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We report on the measurement of the time required for a wave packet to tunnel through the potential
barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein
condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers
excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of
the wave packet at the turning points and measure the delay between the reflected and the tunneled packets
for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent
micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a
negative momentum, a result opposite to the prediction of classical physics.
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The question of the time required for a particle to tunnel
through a barrier was addressed in the early days of quantum
mechanics [1]. The first quantitative study providing a finite
tunneling time dates back to 1962 [2]. The difficulty to
define such a time lies in the fact that time is not in general
associated with an ordinary observable in quantum mechan-
ics [3]. As a result there is not a unique definition of
tunneling time (see the discussion in Ref. [4]).
Experimentally, this question was addressed in condensed

matter, attosecond physics, and optics. In condensed matter
physics, it has been investigated when performing time
measurements in electronic systems on a subnanosecond
time scale. Such studies have been carried out for instance
in GaAs=GaAlAs hetereostructures [5] and in biased
Josephson junctions [6].
More recently, attosecond tunneling spectroscopy shed

light on how electrons quit their atomic binding potential
under the action of a strong optical field. Such experiments
constitute a real-time observation of light-induced electron
tunneling on a time scale of a few hundreds of attoseconds
[7,8], and even a few tens of attoseconds with angular
streaking techniques [9].
The tunnel problem in quantum mechanics can also be

mapped on a wide number of situations in electromagnet-
ism including frustrated total internal reflection [10,11],
transmission in 1D photonic band gaps [12,13], or trans-
mission through a waveguide beyond the cutoff [14]. The
corresponding time scales are nanoseconds for microwaves
and femtoseconds in the visible range. These experiments
brought to the fore the question of superluminal motions.
The tunnel effect plays a key role in the dynamics of

degenerate gases trapped in optical lattices [15,16]. The
tunneling rate J can be directly measured in situ [17] and
engineered by an appropriate shaking of the periodic
potential to design effective Hamiltonians and produce
synthetic gauge fields [18–20]. The interplay between the
tunneling rate and interactions is at the heart of the many

body physics investigated with cold atoms in optical
lattices [21–24], including in the presence of dissipation
[25]. However, to date, no direct tunneling time measure-
ment has been performed in this domain.
In this Letter, we propose a direct measurement of the

tunneling time of massive particles by studying the out-of-
equilibrium dynamics of a chain of coupled Bose-Einstein
condensates (BECs) in an optical lattice. In contrast with
the methods explored in other fields, we choose parameters
so that roughly half the wave packet tunnels through the
barrier at the first turning point. Using both the quasi-
isochronism of oscillations in the lattice and the packet that
has not tunneled as a reference, we infer precisely the
duration of the tunneling process, which could be up to
27 μs, i.e., 1=4 of the oscillation period.
Our experiment starts with a rubidium-87 BEC produced

in a hybrid trap [26]. In short, 2 × 109 atoms from a
magneto-optical trap are loaded into a magnetic quadrupole
whose gradient is ramped up to 1.8 T=m. Microwave
evaporation is then performed over 15 s to decrease the
temperature from 300 to 30 μK. Atoms are subsequently
transferred to a crossed dipole trap, formed by two 1064 nm
laser beams, which are respectively aligned along a
horizontal axis and at 35° from the vertical, while main-
taining a magnetic gradient that approximately compen-
sates for the gravity. The evaporation in this latter trap
yields a pure BEC of 105 atoms in the low field seeker state
F ¼ 1, mF ¼ −1.
We then superimpose to the horizontal guide a 1D optical

lattice made of two counter-propagating laser beams at
1064 nm (lattice spacing d ¼ 532 nm). The lattice is
switched on adiabatically in 11 ms using an S-shape time
variation of the intensity of the beams [27]. The relative
phase 2θ of the two laser beams is controlled using two
phase-locked synthesizers that drive the acousto-optic mod-
ulators placed on each beam before they enter the vacuum
cell. The 1D potential experienced by the atoms reads
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where the first term accounts for the weak external potential
in which the BEC is produced. The external angular
frequency ωext results from the combined trapping of the
dipole trap and the magnetic gradient (ωext ¼ 2π × 25 Hz).
The second term accounts for the lattice potential with a
tunable time-dependent phase θðtÞ. EL ¼ h2=ð2md2Þ is the
lattice characteristic energy and s is a dimensionless param-
eter characterizing the lattice depth.
The lattice can be suddenly spatially shifted by a phase

