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Fast bias inversion of a double well without residual particle excitation
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We design fast bias inversions of an asymmetric double well so that the lowest states in each well stay in the
same well they started, free from residual motional excitation. This cannot be done adiabatically, and a sudden
bias switch produces in general motional excitation. The residual excitation is suppressed by complementing a
predetermined fast bias change with a linear ramp whose time-dependent slope compensates for the displacement
of the wells. The process, combined with vibrational multiplexing and demultiplexing, can produce vibrational
state inversion without exciting internal states, just by deforming the trap.
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I. INTRODUCTION

In a recent paper [1] a protocol to realize fast vibrational
state multiplexing or demultiplexing of ultracold atoms was
introduced. By a properly designed time-dependent potential
deformation between a harmonic trap and a biased double well,
the states of a single atom in a harmonic trap can be dynam-
ically mapped into states localized at each well (vibrational
demultiplexing; see the left arrow in Fig. 1), or vice versa (mul-
tiplexing; see the right arrow in Fig. 1), faster than adiabatically
and without residual excitation at the final time. It was sug-
gested that these processes may be combined with a bias inver-
sion to produce (i) state inversions, from the ground to the first
excited state of the harmonic trap and vice versa, based on trap
deformations only (see the evolution of gray and white states
in Fig. 1), or (ii) to produce vibrationally excited Fock states
from an initial ground state [1]. These are basic operations to
implement quantum information processing and fundamental
studies. Thus the possibility to perform them without exciting
internal atomic states as an intermediate step is of much inter-
est. For trapped ions in particular, this amounts to a species-
independent approach based entirely on the charge and electric
forces. In contrast π -pulse sequences require specific lasers for
each system and a suitable level structure. In general, i.e., both
for ions and neutral atoms, a method not using internal-state
excitation suppresses decoherence and random kicks due to
spontaneous decay. They may be important limiting factors to
preserve quantum dynamics with optical transitions [2].

Among the possibilities to avoid decay from an intermediate
state in a transition among motional states, one might think
of using Stimulated Raman adiabatic passage (STIRAP) [3],
which in principle does not populate the upper, intermediate
state. This technique, however, is best suited for transitions
involving a change in internal state, and its application to
purely vibrational transitions (within the same internal state) is
not straightforward. Numerical simulations show that several
motional states are populated [4], and in fact the experimental
applications of STIRAP for trapped ions have been only
used for inducing carrier or sideband transitions that involve
changing the internal state [5].
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The objective of this paper is to design fast controlled bias
inversions of a double well so that the lowest states in each
well remain as lowest states without residual excitation. Unlike
multiplexing, however, there is no truly adiabatic slow process
that achieves this state transformation. In the bias inversion
depicted within the dashed-line frame of Fig. 1, for example, a
slow bias change would preserve the order of the states accord-
ing to their energy, so that the states represented in the third po-
tential configuration would be interchanged (i.e. the gray state
in the right well, and the white one in the left well). Neverthe-
less, in the limit in which the two wells are effectively indepen-
dent, which in practice means, for times shorter than the tun-
neling time among the wells, the intended state transition might
indeed be done slowly enough to be considered adiabatic. If we
approximate each “isolated” well by a harmonic oscillator, the
intended transformation amounts to a “horizontal” displace-
ment along the interwell axis together with a rising or lowering
of the energy of the wells. The latter effects, however, do not
affect the intrawell dynamics, so we may focus on the displace-
ment. In other words, within the stated approximations the bias
inversion amounts to transporting a particle in a harmonic po-
tential. Thus, to achieve a fast transition without residual exci-
tation we may use shortcuts to adiabaticity designed to perform
fast transport [6]. Specifically we shall use a compensating-
force approach [7,8], equivalent to the fast-forward scaling
technique [9], based on adding to the potential a linear ramp
with time-dependent slope to compensate for the effect of
the trap motion in the noninertial frame of the trap. We shall
compare this approach with a sudden bias switch, a fast quasia-
diabatic (FAQUAD) approach [10], or a smooth polynomial
connection without compensation. In Sec. II we introduce the
compensating-force approach and Sec. III describes the alter-
native methods. In Sec. IV numerical examples are presented
with parameters appropriate for trapped ions in multiseg-
mented, linear Paul traps, and for neutral atoms in optical traps.
Finally, in Sec. V we discuss the results and open questions.

