonstrate the use of a
time-dependent optical lattice for atom optics through the
investigation of the scattering of a cold atom packet on
an amplitude-modulated optical lattice [15]. Our technique
provides a tunable tool for velocity selection in confined
geometries and a system for studying quantum transport
with time-dependent potentials [16] as initially studied in
mesoscopic physics [17,18].

The Bragg reflection of a propagating guided matter wave
on a static optical lattice has been recently demonstrated [19].
The Bragg condition on the class of velocities that are reflected
reads vBragg = nvL/2, where n is an integer, vL = h/(md),
and d is the lattice spacing. This condition is valid in the
perturbative limit, i.e., for a small-depth optical lattice U0 �
EL, where EL ≡ mv2

L/2 is the lattice energy scale. However,
vBragg is directly related to the periodicity of the lattice and
therefore cannot be easily tuned over a large range.

In contrast, the interaction of a propagating matter wave
with an amplitude-modulated optical lattice offers more flexi-
bility and realizes, in particular, a tunable Bragg reflector. Our
study explores the nonperturbative regime, for which the lattice
depth is on the order of the lattice energy scale EL and the
modulation depth is relatively large. In this range of parameters
and for our typical interaction time, the stroboscopic phase
space does not exhibit any chaos [20] and the scattering can
therefore be used to engineer the velocity distribution of the
incoming packet of atoms.

The paper is organized as follows. In Secs. II and III,
we present the experimental setup and review the main
observations. In Sec. IV, we derive a simple model based on
a modulated vanishing depth optical lattice. This approach
is successfully compared with the experimental results. In
Secs. V and VI we develop a semiclassical model that

combines the local Floquet-Bloch framework and Landau-
Zener transitions to get a deeper insight into the elementary
processes at work in the matter wave scattering. In Sec. VII,
we present an application with the realization of a tunable
notch velocity filter through the scattering on an optical lattice
whose amplitude is time modulated by a bichromatic field.
Conclusions are drawn in Sec. VIII.

II. EXPERIMENTAL SETUP

Our experimental setup has already been described in
Ref. [19]. In short, a thermal cloud of typically 8 × 104

rubidium-87 atoms at T = 500 nK is obtained after 3.5 s of
forced evaporation in a crossed dipole trap formed by two
red-detuned (1070-nm) laser beams: a horizontal guide and
a dimple beam. During the evaporation, we use the spin-
distillation technique to prepare atoms in |F = 1,mF = 0〉
[21,22]. We deliberately use a thermal cloud rather than a
Bose-Einstein condensate in order to probe the modulated
lattice for a wide range of velocities in a single shot (see
below). By switching off the dimple beam, we release a
packet of longitudinal velocity dispersion �v = 6 mm/s in
the horizontal guide. Atoms are subsequently accelerated by a
tacc = 15 ms inhomogeneous magnetic-field pulse to a mean
velocity v̄ = 10 mm/s. The atomic packet then propagates
toward the lattice, whose center is located 500 μm downstream
from the trap position [see Fig. 1(a)]. The lattice is obtained by
crossing two horizontal off-resonance laser beams (wavelength
λ = 840 nm, waist w = 100 μm) at an angle θ = 81◦ [19]. We
modulate the lattice intensity using an acousto-optic modulator
prior to the beam separation. The time-dependent potential
experienced by the atoms reads

U (x,t) = −U0(t)e−2x2/w̃2
sin2

(
πx

d

)
, (1)

where U0(t) = U0 [1 + η cos (2πνt)], d = λ/[2 sin(θ/2)] =
650 ± 15 nm (vL = 7.1 mm/s, EL/h = νL = 5.4 kHz), and
w̃ = w/ cos(θ/2) � 130 μm. The lattice depth U0 = 2EL

is calibrated by Kapitza-Dirac diffraction [23]. The typical
modulation depth is η = 33%. The atomic packet propagates
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during tprop = 78 ms through the lattice and is imaged in situ
(without time of flight) by absorption imaging.

III. EXPERIMENTAL RESULTS

Figure 1(b) shows the atomic density after propagation as a
function of the modulation frequency ν. Each horizontal line
is obtained by averaging eight images integrated along the
transverse direction. Two kinds of density dips are observed
in the transmitted part: (i) dips whose positions do not depend
on the modulation frequency and that correspond to velocity
classes fulfilling the Bragg reflection on the static lattice [19]
and (ii) dips whose positions depend on the frequency. As
we shall discuss below, some dips of the latter category have
their counterpart in the reflected packet and correspond to a
reflected class of velocity, while others are due to slowing
down or acceleration effects.