θð0þÞ ¼ θ0 (θ0 ¼ 90° corresponds to a shift of half a
period). This phase jump is performed on a short time scale
(a few nanoseconds) compared to all other time scales in the
system. This shift triggers an oscillation of the BEC in the
lattice. We analyze this oscillation by suddenly switching off
all trapping potentials followed by a tTOF ¼ 25 ms time of
flight. This provides a measurement of the in-trap atomic
momentum distribution. The observed pattern results from
an interference of the BECs located at each lattice site and
is characterized by peaks associated with the momenta
pn ¼ nh=d with n an integer (positive or negative) and
separated by a distance htTOF=ðmdÞ ¼ 215 μm [28].
For the experimental data presented in Fig. 1, we used

an initial shift of d=4 (i.e., θ0 ¼ 45°) and repeated the
sequence for various holding times in the shifted lattice. In
this way, we access the dynamics of the BEC inside the

lattice. After ∼25 μs of evolution in the lattice, the atoms
return to the bottom of the potential wells, acquiring their
maximum momentum in the meantime. This results in a
shift of the maximum peak towards the right (see point B in
Fig. 1). Atoms then evolve towards the opposite turning
point that is reached at C. A quarter of period later, we
observe two peaks (D1 and D2) and not just one, revealing
in momentum space the splitting of the wave packet that
occurred at C: a part of the wave packet (D1) continued its
oscillatory motion and another part of the wave packet (D2)
tunneled through the barrier and kept as a consequence its
positive momentum. The potential barrier therefore acts as
a beam splitter. Interestingly, the second interaction with
the beam splitter that occurs at the next turning point (E)
generates, by constructive interference, only one packet
with a negative momentum.
We start by investigating the oscillatory motion inside

the lattice. The dipole motion of a condensate in an optical
lattice has been studied experimentally in Refs. [29–31] for
an initial displacement of the condensate by a few tens of
micrometers, i.e., more than its size, and in the low depth
limit s < 1.2 (with our notation). To compare the oscillations
that result from such a large displacement, a hydrodynamic
formalism was used, which substitutes a continuum formu-
lation to the discretized formulation involving the wave
functions in each site [32,33]. The frequency of the dipole
mode in this model is given by ωdip ¼ ðm=m%Þ1=2ωext,
wherem% is the effective mass, a quantity that was extracted
from the experimental data [29]. In such experiments, the
micromotion of the wave packets inside each lattice site does
not play any role on the center-of-mass motion. This is to be
contrasted with the case studied in this Letter for which we
have a small displacement (a few tens of nanometers) and a
deeper optical potential (s ∼ 3.2). Under those conditions,
the micromotion plays a major role and the continuous
approach of Ref. [32] is no more adapted. Furthermore, the
quantum dynamics that takes place inside each well cannot
be mapped on the classical dynamics [34]. Indeed, despite
the relatively large lattice depth, the tunnel effect still plays
an important role on the out-of-equilibrium dynamics that
we investigate. For an initial shift of d=4, it increases the
oscillation period compared to the classical case (see Fig. 2).
We investigated quantitatively the extra inertia provided

by the lattice using numerical simulations of the 1D
Gross-Pitaevskii equation [35]. For this purpose, we solve
the dimensionless equation i∂~tψ ¼ ½ð−Δþ ~ω2

extX2Þ=
2 − γcos2ðπX=4þ φÞ þ βjψ j2'ψ , where the time is nor-
malized to ~t ¼ ~ωt with ~ω−1 ¼ md2=ð16ℏÞ ¼ 24.3 μs for
our parameters, ~ωext ¼ ωext= ~ω, and γ ¼ π2s=8. The precise
value of the interaction strength β requires a model for the
effective reduction of dimension [36] and a precise knowl-
edge of the number of atoms per site, which differs from
site to site because of the external confinement. Assuming a
transverse Thomas-Fermi profile, we find β ≲ 1. The dipole
oscillation period T normalized to ~ω−1 is plotted in

(a)

(b)

