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Abstract. We present a theoretical analysis of the evaporative cooling of a magnetically guided atomic
beam by means of discrete radio-frequency antennas. First we derive the changes in flux and temperature,
as well as in collision rate and phase-space density, for a single evaporation step. Next we show how the
occurrence of collisions during the propagation between two successive antennas can be probed. Finally,
we discuss the optimization of the evaporation ramp with several antennas to reach quantum degeneracy.
We estimate the number of antennas required to increase the phase-space density by several orders of
magnitude. We find that at least 30 antennas are needed to gain a factor 108 in phase-space density.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 39.25.+k Atom manipulation (scanning probe
microscopy, laser cooling, etc.) – 05.30.Jp Boson systems

1 Introduction

Evaporative cooling [1] is so far the only technique al-
lowing the achievement of quantum degeneracy in dilute
gases. Several models of evaporative cooling of a trapped
cloud of atoms have been studied. They are based either
on approximating the cooling process as a series of trun-
cations of the distribution function followed by rethermal-
ization [2], or on an approximate analytical solution of the
Boltzmann equation [3].

With the achievement of Bose-Einstein condensa-
tion (BEC), the possibility of realizing sources of coherent
matter waves has arisen. Those “atom lasers” [4] open the
way to fascinating applications in atom optics and inter-
ferometry. To date, all atom lasers have been achieved
in a pulsed mode: coherent streams of atoms were ex-
tracted from a Bose-Einstein condensate until it was com-
pletely depleted. As a first step towards the realization
of a cw atom laser, a continuous source of Bose-Einstein
condensed atoms was created by periodically replenish-
ing a condensate held in an optical dipole trap with new
condensates [5]. This approach, in combination with an
appropriate outcoupler, would lead to a cw atom laser.

Alternatively, the authors of [6] study the evaporation
of an atomic beam propagating in a magnetic guide. They
use an approximate solution of the Boltzmann equation
based on a truncated Gaussian ansatz [3]. This approach
permits the establishment of a set of hydrodynamic-like
equations which is solved numerically. This treatment
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l’Université Pierre et Marie Curie, associée au CNRS.

however can be made rigorous only for a one-dimensional
evaporation. It would describe correctly evaporation on a
dielectric surface on which atoms can be adsorbed [7].

From an experimental point of view, the propagation of
a single packet of atoms has been realized in both macro-
scopic and microscopic atom guides [8–15]. More recently,
a continuous magnetically guided beam was achieved, by
directly injecting a beam of cold atoms generated by a
moving molasses magneto-optical trap [16] as well as by
feeding a magnetic guide periodically at a high repeti-
tion rate [17]. A first step of evaporation on this contin-
uous guided beam has even been carried out by means
of a single radio-frequency antenna. A natural way to at-
tain degeneracy consists in using several radio-frequency
(RF) antennas with decreasing frequencies. It would be
the analog in space of the time-dependent RF ramp used
in standard BEC experiments. The major difference lies
in the fact that the evaporative cooling is ensured by suc-
cessive cycles of evaporation followed by rethermalization.

In this work, we present the corresponding discrete
model of evaporation by successive antennas. The two-
dimensional character of the confinement allows us to de-
rive analytical expressions that can be directly compared
to experiments. After describing the magnetic guide in
which atoms propagate, we derive how a single evap-
oration step affects the parameters of the beam (flux,
temperature) and we deduce how the elastic collision
rate within the beam, as well as the on-axis phase-space
density, evolve. We then show how one can characterize
the occurrence of rethermalization between two succes-
sive antennas as was demonstrated experimentally in [17].
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We finally address the issue of the optimization of the
evaporation ramp with many antennas.