Except for the zones very close to depletion lines in the
transmitted part in Fig. 1(b), each position downward from
the lattice can be mapped onto a well-defined class of incident
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FIG. 1. (Color online) (a) Sketch of a propagating atomic packet
impinging onto an optical lattice whose amplitude is modulated.
(b) Measured longitudinal density n(x,tacc + tprop) after an acceler-
ation stage of tacc = 15 ms and a propagation time of tprop = 78 ms
for various lattice modulation frequencies ν (lattice depth U0 = 2EL,
modulation depth η = 33%, lattice position given by the dotted line).
(c) Numerical simulations (see text) with a resolution that matches
the experimental optical resolution (∼10 μm). Frequency-dependent
dips are observed in the transmitted distribution. Dotted, dot-dashed,
and dashed lines in (c) show the linear dependence of the dip position
with ν.

velocity x � vinc(tacc + tprop) + K , where K is a constant [24].
Let us characterize the different depletion lines. Using the
correspondence between x and vinc, the main depletion line
(white dashed line) in Fig. 1(c) has a slope (660 nm)−1 � 1/d.
We also observe directly the corresponding reflected atoms in
the region x < 0. The red upper dashed line of depleted atoms
in Fig. 1(c) is parallel to the main line and has no counterpart
in the reflected region. The white dot-dashed (dotted) line in
Fig. 1(c) has a slope twice (three times) as large as the one of
the dashed white and red depletion lines in Fig. 1(c).

Figure 1(c) is the result of a numerical simulation
of the atomic packet dynamics using the one-dimensional
Schrödinger equation solved by the split-Fourier method and a
wave packet whose initial momentum and position dispersions
match the measured experimental values [25]. We find a good
agreement between simulations and experiment. However,
such an approach does not reveal the mechanisms responsible
for the depletion lines.

IV. THE MODULATED VANISHING DEPTH MODEL

The slopes and the relative position of the depletion lines
can be simply interpreted in terms of interband transitions
in the limit of a small lattice depth. Consider an incident
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FIG. 2. The band diagram constructed by the superposition
of parabolic energy spectra centered around all reciprocal points
En(k) = h̄2(k − nkL)2/2m. For each band we have indicated the index
n of the parabola, from which the corresponding branches have been
constructed.
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quasi-mono-chromatic wave packet of velocity v0. This ve-
locity dictates the band in which the incoming atom enters.
For instance, if 3vL/2 < v0 < 2vL the atom will be on band 4
(see Fig. 2).

In the limit of a vanishing lattice depth, the band structure
can be constructed by the superposition of parabolic energy
spectra centered around all reciprocal points En(k) = h̄2(k −
nkL)2/2m, where n is an integer and kL = 2π/d. For instance,
bands 2 and 3 are constructed from the parabolas centered at
±h̄kL.

In the limit of a small amplitude modulation, the modulation
drives interband transitions that keep the pseudomomentum
h̄k unchanged. In Fig. 3, we have represented schematically
the experimentally observed depletion lines in velocity space
(see Fig. 1). For each depletion line and in the different
velocity domains, we have also indicated two numbers: the first
corresponds to the band on which atoms lie according to their
incident energies E = mv2

0/2, while the second corresponds
to the band on which atoms are resonantly transferred by the
modulation.

The interband transition frequencies that promote an atom
from parabola n to n′ are given by

±νn→n′ = (En − En′ )/h. (2)

The sign + (−) corresponds to a transition to a lower (upper)
band. By energy conservation, we have

1
2mv2

0 = En(κ). (3)

Combining Eqs. (2) and (3), we get

±νn→n′ = En − En′

h
= −(n − n′)2νL + n′ − n

d
v0. (4)

As a first example, let us consider the green dotted
depletion line (see Fig. 3). In the incident velocity domain

FIG. 3. (Color online) Schematics of the different depletion lines
observed in Fig. 1 of the article along with the numbers of the bands
involved in the transition driven by the frequency of the amplitude
modulation. With the experimental parameters, vL � 7.1 mm/s.