FIG. 1. (a) Time sequence showing the evolution of the wave
packet in the lattice after a sudden displacement (5 μs time
interval between each picture). The data presented are averaged
over two iterations. The images are taken after a 25 ms time of
flight. (b) Sketch of the center-of-mass motion of the packets in
each well. Their splitting by tunneling at the turning points is
represented as dashed lines.
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Fig. 2(a) as a function of the depth parameter s for various
values of the interaction parameter β and external confine-
ment ~ωext ( ~ωext ¼ 1=262 corresponds to the experimental
situation). Remarkably, the curve that gives the renormal-
ization of the dipole frequency appears to be independent of
the external potential strength in the limit ωext ≪ h=ðmd2Þ
(see Ref. [37]). This property differs from the low depth
result [29,30,32]. Additionally, the dipole mode that we
excite turns out to be independent of the strength of the
interaction. This well-known feature for a single well
remains valid for our chain of coupled wells. This was
also pointed out in Ref. [32] for large amplitude oscillations
in the low depth limit. We have numerically checked these
two properties, and we can therefore precisely infer the
potential depth from the first dipole oscillation period.
We experimentally measure a period T ¼ 106( 4 μs
( ~ωT¼4.36(0.14), which corresponds to s0¼3.21(0.12
according to Fig. 2(a) (arrow). For this depth, the potential

accommodates for two bound states [37]. An independent
calibration based on Kapitza-Dirac diffraction has been
performed on a large range of lattice depths and is in perfect
agreement with our method that combines time period
measurement and numerical simulation (see Ref. [37]).
Another consequence of the collective nature of the

dipole oscillation is the quasi-independence of the oscil-
lation period on the initial angle θ0 (see Ref. [37]). This is
illustrated in Fig. 2(b) where we compare for different
initial angles θ0 the period measured experimentally, the
result of the numerical simulation in the same condition as
in the experiment and with the calibration explained above,
and the classical prediction. Within the error bars, the
oscillation period of the dipole mode is constant in the
wide range of angle that we studied (30° ≤ θ0 ≤ 80°), an
observation confirmed by numerical simulations (see
Ref. [37]). This is to be contrasted with the classical
prediction where the nonharmonicities of the wells yield
an oscillation period that strongly depends on the initial
angle. Furthermore, the BEC being put in a far out-of-
equilibrium state by the initial sudden displacement, we
numerically checked that its relaxation towards equilibrium
does not modify the oscillation dynamics studied above:
the relaxation occurs on a time scale of a few milliseconds,
thus much larger than the oscillation period.
Let us analyze further the experimental time sequence of

Fig. 1. We observe that the centers of the packetsD1 andD2

do not coincide in time. The packet D2 that has tunneled
through the potential barrier is delayed with respect to D1.
The independence of the period on the initial angle θ0
ensures that the time delay that we measure is not affected
by anharmonicities. The analysis in momentum space
facilitates the precise measurement of the time delay since
the two packets that split on the barrier acquire an opposite
momentum after a quarter of a period. We investigated
systematically this delay through a set of experiments, with
a 1 μs time step, for which the initial angle, and thus the
initial sudden displacement of the lattice, is varied. The data
are presented in Fig. 3(a). We observe that when increasing
θ0, the relative delay between the reflected (D1) and
tunneled (D2) wave packets decreases. Indeed, as intui-
tively expected from a semiclassical approach, for a larger
shift angle, the thickness of the potential barrier at the
turning point decreases and the turning point corresponds
to a higher energy [see Fig. 3(b)]. To extract the time delay
between the wave packets, we determine the maximum of
the density distributions of the D1 and D2 wave packets
(see the inset of Fig. 3) using as a guide a Gaussian fit of the
density distributions. For θ0 ≥ 60°, the delay cannot be
measured precisely because of the small thickness of the
barrier, which yields a partial overlap of packets B and D2.
The numerical simulations are in very good agreement
with the experimental data without any adjustable param-
eter once the calibration has been carefully performed
[see Fig. 3(c)]. The error bars on the numerical simulations

(a)

(b)

FIG. 2. (a) Collective dipole mode period measured in dimen-
sionless units as a function of the lattice depth (normalized to the
lattice characteristic energy EL) for various values of the
external potential and the interactions: ~ωext ¼ 1=50 (triangle),
~ωext ¼ 1=262 (square), β ¼ 0.1 (open symbol), and β ¼ 1 (filled
symbol). The proximity of the curves enables one to extract
precisely the optical lattice depth (dashed line). The dotted curve
corresponds to the classical oscillation period [34]. (b) Oscillation
period as a function of the initial angle θ0 (which accounts for
the initial sudden displacement of the lattice): experimental
points (filled square), numerical simulation with the calibration
presented in (a) (empty square), and classical prediction
(dotted line).
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are due to the uncertainty on the experimentally measured
period. Remarkably, the numerical simulations show that
interactions do not affect the value of the delay time. For
the smallest displacements (θ0 ¼ 20° and θ0 ¼ 30°), the
dynamics is completely dominated by the bound Bloch
states and the time delay that we measure is therefore
exclusively due to the tunnel effect (see Ref. [37]). The
contribution of the unbound states grows with θ0 to reach
35% for θ0 ¼ 50°.
The tunnel effect occurs for a large range of depths

