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Probing surface states with many-body wave packet scattering
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Abstract – The scattering of 1D matter wave bright solitons on attractive potentials enables
one to populate bound states, a feature impossible with noninteracting wave packets. Compared
to noninteracting states, the populated states are renormalized by the attractive interactions
between atoms and keep the same topology. This renormalization can even transform a virtual
state into a bound state. By switching off adiabatically the interactions, the trapped wave packets
converge towards the true noninteracting bound states. Our numerical studies show how such
scattering experiments can reveal and characterize the surface states of a periodic structure whose
translational invariance has been broken. We provide evidence that the corresponding 3D regime
should be accessible with current techniques.
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Introduction. – The development of cold-atom
physics has led to many new advances in the recent past.
In particular, the new field of atom optics using propaga-
tive matter waves achieved impressive advances, enabling
to realize with cold atoms many features previously devel-
oped in optics, such as quantum reflection, beam splitters
or Bragg reflection on optical lattices [1].

However, an important difference with optics is that
cold atoms can be prepared in regimes where interac-
tion is important. In this case, the physics of the sys-
tem in the mean-field approximation is described by the
Gross-Pitaevskii equation [2,3] (a similar equation also ap-
pears in nonlinear optics [4]). This equation is nonlinear
contrary to the usual Schrödinger equation. As such, it
possesses for attractive interactions special types of so-
lutions called solitons. In contrast with wave packets of
the usual linear Schrödinger equation which spread with
time, the variance of solitons in free space remains con-
stant. Solitons are known in classical physics in many
contexts, especially fluid mechanics [5–7]. In the field
of dilute Bose-Einstein condensates, they have been pre-
dicted theoretically [6–8] and observed experimentally
with rubidium-85 and lithium-7 atoms in various forms:
dark [9], bright [10] and band-gap [11] solitons.

In the present paper, we wish to put forward a useful
aspect of these many-body wave functions. Indeed, the
scattering of solitons can be used to probe virtual and/or

bound states in various potentials through scattering ex-
periments, revealing structures which cannot be observed
with an interaction-free wave packet. Indeed, in many-
body wave packets part of the energy corresponds to the
interaction energy and this creates a new freedom which
can be used to populate such states. It has been shown
already theoretically that soliton scattering on some po-
tentials was able to detect and characterize the energy
of some bound states associated to localized defects [12],
square potentials [13], impurity modes [14,15] and lattice
defects [16]. Solitons were also studied as tools for in-
terferometry [17]. Some recent experiments have started
the investigation of the scattering of solitons on short-size
potential wells [18].

In finite-size optical lattices, which are commonly con-
structed in cold atom experiments, the presence of bound-
aries at the edge of the potential breaks the translational
invariance and results in the existence of surface states.
They have been characterized and studied in condensed
matter since a long time [19,20], and are of great impor-
tance in several areas such as semiconductor physics. In
this paper, we will show how to observe and characterize
such surface states through the scattering of solitons.

First, we present the scattering of a soliton on a single
well. We then extend the results on a collection of identical
wells corresponding to a finite-size lattice potential which
can be easily created by interfering laser beams in cold

20010-p1



F. Damon et al.

atom experiments, and discuss the observation of surface
states.

Solitons. – We consider hereafter exclusively bright
solitons described by the following 1D Gross-Pitaevskii
equation for the wave function ψ(x, t):

ih̄
∂

∂t
ψ =

(

−
h̄2

2m

∂2

∂x2
+ V (x) + g1DN |ψ|2

)

ψ. (1)

Interactions between atoms are accounted for by the in-
teraction strength g1D = 2ah̄ω, N is the number of atoms,
a < 0 the scattering length, and ω accounts for the trans-
verse trap frequency in the 3D to 1D reduction of dimen-
sionality where a is the 3D scattering length. In a purely
1D view, g1D has to keep the homogeneity of an energy
times a length.

This nonlinear equation admits stable solutions in free
space called solitons, of the form (for a soliton started at
t = 0 and x = 0 with mean velocity v̄)

ψ(x, t) =

√

N |a|

2σ2

exp
[

i
mv̄

2h̄
(2x + (v̄ − Naω)t)

]

cosh

(

N |a|

σ2
(x − v̄t)

) , (2)

with σ =
√

h̄/mω. The variance of the soliton is inde-
pendent of time [7], contrary to the case of noninteracting
wave packets.