3vL/2<v0 < 2vL, it corresponds to a resonant transition
between bands 4 and 3. According to Fig. 2 we have a priori
two possibilities: either a transition from parabola n = 2 to
parabola n′ = −1 or a transition from parabola n = −2 to
parabola n′ = 1 occurring at ±κ . The slope of branch n = −2
is positive, which thus corresponds to a propagation from left
to right (positive group velocity). The states of the incoming
packet with positive velocity in the range of energy that
corresponds to band 4 will thus be projected onto the states
that correspond to the branch n = −2. Knowing n and n′, we
deduce from Eq. (4) that the equation for the dotted line is
ν = −9νL + 3v0/d.

Such an interpretation can be made for all depletion
lines. The lower (black) dashed line of Fig. 3 corresponds
successively to the interband transitions 3 → 1, 4 → 2, 5 →
3, etc. From Eq. (4), we deduce its equation ν = −νL + v0/d.
Similarly we find for the upper (red) dashed line ν = νL +
v0/d. The offset between the two dashed lines is thus equal to
2νL � 10.8 kHz. We obtain for the (blue) dot-dashed line the
equation ν = −4νL + 2v0/d.

To get a better understanding of the width of the depletion
lines, their interpretation in terms of elementary processes, the
time scale on which the transitions occur, and the role played
by the Gaussian envelope of the lattice potential, we introduce
now a more elaborated analysis based on the Floquet-Bloch
framework [26,27].

V. THE FLOQUET-BLOCH FRAMEWORK

This approach is not restricted to small modulation depth
and is thus well adapted to analyze the experimental situation.
For a potential periodic in both space and time, the Floquet-
Bloch solutions of the time-dependent Schrödinger equation
read

ψn,k(x,t) = ei(kx−εn(k)t/h̄)un,k(x,t), (5)

where εn(k) are the quasienergies. The functions un,k(x,t) are
biperiodic in space and time and therefore can be Fourier
expanded:

un,k(x,t) = un,k(x + d,t) = un,k(x,t + T )

=
∑

p

∑
nF

φ
nF ,p

n,k ei(pkLx−nF ωt). (6)

In the following, we restrict ourselves to nF ∈ {−1,0,1},
i.e., to situations in which only one Floquet photon can
be absorbed or emitted [28]. At zero modulation depth, the
Floquet-Bloch band diagram is nothing but the superposition
of the Bloch diagrams shifted by nFh̄ω. At finite modulation
depth, anticrossings appear for frequencies that correspond to
interband transitions.

Consider first the simple case of a square-envelope lattice
of amplitude U0 modulated at a frequency ν with an amplitude
η. In Fig. 4(a) we plot the Floquet-Bloch spectrum for
ν = 11 kHz. Two kinds of anticrossings can be identified:
those yielding open gaps (horizontal dashed line in Fig. 4)
and those without gaps, for which two states with the same
quasienergy are available (horizontal dotted line in Fig. 4).
To identify the role of the different types of anticrossings on
the incident matter wave packet, we have performed a one-
dimensional (1D) simulation that solves the corresponding
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FIG. 4. (Color online) (a) Floquet-Bloch band diagram for a
square-envelope lattice (depth U0 = 2EL) and modulation frequency
ν = 11 kHz. Band color code: green −0.5 < 〈nF 〉 < 0.5, red 〈nF 〉 >

0.5 and blue 〈nF 〉 < −0.5 where nF is the Floquet excitation number.
(b) Probability of reflection obtained from a numerical simulation of a
1D wave packet with an incident velocity dispersion �v = 0.2 mm/s
impinging on time amplitude-modulated lattice with a finite square-
envelope (length = 80d , U0 = 2EL, η = 30%) as a function of the
incident energy and ν. The horizontal white dashed line shows the
case ν = 11 kHz that corresponds to the diagram (a). The horizontal
dashed (dotted) lines denotes open gap (degenerate) anticrossings.
Only open gap anticrossings yield reflection.

time-dependent Schrödinger equation. Figure 4(b) gives the
reflection coefficient as a function of the incident energy
E0 and the modulation frequency ν. Two types of reflection
conditions can be clearly identified: (i) those due to Bragg
reflection onto the static lattice (no dependence on ν) and
(ii) those that correspond to open gap anticrossings and whose
positions depend on ν. The interpretation is clear: when
the incident energy falls in an open gap anticrossing, no
propagating state is available and the particle is reflected.
The degenerate anticrossings do not induce reflection in the
square-envelope case. However, as we discuss below, they
play an important role in the dynamics of the experimentally
relevant case in which the lattice has a slowly varying envelope.