2 Magnetic guide

Quadrupole guides can be produced by means of four wires
or tubes equally spaced on a cylinder of radius a and car-
rying currents +I and −I alternatively. The cylindrical
symmetry axis is chosen to be the z-axis in the following.
The resulting magnetic field is well approximated by a lin-
ear form: B(r) = br where r = (x2 +y2)1/2 is the distance
from the z-axis and b = 2µ0I/(πa2) is the transverse gra-
dient. In this quadrupolar configuration, atoms with low
angular momentum are not stable against spin flips. To
counteract this loss mechanism, one superimposes a bias
field B0 along the axis of the guide [18]. As a consequence,
the potential experienced by the low-field seeking atoms is:

Ug(x, y, z) = µ
[
B2

0 + b2r2
]1/2

, (1)

where µ is the magnetic moment of an individual atom.
In the following, we consider a beam of atoms of

mass m, transversally confined by the potential (1), with
a mean velocity v̄, a temperature T , and a flux Φ.

At equilibrium the thermal average of Ug is:

⟨Ug⟩T =
∫ ∞
0 Uge−βUgr dr
∫ ∞
0 e−βUgr dr

= kBT

(
2 +

α2

1 + α

)
, (2)

where β = 1/kBT and α = µB0/kBT . For rubidium-87
polarized in the low-field seeking state of the lowest hy-
perfine level |F = −mF = 1⟩, µ = µB/2 where µB is the
Bohr magneton, and α = 1 with B0 = 1 Gauss for a tem-
perature of T = 34 µK.

In the context of evaporative cooling, two quantities
are of interest: the on-axis phase-space density D and the
elastic collision rate Γcoll. For the potential (1) we readily
obtain

D =
1
2π

1
1 + α

Φ

v̄

(
µb

kBT

)2 h3

(2πmkBT )3/2
. (3)

Assuming that the elastic collision cross-section σ is con-
stant the collision rate reads:

Γcoll =
σ

2π3/2

1 + 2α

(1 + α)2
Φ

v̄

(
µb

kBT

)2
√

kBT

m
. (4)

Two limits are of interest depending on the value of α.
In the low temperature regime (α ≫ 1), one can perform
a Taylor expansion of (1) resulting in the harmonic form
with an energy offset µB0:

Ug(x, y, z) ≃ µB0 +
1
2

mω2r2, (5)

and angular frequency ω = [µb2/(mB0)]1/2. The ther-
mal potential energy (2) reduces to µB0 + kBT , and D
(resp. Γcoll) scales with Φ and T as ΦT−5/2 (resp. ΦT−1/2).
In the opposite limit, where α ≪ 1 one deals with a lin-
ear potential: Ug(x, y, z) ≃ µbr. The thermal potential
energy is ⟨Ug⟩T = 2kBT , and the scalings for D and Γcoll

are ΦT−7/2 and ΦT−3/2.

3 Evaporation with one antenna

In order to perform evaporation on the beam, one uses
an RF antenna to produce an oscillating magnetic field
at a frequency νRF. Atoms whose trajectories cross the
cylinder of axis z and radius R, defined by hνRF = Ug(R),
will be resonant with the RF field and undergo a spin
flip transition to an untrapped state. They are therefore
removed from the atomic beam, whose flux decreases to
the new value Φ′.

We define the evaporation parameter η as η = h(νRF−
ν0)/kBT , where ν0 = Ug(0)/h is the frequency correspond-
ing to the bottom of the trap. In the following we first
calculate, as a function of η, the fraction φ(η) = Φ′/Φ of
remaining atoms after such an evaporation cycle. The dis-
tribution function of the atoms just after evaporation is
out of equilibrium. Assuming subsequent rethermalization
of the beam, we then calculate its new temperature T ′. In
this paper we assume that the collision rate Γcoll is much
smaller than the typical period of oscillation (radial col-
lisionless regime). In other words, we assume that parti-
cles do not undergo collisions over the range of efficiency
of a radio frequency antenna. Therefore, determining if
a particle will be evaporated or not depends only on the
characteristics of its trajectory.

3.1 Fraction φ(η) = Φ′/Φ of remaining atoms

To calculate φ(η), we need to know the fraction of atoms
in the beam whose trajectories in the (xy)-plane cross the
circle of radius R.