II. COMPENSATING-FORCE APPROACH

If the double-well potential with nearly independent wells
is subjected to a bias inversion such that the trap frequencies
of each well are essentially equal and constant throughout, and
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FIG. 1. Schematic representation of demultiplexing (left arrow),
bias inversion (framed in dashed line, central arrow), and multiplex-
ing (right arrow). The densities of two one-atom eigenstates are
represented in all potentials. In the harmonic potentials (unframed
potentials on the left and right charts) the states are the ground state
and first excited state. In the two central charts with tilted double
wells the states are the lowest for each well. The color (white or
gray) indicates how they would evolve sequentially following the fast
protocol described in the text. For example, the gray state is initially
the ground state of the harmonic oscillator, then it becomes the lowest
state of the left well, and remains being the lowest state of that well
after the bias inversion. In the last step it becomes the first excited
state of the final harmonic oscillator.

the trajectories of the well minima move in parallel, the process
may be described by a parallel transport of two rigid harmonic
oscillators, one for each well. The Hamiltonian potential near
the minima may be approximated as

V0(x − x0) = 1
2m"2

0(x − x0)2, (1)

where "0 is the angular frequency and x0 = x0(t) is the
common notation for either of the two minima.1 When needed
we may distinguish the minima as x0,±, with x0,+ > x0,−. The
Hamiltonian H0 = p2/2m + V0(x − x0) has eigenenergies
En = (n + 1

2 )!"0, and well-known normalized eigenstates
φn(x − x0), proportional to Hermite polynomials [11].

Adding to the Hamiltonian a linear term with an appropriate
time-dependent slope the noninertial effect of the motion of
the well will be compensated in the trap frame [7,8]. To define
the trap frame consider the following position and momentum
displacement unitary operator

U = eipx0(t)/!e−imẋ0(t)x/!, (2)

where the overdot represents a time derivative. Starting from
the Schrödinger equation

i!∂t |ψ⟩ = H0|ψ⟩, (3)

the transformed wave function |&⟩ = U |ψ⟩ obeys

i!∂t |&⟩ = UH0U†|&⟩ + i!(∂tU)U†|&⟩ = H ′
0|&⟩, (4)

where the interaction picture (trap frame) Hamiltonian is

H ′
0 = p2

2m
+ V0(x) + mxẍ0 + 1

2
mẋ2

0 , (5)

and V0(x) = 1
2m"2

0x
2. The term mẋ2

0/2 only depends on
time; it does not affect the dynamics and can be ignored. To
compensate the motion of the trap, we add −mxẍ0 to H0. This
produces −m(x + x0)ẍ0 in the trap frame and the resulting
potential in that frame is reduced to V0(x), again neglecting
purely time-dependent functions. V0(x) does not depend on

1We disregard purely time-dependent functions in each well.
Differential phases among the wells depending on these functions
can be ignored since the traps are assumed to be independent.

time, so any stationary state in this trap frame will remain
stationary, and excitations are avoided.

III. ALTERNATIVE METHODS

In this section we discuss three simple alternative ap-
proaches to perform the bias inversion. They are all quite
natural and simple approaches whose performance can be
compared to that of the compensating force approach.

