
Supplementary material for
‘Direct tunneling delay time measurement in an optical lattice’

A. Fortun, C. Cabrera-Gutiérrez, G. Condon, E. Michon, J. Billy and D. Guéry-Odelin
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In this supplementary material, we provide an analysis of
the out-of-equilibrium initial conditions investigated in the ex-
periments in terms of Bloch bands and states. We then show
results of numerical simulation to discuss: (i) the interfer-
ence pattern for one and two wells, (ii) the onset of the quasi-
isochronism as a function of the number of populated wells,
and (iii) the fraction of atoms that tunnels through the barri-
ers. A quantitative comparison of the Kapitza-Dirac diffrac-
tion method for the lattice depth calibration with the method
based on the period measurement after a phase shift is de-
tailed. A section is devoted to the results of other experiments
and numerical simulations using the same offset technique in
an optical lattice but for various other lattice depths. The last
section is devoted to a simple semiclassical analysis of the
traversal time for a single barrier.

BAND ANALYSIS
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FIG. 1: (Color online). Band diagram for an attractive potential lat-
tice of depth s0EL

with s0 = 3.21. Bound level (green dashed line)
and unbound level (red solid line)

The data presented in the main article have been carried
out in an optical lattice of depth s0EL

with s0 = 3.21. The
corresponding band diagram is plotted in Fig. 1: only the two
lower bands are entirely bounded, the bottom of the third band
is slightly negative. The timescales associated to the energy
diagram are: h/(E2(k = 0) � E1(k = 0)) = 78.7 µs and
h/(E3(k = 0)� E2(k = 0)) = 163 µs.

As already explained, the initial state is prepared by a sud-
den shift of the optical lattice: ✓(0+) = ✓0. It is instructive to

work out the population ⇡

n

(✓0) of this initial state projected
on the Bloch states |n,q = 0i for different initial conditions
i.e. different initial angles ✓0. They are summarized as his-
tograms for n = 1, ..., 6 for the various initial angles that
have been used in the experiment. For the two lowest an-
gles, ✓0 = 20

o and ✓0 = 30

o, the population in the bound
Bloch states (represented in green) is respectively 98.3 % and
93 %. The dynamics is therefore completely dominated by the
two lowest bound states. Increasing the angle, the proportion
of the initial wave function projected on the unbound Bloch
states increases; it reaches 35 % for ✓0 = 50

o.
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FIG. 2: (Color online). Probability of the initial state to be in the
Bloch states |n,q = 0i for the six first bands n = 1, ..., 6.

NUMERICAL SIMULATIONS

In Fig. 3, we represent the dynamics of the wave packet in-
side one well and two wells after an initial offset ✓0 = 20

o.
As in the experiment, the simulation incorporates a time-of-
flight, so that the pictures reflect the momentum space. The
non harmonic character of a single well is apparent in the den-
sity plot for which the amount of stripes increases with time.
It is worth noticing that with only two wells we recover a den-
sity plot qualitatively close to the experiment performed with
a lattice: we indeed observe the tunneling packet and its delay
with respect to the reflected packet, and the MZI effect.

In Fig. 4, we represent the density line p = 0 as a func-
tion of the normalized time for different trapping conditions
(this line corresponds to the central line - see for instance
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FIG. 3: (Color online). Time evolution of the ground state wave
packet after an offset (✓0 = 20o), observed after time-of-flight, for
a single well (upper part) and two wells (lower part) of depth s0EL

with s0 = 3.21.

the dashed line in Fig. 4a - of figures obtained after a time-
of-flight as in Fig. 3). For the smallest initial offset angle
✓0 = 20

o, Fig. 4b reveals the emergence of a single oscil-
lation frequency as the number of wells increases (see solid
lines). We have also provided on the same graph the oscilla-
tion observed for a lattice (as in the experiment). With only
4 wells, we observe a periodicity that is already quite close
to that of the lattice case. The dotted line corresponds to the
oscillation observed for a harmonic trap whose angular fre-
quency coincides with that obtained by the expansion of the
potential wells about their minima. The period (normalized
to !̃) is smaller (' 2.8) for the harmonic case compared to
that of the lattice (' 4.3). This difference is summarized sys-
tematically in Fig. 2 of the main article. These numerical re-
sults confirm that the oscillation is robust against the exact
shape of the envelope. Additionally, in Figs. 4c,d,e we com-
pare the oscillation frequency for ✓0 = 20

o (dashed line) and
✓0 = 70

o (solid line) for 2, 4 and 8 wells. We clearly see the
“locking” to the same oscillation frequency when the number
of wells increases. A similar curve for the lattice situation
is finally provided in Fig. 4f. It reveals a small shift of the
oscillations after five periods. This is the reason why we re-
fer to this effect as a quasi-synchronization. In practice, the
experiments presented in the main article investigate the time
interval 0  !̃t  5.