3.1.1 Effective potential

The confining potential Ug being cylindrically symmetric,
the z component L of angular momentum is conserved.
To study the radial motion of an atom, one therefore uses
the effective one-dimensional potential

Ueff(L, r) = Ug(r) +
L2

2mr2
(6)

which includes the centrifugal term. The radial coordi-
nate r(t) of the particle oscillates between the turning
points rmin and rmax. The atom is evaporated if and only
if rmin ! R ! rmax, or equivalently if its transverse en-
ergy E fulfills E " Ueff(R) (see Fig. 1). As a consequence,
the evaporation criterion depends on the two constants
which define completely the characteristics of the trans-
verse trajectory: the total mechanical transverse energy E
and the angular momentum L along the z-axis.

3.1.2 Joint probability distribution of energy and angular
momentum

We now determine, for a thermal distribution at temper-
ature T in the potential Ug, the joint probability distri-
bution p(E, L) for an atom to have energy E and angular
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Fig. 1. Effective potential Ueff (r). An atom with E " Ueff (R)
is evaporated.

momentum L. By definition

p(E, L) = C

∫
e−βH δ(E −H) δ(L − ℓz) d2rd2p (7)

where H(r,p) = p2/(2m) + Ug(r), ℓz = (r × p) ·
ez and C is a normalization constant determined by∫

p(E, L)dE dL = 1. The joint probability can be read-
ily recast in terms of the period of the radial motion
Tr(E, L) [19]:

p(E, L) = C′e−βETr(E, L). (8)

3.1.3 Harmonic confinement

For a harmonic confinement Ug(r) = mω2r2/2,
Tr(E, L) = π/ω and E " Emin(L) ≡ |L|ω. The latter
condition just reflects that a finite angular momentum re-
quires a minimum energy which corresponds to the circu-
lar motion. We readily obtain the exact expression for the
joint probability:

phar(E, L) =
ω

2(kBT )2
e−βEΘ(E − Emin(L)), (9)

where Θ is the Heaviside step function. The fraction of
remaining atoms is given by [20]:

φhar(η) =
∫

D(R)
pH(E, L)dEdL = 1 − (πη)1/2e−η. (10)

The integration domain in equation (10) is defined by
D(R) = {Emin(L) = |L|ω ! E ! Ueff(R)} and corre-
sponds to the shaded area in the plane (E, L) depicted
in Figure 2. The subregion of D(R) such that L ! L1(R)
(resp. L " L1(R)) corresponds to trajectories not evap-
orated since rmax < R (resp. rmin > R). The solid line
in Figure 3 represents φhar(η). For small R (η ≪ 1), few
atoms have a sufficiently low angular momentum to be
evaporated and φhar ∼ 1. For large R (η ≫ 1) the evapo-
rative loss is negligible because of the exponential decay of
the energy distribution and φhar ∼ 1. Between those two
limits, the fraction of remaining atoms has a minimum for
η = η∗

har = 0.5 with φhar(η∗
har) ≃ 0.24.

E

|L|ω

Ueff(R)

L

ηkBT

L1(R)−L1(R)

L1(R)−L1(R)

Ueff(R)

E

Emin(L)

L

ηkBT

Fig. 2. Domain of integration D(R) in the plane (E, L). L1(R)
is the angular momentum of a particle having a circular tra-
jectory of radius R. (a) Harmonic confinement (with L1(R) =
mR2ω), (b) linear confinement (with L1(R) =

√
mµbR3).
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Fig. 3. Fraction φ(η) = Φ′/Φ of remaining atoms after evap-
oration by one antenna, as a function of the evaporation pa-
rameter η. Solid line: harmonic confinement; dashed line: linear
confinement, φ being calculated with the approximation (11);
dots: linear confinement, φ being calculated by a Monte-Carlo
simulation.