VI. THE SEMICLASSICAL MODEL

In this latter case, the situation turns out to be different since
the system can follow adiabatically a quasienergy band during
its time evolution. To describe this propagation, we propose a
semiclassical model that enables one to identify the elementary
processes responsible for the velocity changes of the particle
and the position at which such processes occur. It contains
two main ingredients. The first one consists in describing the
particle motion on a given local Floquet-Bloch band through
the combined evolution of the wave-packet position and of its
mean pseudomomentum k. The corresponding set of coupled
equations reads

ẋ = 1

h̄

∂εn

∂k
and k̇ = −1

h̄

∂εn

∂x
. (7)

The first equation defines the group velocity of the wave
packets, while the second results from the adiabatic following
condition dεn(k,x)/dt = 0 [26,29]. The second ingredient
consists in taking into account the possibility for a particle
to undergo a Landau-Zener transition when it passes an
anticrossing. In our case, the approximation of a local two-level

4 → 1 5 → 3

5 → 2

FIG. 5. (Color online) Dashed line, result of the resolution of
the 1D Schödinger equation. Solid line, result of the semiclassical
simulation with random Landau-Zener transition. The arrows indicate
the main processes for three depletion lines. The wave packet has a
mean velocity v̄ = 10 mm/s and a velocity dispersion �v = 6 mm/s.

situation is valid and therefore the probability to change the
band index is P = e−2πγ , with

γ = �E2

4h̄

∣∣∣∣ d

dt
(εn − εn±1)

∣∣∣∣
−1

, (8)

where �E is the size of the gap [30,31].
In practice, we evolve the particle according to Eqs. (7) and

we evaluate the energy difference to lower or upper bands at
each time step. When this quantity reaches a minimum (i.e., at
an avoided crossing position), we compute the corresponding
Landau-Zener probability and transfer or not the particle to the
next band according to this probability [32].

To validate this semiclassical trajectory method, we com-
pare it with the full resolution of the corresponding 1D
Schrödinger equation. To perform this comparison, we have
simulated the semiclassical trajectories of 1700 incoming ve-
locities about the mean velocity of the packet in the following
range: −4.5 < vinc < 24.5 mm/s. In this way, we sample 98%
of the initial distribution. Furthermore, we perform 35 shots
for each incoming velocity to improve the statistics of our
Monte Carlo simulation.

For each velocity class vinc, we get the density from the final
positions of the different shots weighted by the initial wave-
packet velocity distribution density at vinc. Figure 5 provides
an example of such a comparison for ν = 20 kHz. The key
features are very well captured by the semiclassical simulation.
In this plot, we can easily identify the depletion lines that
correspond to the different interband transitions.

We can use the semiclassical model to analyze the different
mechanisms yielding to depletion bands as observed in Fig. 1.
For this purpose, we follow deterministically the branch for
which the Landau-Zener transition probability is above 1/2
at an avoided crossing. To illustrate the wide variety of
possibilities, we shall choose three generic and different sets
of parameters (vi,ν) yielding to dips in the output density
distribution [see labels 1–3 in Fig. 1(c)]. In Fig. 6(a), we plot
the velocity along with the mean Floquet excitation number
for each case and for the main trajectory given by the Monte
Carlo simulation. In Fig. 6(b) we show the corresponding
Floquet-Bloch diagrams in the region of interest. When a
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FIG. 6. (Color online) (a) Velocity and mean Floquet excitation number 〈nF 〉 as a function of the propagating time for parameters
corresponding to three different depletion zones shown in Fig. 1. (b) Local Floquet-Bloch diagram. Dark arrow denotes the trajectory followed
by the fictitious particle of the semiclassical model (see text). Case (1): Reflection on an open gap v = 10.3 mm/s,ν = 11 kHz. Case (2):
Reflection on an anticrossing without gap v = 15.8 mm/s,ν = 20 kHz. Case (3) transient acceleration v = 15.8 mm/s,ν = 30.5 kHz. α (β)
denotes absorption or emission of one Floquet photon (reflection).

particle is moving toward the center, all quasienergies decrease
since the amplitude of the attractive lattice increases. As a
result, the particle state moves up relative to the band diagram.
In the same way, if the particle is moving backward, it will
go down the hills of the diagram. With these simple pictures
in mind trajectories can be readily interpreted. In each case,
the key phenomenon is the absorption or stimulated emission
of a Floquet photon by adiabatic following, denoted by α in
Fig. 6. In case 1, the particle emits a Floquet photon, performs
a reflection (denoted β) when reaching the bottom of the band,
and absorbs a Floquet photon α′ before leaving the lattice. In
case 2, the first emission only slows down the particle, which is
then Bragg reflected and subsequently accelerated by Floquet
photon absorption. In case 3, the particle is not reflected. It
is transiently accelerated in the lattice by a Floquet photon
absorption-emission cycle. For a much longer propagation
time, the dip would be refilled.