In figure 5a, we present the results of the numerical simula-
tion of the Gross-Pitaevskii equation in the conditions of the
experiment (to be compared with Fig. 3 of the main article).
The simulation incorporates both the time evolution inside the
lattice and the free evolution. We recover the same features as
in the experiments: a delay between the packets D1 and D2

and a constructive interference (packet F of Fig. 1 of the main
article). We have also extracted from the numerical simulation
the evolution of the population ⇧

n

in the momentum states
nh/d with n = �1, 0, 1 at the times for which we observe the
maximum number of atoms in the packets D1 and D2, and
this for the 4 different initial angles ✓0 = 20, 30, 40, 50

o. We
clearly see in these graphs that ⇧1(D1) ' ⇧�1(D2) for all
initial angles revealing that the splitting of the packet on the
tunnel barrier is close to 50% transmission and 50% reflec-
tion. We also observe that the population ⇧0 in the momentum
p = 0 never vanishes for ✓0 = 20

o. This is to be contrasted
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FIG. 4: (Color online) Numerical study of the quasi-synchronization.
The density line p = 0 obtained after a time-of-flight (black dashed
line in a) is represented as a function of time (central line of plots
similar to those of fig. 3) for various conditions. (b) initial shift angle
✓0 = 20o for 1,2,4 wells (solid lines), lattice (dashed line), harmonic
trap associated to the bottom of the lattice sites (dotted line). (c),
(d), (e) and (f) comparison of the central density line for ✓0 = 20o

(dashed line) and ✓0 = 70o (solid line) for 2, 4, 8 wells and for the
lattice.

with the data for ✓0 = 40

o and ✓0 = 50

o (see also Fig. 4 for
✓0 = 70

o). This can be simply interpreted by the fact that for
the lowest angle the lowest Bloch band state remains mainly
populated. It also means that there is a destructive interfer-
ence for the population in p = 0 when more bands (including
unbound bands) are contributing to the interference signal.
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FIG. 5: (Color online). (a) Density plot obtained from the numerical
simulation in the conditions of the experiment. Population in the
different momentum classes ⇧�1 = �h/d (H), ⇧0 = 0 (⌅) and
⇧1 = h/d (N) at the times that correspond to the maximum of the
density of the D1 (b) and D2 (c) packets (see white dashed lines on
(a)).

LATTICE DEPTH CALIBRATION

A standard method to calibrate in situ the depth of an op-
tical lattice with a Bose Einstein condensate consists in using
Kapitza-Dirac diffraction. For this purpose, one shines the
optical lattice of depth V0 for a short amount of time ⌧ and
observes the subsequent free evolution of the BEC. The spa-
tial period d of the lattice generates a diffraction pattern of
step htTOF/d when the expansion lasts for a sufficiently long
time tTOF to be dominated by the velocity field and no longer
by the initial size. For short and intense pulses, the popula-
tion in the different diffraction orders is well accounted by the
so-called Raman-Nath regime for which the atomic motion is
neglected during the light-matter interaction. In this limit, the
zeroth order vanishes for a given pulse duration. This zero
enables one to infer the lattice depth directly. In practice, ⌧ is
varied from 1 to a few tens of µs and tTOF is on the order of
20 ms. Figure 6a provides an example of such a time sequence
for a lattice depth s = 2.8.

At low depth (s < 5.5), the zeroth diffraction order does not
vanish anymore. To get a reliable calibration, one should ex-
plore the diffraction pattern on longer time where the Raman-
Nath approximation breaks down. In practice, we fit the pop-
ulation of each diffraction order with the appropriate Mathieu
function[2–4] (see Fig. 6b).

In Fig. 6c, we summarize a set of experimental data
for which we compare the lattice depth obtained from the
Kapitza-Dirac diffraction method (black squares) with the one

deduced from the measurement of the period combined with
numerical simulations as explained in the main text. We ob-
tain a very good agreement between the two methods. Our
method provides a calibration curve well fitted by

!̃T (s) = (a+ bs+ cs

2
)e

ds (1)

with !̃ = 16~/(md

2
) = 24.3 µs, a = 11.975, b = �1.54017,

c = 0.2583 and d = �0.2502. Using this relation it is there-
fore possible to infer the depth s from the experimental mea-
surement of the period T .
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FIG. 6: (a) Evolution of the Kapitza-Dirac diffraction pattern with
the pulse duration. Each horizontal line of the image corresponds to
a time sequence in which the BEC is exposed to the lattice during
the pulse duration and the picture is taken after a 20 ms time-of-
flight. (b) Example of fit analysis of the diffraction order for s = 2.8,
we clearly see that the zeroth order does not vanish as a function
of the pulse duration. (c) Comparison between the Kapitza-Dirac
diffraction method (black square) and the period measurement (see
text) to determine the optical lattice depth without any adjustable
parameter.