Sudden approach. In the sudden approach the potential is
changed abruptly from the initial to the final configuration, but
the state of the system remains unchanged immediately after
the potential change (in general it will evolve afterwards).
If the target state is ψtar the resulting fidelity is

Fs = |⟨ψ(0)|ψtar⟩|. (6)

FAQUAD. A quasiadiabatic method to speed up adiabatic
processes when there is one control parameter λ(t) is based
on distributing the adiabaticity parameter homogeneously in
time [10]. For instantaneous levels 0 and 1 this means

!
∣∣∣∣
⟨φ0|∂tφ1⟩
E0 − E1

∣∣∣∣ = c, (7)

where the instantaneous eigenstates φ0,φ1 and eigenenergies
E0,E1 depend on time through their dependence on λ, and
c is constant. By the chain rule this becomes a first order
differential equation for λ(t), and c is set so that the boundary
conditions for λ(t) at initial, t = 0, and final time tf are
satisfied. In the transport of a particle with a harmonic
oscillator of angular frequency "0 centered at x0(t) we set
λ(t) = x0(t). Using the energies and eigenstates of the first
two levels of the harmonic oscillator in Eq. (7), the FAQUAD
condition becomes simply

mẋ0(t)√
2!m"0

= c. (8)

The solution is the linear connection x0(t) = x0(0) + [x0(tf ) −
x0(0)]t/tf . The minimal tf for which a zero of excitation
energy appears is [10,12] 2π/"0.

Polynomial connection without compensation. The final
and initial values of the control parameter may as well be
smoothly connected without applying any compensation, for
example, using a fifth order polynomial that assures the
vanishing of first and second derivatives of the parameter at
the boundary times.

IV. EXAMPLES

In the following examples, the potentials and parameters
are adapted for a trapped ion in a multisegmented Paul trap,
and for a neutral atom in a dipole trap.

A. Trapped ions

For a trapped ion we consider a simple double-well potential
of the form

V (x,t) = βx4 + αx2 + γ x, (9)

with α(t) < 0 and β(t) > 0 [13–15]. α and β are assumed to
be constant and γ ≡ γ (t) time dependent. The bias inversion
implies a change of sign of γ (t) from γ0 > 0 to −γ0.
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From ∂V
∂x

= 0 the condition for the extrema becomes

4βx3 + 2αx + γ = 0. (10)

It is useful to define

A = 0, B = 2α

4β
, C = γ

4β
, (11)

Q = A2 − 3B

9
, R = 2A3 − 9AB + 27C

54
. (12)

When R2 < Q3 there are two minima and one maximum. With
α < 0 and β > 0, this is satisfied for

|γ | <

(
2
3

)3/2
√

−α3

β
. (13)

The trajectories of the minima are

x0,± = −2
√

Q cos
(

θ + (1 ± 1)π
3

)
− A

3
, (14)

where θ = arccos( R√
Q3

), 0 ! θ ! π and the roots are taken

to be positive. Up to second order in γ they are

x0,− ≈ − 1√
2

√
−α

β
+ γ

4α
− 3γ 2√−αβ

16
√

2α3
, (15)

x0,+ ≈ 1√
2

√
−α

β
+ γ

4α
+ 3γ 2√−αβ

16
√

2α3
. (16)

The quadratic term in γ is negligible with respect to the linear
term when

|γ | ≪ 4
√

2
3

√

−α3

β
, (17)

which implies that the trajectories for the minima move in
parallel. Note that this inequality automatically implies the one
in Eq. (13). Neglecting the quadratic term, the two minima are
given by x0,± = ± 1√

2

√
− α

β
+ γ

4α
. The distance between the

minima is

D = 2
√

Q

{
cos

(
θ

3

)
+ sin

[
1
6

(π + 2θ )
]}

≈
√

2
√

−α

β
+ 3

√
−αβ

8
√

2α3
γ 2. (18)

We may also compute the energy bias between the two wells
as

δ = γD. (19)

The distance traveled by each well is, when (17) is fulfilled,
d = γ0/(2α) [see Eqs. (15) and (16)], and the effective
frequency at each minimum

ω0 =
√

1
m

(
d2V

dx2

)

x=x0

. (20)

For Eq. (9) the effective frequencies are

ω0,± =
√

2
m

√

α + 2
3
β

{
A+ 6

√
Q cos

[
1
3

(
θ + (1 ± 1)π

3

)]}2

≈ 2
√

− α

m
∓ 3

2
√

2

√
β

α2m
γ . (21)

Hence, comparing the two terms, the condition for the
frequencies to be essentially constant ω0,∓ ≈ "0 ≡ 2

√
− α

m
is again the inequality in Eq. (17).