Other features of the experimental and numerical diagrams
of Fig. 1 can be readily explained thanks to our semiclassical
model. For instance, the density bump above the white dashed
line corresponds to atoms that have been slowed down. The
velocity spread of reflected particles at position 2 (see Fig. 1)
is 0.8 mm/s. This value can be recovered from the variation
of the energy position of the gap along the lattice.

For a given incident kinetic energy E0, a large size of
the envelope and/or a large modulation depth increases the
efficiency of the process since it favors an adiabatic following
of the anticrossings. A less intuitive feature concerns the lattice
depth. Indeed, a small lattice depth (U0 < E0) increases the
selectivity of the class of incident velocities that are affected by
the modulation. This originates from the fact that the system
is projected on a high-energy band, and the position of the gap
remains roughly constant throughout the lattice. Interestingly
enough, this ensures the robustness of the method against the
specific shape of a smooth envelope.

VII. APPLICATION: VELOCITY FILTER

The narrowest velocity filters used in the cold atom
community rely on velocity selective Raman transitions on
atoms in free space. This technique involves a combined
change of internal and external states. The achievable velocity
widths are in the range of 200–300 μm/s [4,35,36]. Using
the scattering on an amplitude-modulated optical lattice, we
demonstrate hereafter a new technique to realize a velocity
filter with a width slightly larger than the state of the art with
velocity selective Raman transitions. Our technique uses only
the external degrees of freedom and thus does not require any
specific internal configuration. In addition, it is well adapted
for guided matter waves.

We turn our device into a tunable momentum filter by
combining different modulation frequencies. We use here the
main reflection line (white dashed line in Fig. 1) that acts
as a notch filter in momentum space. For this purpose, we
modulate the lattice with two different frequencies to create a
transmitted band between two rejected ones: U0(t) = U0[1 +
η cos(2πν1t) + η cos(2πν2t)]. Strictly speaking, the detailed
dynamics of a wave packet submitted to this two-frequency
and nonperturbative modulation cannot be inferred directly
from the single frequency dynamics [33]. However, the simple
picture according to which nearly independent dips can be
drilled into the velocity distribution with two frequencies is
quite robust. We observe that the reflection spectrum is roughly
the product of the two independent spectra (see Fig. 7) [34].
The mean velocity of the slice of atoms is therefore governed
by d(ν1 + ν2)/2, while its width is controlled by the frequency
difference |ν2 − ν1|. In our set of experiments, ν1 is fixed at
16 kHz and ν2 is varied from 16 to 20 kHz. Between the
two reflection lines, atoms in a narrow class of velocity are
transmitted (arrow in Fig. 7). The slice contains about 1000
atoms and has a mean velocity on the order of 15 mm/s (inset
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FIG. 7. (Color online) (a) Density distribution for the scattering on a two-frequency modulated optical lattice (same conditions as in Fig. 1)
for a fixed frequency ν1 = 16 kHz and a scanned frequency ν2. A narrow slice of transmitted atoms is produced (see arrow). (b) Number of
atoms and velocity dispersion associated with these narrow slices of transmitted atoms as a function of ν2. Inset: mean velocity of the slice of
atoms as a function of ν2.

of Fig. 7). The minimum velocity dispersion of the velocity
filter that we have designed is on the order of 450 μm/s for
our parameters (i.e., 1.1 nK in temperature units).

VIII. CONCLUSION

The matter wave engineering presented here does not have
any fundamental limit. A further improvement of velocity
selection could be achieved using a smaller depth lattice
combined with a larger waist size. This technique can be
transposed easily to other species since it does not rely on
a specific internal level configuration. By construction, it is
well adapted to 1D geometry and therefore enhances the
toolbox of guided atom optics. Finally, the control of the

guided atomic flux for a given and tunable narrow class
of velocities as studied here is reminiscent of the quantum
modulated transistor principle, in which the gate voltage is
replaced by the modulation [37].
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