3.1.4 Linear confinement

For linear confinement, the radial period Tr(E, L) has
no simple analytical expression. However, Tr(E, L) has
a weak dependence on the angular momentum L: for
a given E, when L varies from 0 (linear trajectory)
to its maximal value (circular trajectory), Tr varies by
less than 10%. We therefore make the approximation
Tr(E, L) ≃ Tr(E, 0) ∝ E1/2 and approximate the joint
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distribution p(E, L) by:

plin(E, L) ≃ CE1/2e−βEΘ(E − Emin(L)) . (11)

The minimum value of E for a given L (energy of circu-
lar motion) is now: Emin(L) = 3(µb|L|)2/3/(2m1/3) . The
fraction of remaining atoms can be written as φlin(η) =∫
D(R) pL(E, L)dEdL where the integration domain is of

the form D(R) = {Emin(L) ! E ! Ueff(R)} (see Fig. 2).
The result of the numerical integration based on the
approximation (11) is plotted as a dashed line in Fig-
ure 3. The shape is qualitatively the same as that for the
harmonic confinement, but the minimum now occurs at
η = η∗

lin ≃ 1.25 with φlin(η∗
lin) ≃ 0.33.

To check the validity of the approximation (11), we
performed a Monte-Carlo sampling of the atomic distri-
bution in a linear potential, followed by elimination of
particles whose trajectories crossed the circle of radius R.
The result for φlin(η) is shown by dots in Figure 3. The
agreement is excellent.

It is convenient in practice to have a simple form for the
expression of φlin(η). Following the functional form of (10),
we fit the curve φlin(η) by a function of the form 1 −
aηbe−cη where a, b, c are adjustable parameters and find
a = 1.65, b = 1.13 and c = 0.92. The curve obtained
this way differs from φlin(η) by less than 2%. This simple
expression is used in [17] to fit the experimental data, with
the temperature T of the beam being the only adjustable
parameter.

3.2 Temperature change T’/T

Consider N atoms undergoing evaporation by one an-
tenna. After evaporation the total transverse energy of
the N ′ = φ(η)N remaining atoms is given by:

⟨E⊥⟩ = N

∫

D(R)
E p(E, L) dE dL ≡ ξNkBTg(η) , (12)

where ξ = 2 for a harmonic potential and ξ = 3 for a linear
potential. The dimensionless function g(η) introduced in
equation (12) can be calculated analytically for the har-
monic confinement:

ghar(η) = 1 − (πη)1/2

4
(3 + 2η)e−η . (13)

For a linear confinement, glin(η) is calculated numerically
thanks to the approximation (11).

The total (transverse and longitudinal) energy of the
remaining atoms is E′ = ⟨E⊥⟩ + N ′kBT/2 + N ′mv̄2/2.
After rethermalization (which occurs at constant total en-
ergy), one has an equilibrium state with a temperature
T ′ and energy E′ = (ξ + 1/2)N ′kBT ′ + N ′mv̄2/2. The
relative change of temperature during this evaporation-
rethermalization cycle is therefore:

τ(η) =
T ′

T
=

1
2ξ + 1

(
1 + 2ξ

g(η)
φ(η)

)
. (14)
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Fig. 4. Temperature change τ = T ′/T after evaporation by
one antenna and rethermalization, as a function of η. Solid line:
harmonic confinement; dashed line: linear confinement.
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Fig. 5. Gain in phase-space density D′/D after evaporation
by one antenna and rethermalization, as a function of η. Solid
line: harmonic confinement; dashed line: linear confinement.

In Figure 4, τ(η) is plotted as a function of η (solid line:
harmonic case, dashed line: linear case). For low η (ap-
proximately lower than the value η∗ for which φ reaches a
minimum), T ′ > T : since essentially low energy atoms are
evaporated, the remaining beam acquires a higher temper-
ature after thermalization. The opposite occurs for high η:
the beam is cooled by evaporation of high energy particles.

3.3 Variation of collision rate and phase-space density

After an evaporation followed by a subsequent rethermal-
ization, the flux is multiplied by a factor φ, and the beam
temperature is T ′. We can then calculate, using equa-
tions (3) and (4), the new phase-space density D′ and
the new collision rate Γ ′

coll.
The variation in phase-space density δ(η) = D′/D is

plotted as a function of η in Figure 5 (solid line: harmonic
case; dashed line: linear case). For a linear confinement an
increase of D is obtained as soon as η > 2, and for η ≃ 3.0
a maximum gain in phase-space (by a factor 1.86) can be
achieved with a single antenna. The gain is less significant
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Fig. 6. Variation of the collision rate after evaporation by one
antenna and rethermalization, as a function of η. Solid line:
harmonic confinement; dashed line: linear confinement.

in the case of a harmonic confinement, reflecting the less
favorable scaling law.