In the regime where the inequality (17) holds, we can apply
the compensating force approach to implement a fast bias
inversion. Since the compensating term −mxẍ0 is equal for
both harmonic traps, we add it to V in Eq. (9), and the resulting
Hamiltonian H is

H = p2

2m
+ βx4 + αx2 + (γ − mẍ0)x. (22)

Note that the compensation amounts to changing the time
dependence of the slope of the linear term from the reference
process defined by γ (t) to γeff(t) ≡ γ (t) − mẍ0(t) = γ (t) −
mγ̈ (t)/(4α). To set γ (t) we design a connection between
the initial and final configurations. First note the boundary
conditions

γ (0) = γ0 > 0, γ (tf ) = −γ0, (23)

which we complement by

γ̇ (tb) = 0, γ̈ (tb) = 0, tb = 0,tf , (24)

so that ẋ0(tb) = ẍ0(tb) = 0. This implies thatU(tb) = eipx0(tb)/!

and U̇(tb) = 0. Therefore the Hamiltonians and the wave
functions in interaction and Schrödinger pictures transform
into each other by a simple coordinate displacement. At
intermediate times, we interpolate the function as γ (t) =∑5

n=0 cnt
n, where the coefficients are found by solving

Eqs. (23) and (24). Finally,

γ (t) = γ (0) + 10[γ (tf ) − γ (0)]s3

− 15[γ (tf ) − γ (0)]s4 + 6[γ (tf ) − γ (0)]s5, (25)

where s = t/tf . This function and examples of γeff are shown
in Fig. 2.

In order to compare the robustness of the compensating
force method against the alternative ones we consider a
9Be+ ion in the double well with the realistic parameters
α = −4.7 pN/m and β = 5.2 mN/m3, similar to those in [16].
For a moderate initial bias compared to the vibrational quanta,
such as

γ0 ∼ !"0

D
, (26)

the fidelity provided by the sudden approach is one for
all practical purposes so we can change the bias abruptly
and reach the target state. The displacement of the trap d
may be compared with the oscillator characteristic length
a0 =

√
!/m"0. Their ratio is

R = d

a0
= γ0

2α

√
m"0

!
. (27)
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FIG. 2. (Color online) γ versus s = t/tf for the polynomial in
Eq. (25) (solid black line) and FAQUAD (short-dashed red line).
γ0 = 86.4 zN, γ (tf ) = −γ0, α = −4.7 pN/m, and β = 5.2 mN/m3.
Also shown are the different effective slopes adding a compensation
to the polynomial, γeff(t) = γ (t) − mγ̈ (t)/(4α), for the mass of 9Be+

and times tf = 0.07 µs (long-dashed blue line), tf = 0.1 µs (green
dots), and tf = 0.3 µs (magenta squares).

For the Paul trap R ≈ 0.000 65, which explains the high
fidelity of the sudden approach for a moderate bias inversion
of the ion. At these bias values there is really no need to apply
a more sophisticated protocol than the sudden switch.

Henceforth, we assume a much larger γ0, but still satisfying
the condition (17). In particular, for an initial bias of 1000
"0! (corresponding to γ0 = 86.4 zN), the ratio becomes
R ≈ 0.65. The maximum variation of the difference between
the trajectories of the minima is 3 pm, about three orders
of magnitude less than the displacement of each minimum
(9.2 nm), so the minima follow parallel trajectories. Further-
more, the maximum variation of the frequencies in Eq. (21)
with respect to "0 = 2π × 5.6 MHz is 2π × 3.7 kHz, so the
effective frequency is nearly constant.