THE DIFFERENT PARAMETER RANGES

The parameter space on which the tunnel delay is observed
depends on both the lattice depth and the initial angle. In this
section, we propose extra experimental (Fig. 7) and numeri-
cal data (Fig. 8) to detail the different situations encountered
when the depth of the optical lattice is increased. We have
indicated the threshold depths s

n

below which n bands are
entirely bound: s1 = 0.8875, s2 = 3.0375, s3 = 6.425 and
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s4 = 11.05. Two experimental sequences have been taken
in the region s < s2 (see Fig. 7). In this case, the contribu-
tion of the unbound states becomes important and the overlap
between the unbound and tunnel packets renders more diffi-
cult an accurate determination of the tunnel time. The two
contributions can be clearly identified in Fig. 7b: the packet
due to unbound states is seen before the one originating from
the tunneling. The experiment of the main text and two ex-
tra experimental data are proposed in the range of parame-
ters s2 < s < s3. The data for s = 4.6 clearly reveals
the existence of tunneling, observed about the second turn-
ing point. This feature can also be clearly observed in the
numerical data (s = 4.46) in Fig. 8. The experiment carried
out at a much larger depth, s = 15, exhibits a similar feature
with a tunnel effect that is visible at the fourth turning point
(see Fig. 7e). The dynamics of tunneling is therefore quite
rich and observed on a large range of depths and initial an-
gles. The choice s = 3.21 of the main text corresponds to the
simplest situation for which the tunneling is clearly observed
and happens at the first turning point.

SEMICLASSICAL EXPRESSION FOR THE TRAVERSAL
TIME

The semiclassical traversal time ⌧

t

is given by [1]

⌧

t

=

@

@E

"
�
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p
2m(V (x)� E)dx

#
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Z
b
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⇣
m

2

⌘1/2
dxp

V (x)� E

(2)

where we have taken into account the boundary conditions
V (a) = V (b) = E. If we apply this formula to a single
barrier of the periodic potential, we get

⌧

t

(✓0) = T

c

(0)

1

2⇡

Z
ua

�ua

dup
cos

2
u� a

(3)

with T

c

(0) = (2md

2
/h)s

�1/2
= 69 µs the clas-

sical oscillation period about the minimum and u

a

=

cos

�1
(

p
1� cos

2
(✓0)). In Table I, we summarize the traver-

sal time values obtained for the different initial energies asso-
ciated to different initial angle offsets ✓0.

✓0 [deg] 20 30 40 50 60 70 80
⌧
t

(✓0) [µs] 54 47 42 39 37 35.6 34.7

TABLE I: Traversal time for the different initial angles ✓0.

We observe that this simple semiclassical analysis is not in
agreement with our experiments and numerics. For the small-
est angle, we observe a time twice smaller in the experiment.
Furthermore, we obtain a much faster decrease of the tunnel-
ing time with the initial angle in the experiment than with this
semiclassical calculation. This is certainly due to the increas-
ing contribution of the unbound states. Remarkably we notice

s = 1.5 s = 2.4

s = 4.16 s = 4.6

s = 15.

(a) (b)

(c) (d)

(e)

s
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0 1 2 3 4 Number of
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FIG. 7: Experimental results. Top: Experimental time sequence sim-
ilar to that of Figure 1 of the main text but for different depths:
s = 1.5(a), s = 2.4(b), s = 4.16(c), s = 4.6(d) and s = 15(e)
and with an initial shift angle ✓0 = 30o. Bottom: Sketch of the dif-
ferent regimes depending on the lattice depth s. s

n

is the value for
which when s < s

n

, the lattice has n bound bands (s1 = 0.8875,
s2 = 3.0375, s3 = 6.425 and s4 = 11.05).

that with just one lattice depth and by varying the initial angle,
we can rule out this naive model.

The discrepancy between the experimental results and this
naive semiclassical approach presented here originates from
the fact that the tunnel effect that we studied experimentally
occurs in a space dressed by the optical lattice. As already
emphasized, the simple center of mass oscillation is strongly
renormalized by the periodic potential. The models that have
been developed so far in the literature to determine the tunnel
traversal time have been worked out in free space. Our ex-
perimental results should trigger a theoretical effort to extend
the different approaches to dressed environment for a proper
comparison.

[1] M. Büttiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982).



5

✓0 = 20 ✓0 = 30 ✓0 = 40 ✓0 = 50 ✓0 = 60

T
i
m

e
T

i
m

e
T

i
m

e
T

i
m

e
T

i
m

e
T

i
m

e
T

i
m

e
T

i
m

e

s = 1.62

s = 2.

s = 2.43

s = 2.84

s = 3.21

s = 3.65

s = 4.05

s = 4.46
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