In order for evaporative cooling to be efficient, the elas-
tic collision rate must not decrease during the process,
otherwise the time needed for rethermalization becomes
prohibitively long. Figure 6 depicts the variation of colli-
sion rate γ(η) = Γ ′

coll/Γcoll for one evaporation cycle. The
striking result is that in the case of harmonic confinement
the collision rate cannot increase significantly (γ reaches a
maximum value of 1.0015 for η = 6.5). This behaviour is
due to the two-dimensional geometry of the problem and
does not hold for a three-dimensional harmonic confine-
ment. In contrast, for a linear guide, and for η sufficiently
high, the collision rate can increase by several percent at
each cycle, creating the possibility of runaway evaporation.
This salient feature of the linear potential is well-known
for three-dimensional evaporative cooling [1,2].

3.4 Multi-radii evaporation

The previous evaporation method has the disadvantage
that for any finite η, some atoms with large energy and
angular momentum are not evaporated. The contribution
of these atoms to the energy of the truncated distribution
is not negligible, and therefore the cooling efficiency of the
evaporation is limited.

In order to improve this efficiency, one can evaporate
all the atoms whose trajectories lie, at least partially, out-
side of the cylinder of radius R. To realize such an evap-
oration, one must use a “continuum” of evaporation radii
Re ∈ [R,∞]. In practice, this can be achieved by scanning
the radio-frequency νRF from Ug(R)/h to a value large
compared to kBT/h, above which the population of atoms
is exponentially small. The scanning rate must be large
compared to the inverse of the time tev spent by an atom
in the range of efficiency of an antenna, and small com-
pared to the inverse of the mean radial period Tr(E, L).
For the typical parameters of the experiment described
in [17], a scanning frequency of 50 Hz would fulfill both
criteria.
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Fig. 7. Fraction φ(η) = Φ′/Φ of remaining atoms after evap-
oration by one antenna, as a function of η, for the multi-radii
evaporation scheme. Solid line: harmonic confinement; dashed
line: linear confinement.
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Fig. 8. Temperature change τ = T ′/T after evaporation by
one antenna and rethermalization, as a function of η, for the
multi-radii evaporation scheme. Solid line: harmonic confine-
ment; dashed line: linear confinement.

One can calculate, in a way similar to the calcula-
tions of the previous subsections, the change in atomic
flux φ(η) = Φ′/Φ, in temperature τ(η) = T ′/T , in phase-
space density δ(η) = D′/D, and in collision rate γ(η) =
Γ ′

coll/Γcoll, for this improved evaporation scheme. The do-
main of integration is that shown in Figure 2 but reduced
to the angular momentum lower than L1(R). In the case
of harmonic confinement, the calculations can be done ex-
plicitly and yield the following results:

φ(η) = 1 − e−2η − (πη)1/2e−ηerf
(
η1/2

)
,

g(η) = 1 − (1 + η/2)e−2η

− (3/4 + η/2)(πη)1/2e−ηerf
(
η1/2

)
(15)

where erf(x) = 2π−1/2
∫ x
0 exp(−t2) dt is the error func-

tion. The complete results for φ, τ , γ and δ and for
both types of confinement are plotted in Figures 7 to 10.
Obviously, with this new evaporation scheme, the number
of atoms remaining vanishes when η → 0. The tempera-
ture change (Fig. 8) is now a monotonous function of η
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Fig. 9. Gain in phase space density after evaporation by one
antenna and rethermalization, as a function of η, for the multi-
radii evaporation scheme. Solid line: harmonic confinement;
dashed line: linear confinement.
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Fig. 10. Variation of the collision rate after evaporation by one
antenna and rethermalization, as a function of η, for the multi-
radii evaporation scheme. Solid line: harmonic confinement;
dashed line: linear confinement.

and for η → 0, in the harmonic (resp. linear) case one
has τ → 1/5 (resp. 1/7) since only the longitudinal ki-
netic energy contributes to the energy of the remaining
particles.