Figure 3 demonstrates the effect of the compensating-force
approach. Starting from the ground state of the lower (left)
well, the final evolved state following the shortcut with
compensation stays as the “ground state” of the left well.
This is actually defined as the lowest state of the double-well
system predominantly located on the left. There is a similar
process for the right well. The final states represented are
obtained by solving the Schrödinger equation with the full
Hamiltonian (22).

FIG. 3. (Color online) Left: Ground state of the left well at t = 0
(long-dashed magenta line) and at t = tf (magenta triangles), and
final state with the compensating force applied on the double well
(solid blue line). Right: Ground state of the right well: at t = 0 (short-
dashed red line) and at t = tf (red dots) and final state with the
compensating force applied (solid black line). tf = 4 ns and other
parameters as in Fig. 2 for 9Be+.

FIG. 4. (Color online) (a) Fidelity |⟨φL(tf )|ψ(tf )⟩|, where
|φL(tf )⟩ is the lowest state located in the left well in the final time
configuration, and |ψ(tf )⟩ is the evolved state following the shortcut
at final time. (b) Final excitation energy for the process on the left
well using compensating force (blue dots), fifth degree polynomial
in Eq. (25) (solid black line), and FAQUAD (short-dashed red line).
The parameters are for 9Be+ as in Fig. 2.

Figure 4 is for the process in the left well. It compares
the fidelity at final time and the excitation energy, defined as
Eex = E(tf ) − E0(tf ) where E(tf ) is the final energy after the
quantum evolution following the shortcut and E0(tf ) is the
ground state final energy of the upper harmonic well, using
the polynomial (25) for γ with and without compensation, as
well as the results of the FAQUAD approach. The fidelity
without compensation tends to the fidelity of the sudden
approach (0.89) for very short final times. The method with
compensation clearly outperforms the others. In principle a
fundamental limitation of the approach is due to the fact that the
inequality (17), which guarantees parallel motion and stable
frequencies of the wells, should as well be satisfied by γeff, but,
at very short times, the dominant term of γeff ∼ −mγ̈ /4α may
be too large. To estimate this short time limit we combine
the mean-value theorem inequality for the maximum [7],
|γ̈ |max " 4γ0/t2

f , with Eq. (17) for γeff to find the condition

tf ≫
(

3mγ0

4
√

2

√
− β

α5

)1/2

. (28)

The factor on the right-hand side is 10−9 s for this example
(see Fig. 4), which is several orders of magnitude smaller than
2π/"0 and does not affect the fidelity in the scale of times
shown.

B. Neutral atoms

The potential

Vna(x,t) = 1
2
mω2x2 + V0 cos2

[
π (x − .x)

dl

]
(29)

forms also a double well. It was implemented in [17] with
optical dipole potentials, combining a harmonic confinement
due to a crossed beam dipole trap with a periodic light shift
potential provided by the interference pattern of two mutually
coherent laser beams. ω is the angular frequency of the
dipole trap about the waist position, V0 the amplitude, .x
the displacement of the optical lattice relative to the center of
the harmonic well, and dl is the lattice constant. (Double wells
with a controllable bias may be also realized by two optical
lattices of different periodicity with controllable intensities and
relative phase [18]). Here, the bias inversion implies a change
of sign of .x(t) from .x0 > 0 to −.x0.
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To check if the conditions to apply the compensating force
approach hold here as well, an analysis similar to the one
in the previous example is now performed. We approximate
the potential around each minimum, V (±), up to fourth order.
From ∂V (±)

∂x
= 0 we get a cubic equation for each minimum.

The positions of the minima are thus given by

x0,± = −2
√

Q cos
(

θ (±) − 2π

3

)
− A(±)

3
, (30)

where

Q = 2d2
l π2V0 + d4

l mω2

4π4V0
,

A(±) = −3
2

(2.x ± dl), (31)

θ (±) = cos
[−3dl(2.x ± dl)mπ2√V0ω

2

2
(
2π2V0 + d2

l mω2
)3/2

]−1

.