(see Ref. [37]). The turning point at which it is observed
depends on the depth. For 3≲ s≲ 4, the tunnel time
directly measured at the first turning point strongly varies
from 0 to T=4. For s≳ 4 the interpretation of the measured
delay is more involved since the interferometric detection
method intrinsically provides a delay modulo T=2. For
s≲ 3 the overlap between the unbound and tunnel packets
renders more difficult an accurate determination of the
tunnel time.
In the last part of the time evolution represented in Fig. 1,

we observe that the packet F has a momentum opposed to
that of packet B. Such a behavior may appear surprising at
first sight: indeed, in the absence of tunneling (classical
prediction), one would expect the packet F to have exactly
the opposite momentum compared to what we observe.
This counterintuitive behavior results from a well-known

interference effect occurring in a Mach-Zehnder interfer-
ometer (MZI) with symmetric beam paths and 50:50 beam
splitters: the exit channel is the opposite to the entrance
channel. The packet of atoms in B has positive momentum
components centered about h=d. We define this state as
jBi ¼ jp0i. The potential barrier at the turning point C
plays the role of a coherent beam splitter: jDi ¼
cosφjp0iþ i sinφj − p0i. The confinement driving the
subsequent evolution plays the role of mirrors. At the
turning point E the two packets that have been split are
recombined on a second beam splitter. The result of this
recombination is read-out in momentum space in F: jFi ¼
ðcosφjp0i þ i sinφj − p0iÞ cos φ þ i sinφðcos φj − p0iþ
i sinφjp0iÞ ¼ cos 2φjp0i þ i sin 2φj − p0i. We infer that
the momentum in F is the exact opposite to that in B for a
perfect 50:50 beam splitter (φ ¼ π=4).
In our lattice configuration, the interfering packets

originate from two adjacent sites [see Fig. 3(b)]. We
therefore have multiple MZIs working simultaneously
and addressing only the external degree of freedom. We
analyze the exit of the interferometers by interference in
momentum space. The constructive interference observed
in Fig. 1 is thus due to the persistence of the global
coherence of the BEC on the dipole micromotion period
time scale. We numerically checked that this interference
effect is immune to interactions. It however depends on
the lattice depth, which changes the ratio between the
tunneled and the reflected parts of the wave packet, and
therefore the population that ends up with the same
momentum as in the entrance channel B. The constructive
interference observed in Fig. 1 corresponds to a ratio
Π−1=ðΠ1þΠ−1Þ¼91%, where Πn is the number of atoms
with momentum nh=d (corresponding to φ≃π=5).
Finally, after an extra quarter of a period, the atoms from
F are back in the initial state A. Therefore, when
increasing the evolution time in the shifted lattice, the
dynamics shown in Fig. 1 repeats again and the sensitivity
of the coupled chain of MZIs increases.
In conclusion, we have performed a direct measurement

of the tunneling delay time through the barriers of an optical
lattice by studying the time evolution of a BEC after a
sudden displacement of the lattice. The excitation of the
BEC by a displacement of a few tens of nanometers provides
a robust method to calibrate the lattice depth independently
of the external potential, the interactions, and the value of
the displacement. As a perspective, this experiment offers
the possibility of controlling the tunneling delay time with
time-dependent barriers in close analogy with the Landauer
problem [38]. Additionally, we have observed the construc-
tive interference in a MZI provided by two successive
interactions with the barriers acting as a beam splitter.
Such a micron-size interferometer could be of interest to
measure locally the short-range force at the vicinity of a
surface [42–46].

(a)

(b)

(c)

FIG. 3. (a) Experimental images: enlargements of C, D1, and
D2 packets for various values of the initial offset angle of the
lattice θ0. (b) Sketch of the tunneling process for different θ0
showing the thickness of the potential barrier at the first turning
point (point C). (c) Quantitative tunneling time delay extracted
from the experimental images (black disk), compared to the
results of the numerical simulations without any adjustable
parameter but including the uncertainty on the lattice depth (gray
area). Inset: integrated density distribution of the reflected D1

(black square) and tunneled D2 (red triangles) packets for
θ0 ¼ 40°.
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