For a linear potential, the gain in phase-space density
without decrease in collision rate is 2.56 (at η = 2.5) as
compared to 1.86 (at η = 3.0) in the single radius evapo-
ration scheme.

4 Evaporation with two antennas

The presence of elastic collisions in the atomic beam can
be probed with a two-antenna experiment [17]. A first an-
tenna with frequency ν1 evaporates the atoms with an
evaporation parameter η1 = hν1/(kBT ), where T is the
initial temperature of the atoms. The remaining flux is
Φ′ = φ(η1)Φ. A second antenna with frequency ν2 =
η2kBT/h, placed at a distance d downstream, is used to
probe the distribution of atoms after this first evaporation
stage. The flux after this second antenna is denoted Φ′′.
In the absence of collisions between the two antennas, the

η1

η2

E/kBT

L

D2

D1

η1

η2

E/kBT

L

D2

D1

Fig. 11. The integration domains in the plane (E, L) in-
volved in the calculation of Φ′′/Φ′ in the collisionless regime.
(a) Harmonic confinement; (b) linear confinement.

distribution remains out of equilibrium. In particular, if
ν2 = ν1, the second antenna cannot remove extra atoms,
since all atoms whose energy and angular momentum cor-
responded to the evaporation criterion have already been
removed by the first antenna. But even a partial rether-
malization leads to some extra losses from the second an-
tenna, since elastic collisions provide a redistribution of
energy and angular momentum. If the beam completely
rethermalizes during its propagation between the two an-
tennas, we find a spectrum similar to that of Figure 3
revealing the new temperature T ′.

4.1 In absence of collisions

We calculate here the fraction Φ′′/Φ′ in the limit where
rethermalization does not occur between the two anten-
nas, i.e. when the inequality Γcolld ≪ v̄ is fulfilled. After
evaporation by the first antenna at η1 (corresponding to
an evaporation radius R1), the out of equilibrium joint
probability distribution p1(E, L) of (E, L) is given by

p1(E, L) = p(E, L)Θ(Ueff(R1) − E). (16)

It is non-zero only in the domain D1 ∪ D2 of Figure 11.
The fraction of remaining atoms Φ′′/Φ′ is therefore given
by integrating (16) over the domain D2 = {Emin(L) !
E ! min(Ueff(R1), Ueff(R2))}:

Φ′′

Φ′ =

∫

D2

p1(E, L) dE dL
∫

D1∪D2

p1(E, L) dE dL
. (17)

The result of the numerical integration is shown in Fig-
ure 12 as a dashed line, for the specific case of a linear
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Fig. 12. Fraction Φ′′/Φ′ of the flux remaining after the second
antenna as a function of its parameter η2. The first antenna
is driven at a frequency ν1 = η1kBT/h with η1 = 2 = 1.6η∗.
The dashed line corresponds to the collisionless regime; the
dotted line to a mean number of collisions between antennas
Nc = 1.1; the solid line to full rethermalization. These curves
are calculated with a numerical simulation, in the case of a
linear confinement.

confinement with η1 = 2. As expected, the fraction Φ′′/Φ′

reaches 1 for η2 = 2.

4.2 Rethermalization

If rethermalization occurs over a distance d, that is if the
collision rate is such that: Γcolld ≫ v̄, the second antenna
evaporates a beam of temperature T ′ = τ(η1)T at thermal
equilibrium. The fraction Φ′′/Φ′ is therefore:

Φ′′

Φ′ = φ

(
hν2

kBT ′

)
= φ

(
η2

τ(η1)

)
. (18)

This curve is plotted as a solid line in Figure 12. The large
difference between the collisionless and collisional regimes
makes it easy to detect experimentally, by scanning ν2 in
the vicinity of ν1, the presence or the absence of collisions
within the beam [17].