Up to a second order in .x,

x0,± ≈ ±a + b.x ± c.x2, (32)

where the coefficients are known explicitly but too lengthy to
be displayed here. Whenever the quadratic term is negligible
with respect to the linear term (c.x2 ≪ b.x), we can ap-
proximate x0,± = ±a + b.x (parallel motion). The distance
between the minima is given by

D = 1
3

{
A(−) − A(+) + 6

√
Q

[
− cos

(
π + θ (−)

3

)

+ cos
(

π + θ (+)

3

)]}
≈ 2a + 2c.x2. (33)

Moreover, ω0,± ≈ f ∓ g.x, again with known but lengthy
coefficients g and f . As long as g.x ≪ f we may set ω0,± ≈
"0 ≡ f .

For realistic parameters the conditions for parallel transport
of the minima and constant frequency are indeed satisfied.
We consider a 87Rb atom in the trap and set the parameters
in [1] after the demultiplexing process, namely, dl = 5.18 µm,
ω = 2π × 59.4 Hz, and V0/h = 1.4 kHz; the time-dependent
displacement .x = .x(t) is the control parameter to perform
the bias inversion, such that

.x(0) = .x0, .x(tf ) = −.x0, (34)

with .x0 = 200 nm. We also impose

.̇x(0) = 0, .̈x(0) = 0,
(35)

.̇x(tf ) = 0, .̈x(tf ) = 0,

to achieve similar conditions in the derivatives of the minima
x0. At intermediate times, we interpolate the function as
.x(t) =

∑5
n=0 dnt

n, where the coefficients are found by
solving Eqs. (34) and (35). Consequently, the connection
between the initial and final Hamiltonians is given by the
same polynomial in Eq. (25) changing γ (t) → .x(t). The
double wells are much deeper and tight for trapped ions than
for neutral atoms; compare an intrawell angular frequency
"0 of 2π × 5.6 MHz for the ions versus 2π × 0.35 kHz for
the optical trap. Therefore, in this case, for a moderate initial

x (µm)

t (
µs

)

−4 −2 0 2 4

20

40

60

0.2 0.4 0.6 0.8|ψ(x,t)|2 (µm−1)

FIG. 5. (Color online) Evolution of the wave function densities
following the shortcut in Eq. (36) for states in left and right wells. The
parameters are for 87Rb: dl = 5.18 µm, ω = 59.4 × 2π Hz, V0/h =
1.4 kHz, .x0 = 200 nm, and tf = 63 µs.

bias compared to the vibrational quanta, the ratio between
the displacement of the trap d and the oscillator characteristic
length a0 is R ≈ 0.67.

With the parameters given at time t = 0, the separation of
the minima is D = 5 µm, the bias between minima δ = 2.02 ×
10−32 J, and an the effective angular frequency "0 = 2π ×
0.35 kHz, whereas the maximum variation of the frequencies
along the process is approximately 2π × 0.2 Hz. Furthermore,
the maximum deviation from D of the minima separation is
1.8 nm, whereas the displacement of each minimum is about
0.4 µm. In summary, the minima do move in parallel with
constant, equal frequencies for practical purposes.

To accelerate the bias inversion we add the compensating
term to V in Eq. (29),

H = p2

2m
+ 1

2
mω2x2 + V0 cos2

[
π (x − .x)

dl

]
− mxẍ0.

(36)
Figure 5 shows the evolution of the densities. Focusing on
the left well, Fig. 6(a) demonstrates that the fidelity is exactly
one (blue dots) with the compensating force. However, using
for the inversion the fifth degree polynomial in Eq. (25) [with

FIG. 6. (Color online) (a) Fidelity |⟨ϕ1(tf )|ψ(tf )⟩|, where
|ϕ1(tf )⟩ is the lowest state predominantly of the left well at final time
(the first excited state of the double well) and |ψ(tf )⟩ is the evolved
state following the shortcut at final time. (b) Final excitation energy.
Compensating-force approach (blue dots), fith degree polynomial in
Eq. (25) with the change γ (t) → .x(t) without compensation (solid
black line), and FAQUAD approach (short-dashed red line). The
parameters are chosen for 87Rb: dl = 5.18 µm, ω = 59.4 × 2π Hz,
V0/h = 1.4 kHz, and .x0 = 200 nm.
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the change γ (t) → .x(t)] without compensation the fidelity
at short final times decreases until the value of the sudden
approach, 0.9. Furthermore, the excitation (residual) energy
Eex is approximately zero for the shortcut protocol, compared
to the excitation without compensation in Fig. 6(b).