4.3 Number of collisions required to thermalize

In order to give a quantitative theoretical account for the
distance d needed to rethermalize in a two-antenna ex-
periment, we have developed a numerical simulation of
the motion of the atoms in the magnetic guide for both
linear and harmonic confinements. We use a molecular dy-
namics simulation [21] taking into account the evaporation
criterion.

The simulation is performed in dimensionless units.
The unit length ru is defined by Ug(ru) − Ug(0) =
(⟨Ug⟩T −Ug(0))/2, the distance between the two antennas
is d = 5000 ru. The mean velocity is 10 times the thermal
velocity (kBT/m)1/2. The phase-space variables of each
particle are evolved by advancing the position and the ve-
locity at discrete time steps ∆t according to a second-
order symplectic integration [22]. Using the cylindrical

Fig. 13. Distance from equilibrium Ξ(η1, Nc) (see text) as
a function of the mean number of collisions Nc between the
two antennas, for different values of η1. These data have been
obtained by a Monte-Carlo simulation performed for a linear
confinement. The relaxation towards equilibrium is clearly ex-
ponential for η1/η∗ = 0.3, and approximately exponential for
η1/η∗ = 3.2. For η1/η∗ = 1.6, the first antenna puts the gas in
a strongly out-of-equilibrium state, and the relaxation is not
exponential.

symmetry we restrict the evolution to the first quarter
(x > 0, y > 0) of space with reflecting walls at planes
x = 0 and y = 0. Binary elastic collisions are taken
into account using a boxing technique [23]. The constant
cross section used to calculate the probability of collisions
is adjusted to the desired number of collisions between
the two antennas. Simulations have been performed with
1.5× 106 particles and 5.4× 104 boxes. The time step ∆t
is chosen to be small with respect to the typical collision
timescale and the typical period of oscillation.

We simulate a two-antenna experiment in which the
first antenna is operated at a fixed η1. The mean number
of collisions per atom during the propagation between the
two antennas is denoted Nc. The second antenna is op-
erated at η2, and we calculate Φ′′/Φ′ as a function of η2.
An example of such a curve, for a linear confinement, and
with Nc = 1.1, is plotted as a dotted line in Figure 12.

We then infer the ratio f(η1, Nc) = Φ′′/Φ′(η2 = η1)
as a function of Nc. For a collisionless propagation (Nc =
0, dashed line in Fig. 12), we have f(η1, 0) = 1. For a
complete rethermalization, (Nc ≫ 1, solid line in Fig. 12),
the ratio tends to the limit f∞(η1) = φ[η1/τ(η1)].

For a linear confinement, we depict in Figure 13 the
normalized quantity

Ξ(η1, Nc) =
f(η1, Nc) − f∞(η1)

1 − f∞(η1)
,

which measures the distance from equilibrium, as a func-
tion of the mean number of collisions Nc. For a given η1

and in the absence of collisions Nc = 0, Ξ = 1. The
relaxation of Ξ towards zero with increasing number of
collisions Nc reflects the rethermalization process. For
η1 < 0.3η∗ or η1 > 2.5η∗, Ξ decays approximately in an
exponential manner with Nc: Ξ ≃ exp[−Nc/nc(η1)]. As an
example we find nc(4) = 2.5 ± 0.5 for the linear confine-
ment and nc(2) = 1.3± 0.2 for the harmonic confinement.
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For intermediate values of the ratio η1/η∗, we obtain a
non-exponential decay (see Fig. 13 for η1/η∗ = 1.6). In
this range 0.3 < η1/η∗ < 2.5, more than 50% of the atoms
are evaporated by the first antenna, leading to a state of
gas that is very far from equilibrium.

This calibration by numerical simulation allows one
to determine the collision rate by following the thermal-
ization process for different distances between the two
antennas [17].

5 Evaporation with many antennas

The realization of a magnetically guided atomic beam in
the collisional regime has recently been performed [17].
The phase-space density of this beam is on the order of
2 × 10−8. To gain the 8 orders of magnitude required to
reach degeneracy one can implement evaporative cooling
by means of several successive antennas. In this section we
assume that the frequency of each antenna is such that the
parameter η is constant throughout the evaporation.