V. DISCUSSION

In this work we have proposed a method to invert the
bias of a double-well potential, in the regime of independent
wells, to keep the final states motionally unexcited within the
same original well. The method treats the bias inversion as
a rigid transport of the wells, which is justified for realistic
parameters, and applies a “compensating force” to cancel
the excitations. Examples have been worked out for ions or
neutral atoms and comparisons have been provided with a
sudden approach, a fast quasiadiabatic (FAQUAD) approach,
or a smooth polynomial connection of initial and final
bias without compensation. The compensating-force method
clearly outperforms the others and gives perfect fidelities under
ideal conditions, up to very small times compared, e.g., with
the time 2π/"0 (one oscillation period) where FAQUAD
provides a first zero of the excitation energy. The feasibility of
the approach may be analyzed in the light of current technology
in the two systems examined:

(1) For trapped ions we have considered initial and final
values differing by .γ ≈ 200 zN, whereas resolutions of
15 zN of have been reported [19]. As for the timing, much effort
is being put into achieving suboscillation-period resolutions
for the potential update [20–22] in ion transport experiments.
The possibility to switch on and off potentials in a few
nanoseconds, much faster than the ion oscillation period, has
been demonstrated [22]. The designed bias inversion is thus in
reach with current technology.

(2) For neutral atoms, the minimal process times tf are not
limited by the method per se but by the technical capabilities
to implement the maximal compensating force. This force
depends on the maximal acceleration of the well, whose lower
bound is known to be amax = 2d/t2

f [7]. To implement the
compensation with a magnetic field gradient G, the gradient
should be of the order of G ≃ mamax/µB in an amount of time
tf (µB is Bohr’s magneton). For rubidium atoms polarized in

the magnetic level F = mF = 2 and the transport parameters
considered above, this requires a magnetic field gradient on
the order of 40 T/m shaped on a time interval tf = 63 µs.
This is definitely challenging from an experimental point of
view. Alternatively, one can use the dipole force of an out
of axis Gaussian laser beam. If the double well is placed on
the edge at a distance of w/2 where w is the waist and if αp

denotes the polarizability, the local potential slope experienced
by the atoms is on the order of αpP/w3 where P is the power
of the beam. The compensation requires that P/w3 = m/αp.
For instance, with an out-of-resonance beam at a wavelength
of 1 µm, the polarizability of rubidium-87 atoms is αp ≃
1.3 × 10−36 m2 s, and the compensation can be performed
using a 1 W laser with a waist of 20 µm. As for the timing, a
submicrosecond time scale for shaping the offset potential is
perfectly achievable using a control of the intensity based on
acousto-optics modulators.

A relevant feature of the proposed approach is that the
reference process used to design the corresponding compen-
sation (we have used a polynomial for simplicity) may be
chosen among a broad family of functions satisfying Eqs. (23)
and (24). As in other shortcut-to-adiabaticity approaches, this
flexibility may be used to enhance robustness versus noise and
perturbations [23–25].

The bias inversion put forward here and the multiplexing
and demultiplexing protocols developed in [1] provide the nec-
essary toolkit to perform vibrational state inversions [26,27], or
Fock state preparations [1]. Applications in optical waveguide
design are also feasible [28]. As well, the fast bias inversion
is directly applicable to Bose-Einstein condensates [29,30].
Generalizations for conditions in which rigid transport does not
hold are also possible using invariant theory [7], which allows
for finding processes without final excitation where both the
frequency and position of the well depend on time [31].
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