The number of antennas N (η) required to achieve a
gain ∆ in phase-space is, for a given value of η, N (η) =
ln(∆)/ ln(δ(η)). We want to minimize the guide length
needed to reach degeneracy. This length ℓ(η) can be eval-
uated from the initial collision rate of the beam Γ 0

coll. Be-
tween the antennas n and n+1, the collision rate is Γ 0

collγ
n.

If the number of collisions required for full thermalization
between two successive antennas is N0 (N0 ≫ nc(η)), the
distance between antennas n and n + 1 has to be larger
than v̄N0/(Γ 0

collγ
n). Therefore the total length is

ℓ(η) " v̄N0

Γ 0
coll

(
1 + γ−1 + ... + γ−N+1

)

" v̄N0

Γ 0
coll

1 − γ−N

1 − γ−1
. (19)

For a given value of ∆, there exists an optimal choice η̃
for the parameter η such that ℓ is minimized. For this
optimization we assume that N0 does not depend on η.
The results are shown, for both types of confinement and
for the two evaporation schemes, in Table 1. The evapo-
ration is much less efficient for the harmonic confinement,
which reflects the absence of runaway evaporation for this
type of trap. For the linear confinement, one sees that the
multi-radii evaporation scheme leads to a slightly shorter
evaporation length, at the expense of a reduced output
flux. However a more careful study shows that for com-
parable output fluxes, the two schemes require approxi-
mately the same length and antenna numbers. In the case
of harmonic confinement, since the collision rate cannot
increase significantly, minimizing the evaporation length
requires that one operates at a large η (where γ ≃ 1). For
such high η, the difference between the two evaporation
schemes is negligible, as can be seen in Table 1.

In this paper, two competing effects that should be
considered in a more realistic model of the evaporation
ramp have been neglected. First, the real shape of the
semi-linear potential (1) should be taken into account. In-
deed, even if at the beginning of the evaporation ramp

Table 1. Parameters of the optimized (minimum length) evap-
oration ramp for harmonic (Har) and linear (Lin) confine-
ments, for the two schemes of evaporation, with a total gain
in phase-space density of ∆ = 108: ℓmin, evaporation length
(in units of v̄N0/Γ 0

coll); η̃, parameter η for minimal evapora-
tion length; N , number of antennas needed; Φf/Φi, total flux
reduction due to evaporation; Tf/Ti, total temperature reduc-
tion due to evaporation.

Scheme Single radius Multi-radii

Trap Har Lin Har Lin

ℓmin 211 12.0 211 10.5

η̃ 4.6 4.3 4.6 3.6

N 142 42 142 29

Φf/Φi 3.9 × 10−3 5.4 × 10−4 3.9 × 10−3 1.3 × 10−4

Tf/Ti 6.9 × 10−5 6.0 × 10−4 6.9 × 10−5 3.8 × 10−4

the temperature is high enough for the linear potential
to be a good approximation (α ≪ 1), as the temperature
is reduced the effect of the bias field cannot be neglected
anymore when α # 1. This effect may lead to a longer
evaporation length since, for the harmonic confinement,
the evaporative cooling is less efficient. The second effect,
neglected by the classical description used in this paper, is
the bosonic stimulation close to degeneracy, which might
enhance the efficiency of the last evaporation steps.

6 Conclusion

We have studied theoretically the discrete-step evapora-
tive cooling of a magnetically guided atomic beam. First,
the action of a single antenna on the beam is analyzed in
detail. Then we clarify how two-antenna experiments can
lead (i) to the characterization of the collisional regime
of the beam and (ii) to the quantitative estimate of the
collision rate, by studying the number of collisions needed
for thermalization of the truncated distribution function.
Finally, the problem of optimizing the evaporation ramp
with many antennas is addressed. We find that gains
in phase-space density of 108 require a total of at least
∼30 evaporation steps.
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