Single potential well. – As a first example, we study
in the following the scattering of a soliton on a single well.
We choose as potential the restriction of a sinusoidal op-
tical lattice to a single period:

U(x) = −U0 cos2
(πx

d

)

for − d/2 ≤ x ≤ d/2, (3)

whose first derivative is everywhere continuous. For nu-
merical simulations, we use a typical experimental value
d = 0.65 µm corresponding to possible experiments with
rubidium 85. In the absence of interactions, the poten-
tial (3) exhibits bound states whose number depends on
the relative depth U0/ER with ER = h̄2k2

R/(2m) and
kR = 2π/d. For noninteracting wave packets, such bound
states cannot be populated in a scattering experiment.
Only indirect signatures of virtual or/and bound states
exist, e.g., scattering resonances and even zero-energy res-
onances [21], or the transparency effect commonly referred
to as the Ramsauer-Townsend effect.

Scattering of an interacting wave packet on such a
potential cannot be described as usual through asymp-
totic distributions at large distances since trapping is
also present. This is illustrated by our numerical simu-
lations presented in fig. 1, where a soliton of mean ve-
locity v̄ launched from the left splits into three parts in
the course of the scattering. For t < 36 ms, the reflected
part moves to the left and expands, indicating that the
corresponding density has no solitonic character, the in-
teraction energy being too small to compensate for the
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Fig. 1: (Color online) (a) Scattering of a soliton (blue/gray
curve) of mean velocity v̄ onto the potential well (3) (black).
(b) Scattering of a soliton of v̄ = 0.3vR (where vR = h̄kR/m)
and N |a| = 4.5 × 10−5 m, onto potential (3) of depth U0 =
0.5ER. The density is plotted as a function of time in log
scale to enhance the contrast. Interactions are adiabatically
switched off from t = 36 ms (see text).

kinetic energy. Another part is transmitted and propa-
gates without spreading, indicating that another soliton
has been formed with a fraction of the original atoms. At
last, a significant fraction of the atoms remains trapped
for a long time in the potential well.

In order to separate these three parts, we consider the
wave function probability of presence in three different

zones: R(t) =
∫

−d/2

−∞
dx|ψ(x)|2, C(t) =

∫ d/2

−d/2
dx|ψ(x)|2

and T (t) =
∫

∞

d/2
dx|ψ(x)|2. In this way, for sufficiently

long times R(t) will contain only the reflected part, T (t)
the transmitted part, and C(t) the fraction of atoms which
remains confined in the potential after the scattering.

Figure 2(a) shows the trapped part of the probability
for long time as a function of the number of atoms N and
the potential depth U0. Depending on these parameters,
this trapped part can vary over a large span of values,
with thresholds that appear for certain critical values of
the potential depth. The threshold values are related to
the appearance of a bound states inside the well. The
bound states keep the topology (number of nodes) of their
interaction-free counterpart but are renormalized by the
attractive interactions. The threshold values observed for
populating renormalized bound states are thus below the
values corresponding to the appearance of a bound state
without interaction (see fig. 2(b)). A remarkable conse-
quence of such a renormalization lies therefore in the possi-
bility of populating virtual states whose energy are slightly
positive and become negative as a result of the dressing of
the state by the attractive interactions.

With the use of the Feshbach resonance such as in the
case of lithium-7 atoms [3], it is possible to cancel out the

20010-p2



Probing surface states with many-body wave packet scattering

 0.5

 1

 1.5

 2

 4000  5000  6000  7000  8000  9000  10000

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

N

U
0
/E

R

C
(t

f
in )

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

x µ

U
0
/E

R

Fig. 2: (Color online) (a) Proportion C(t) of atoms in the
potential well area for large t values after scattering of a soliton
of initial velocity v = 0.3vR and N atoms as a function of the
potential depth U0. (b) Density plot for N |a| = 4.5 × 10−5 m
inside the potential well for long time (but before the switching-
off of the interaction). The black dashed lines represent the
values for which a new bound state appears in the absence
of interaction. Note that in the presence of interaction the
populated bound states are below the interaction-free ones,
but keep their topology.

interactions. We implement this process in our simula-
tions by switching off the interactions in τswitch = 1 ms
from t = 36 ms. This duration has been chosen to ensure
an adiabatic switching off of the interactions. Indeed, to
populate a bound state in a 1D well of size d, the energy
of the soliton should be on the order of the energy of the
bound state Ebound ∼ h̄2/2md2. Parameters have thus
been chosen so that τswitch ≫ h̄/Ebound ∼ 30 µs. As a
result, a fraction of the wave function leaves the poten-
tial well, but some atoms remain in the well for long time
(see fig. 1 and inset of fig. 3). This trapped part coincides
with the noninteracting bound state of the potential well
(fig. 3). For the specific example we are considering, it is
possible to populate each bound state state by state. This
occurs because the energy difference between two adja-
cent bound states remains large compared to the negative
energy stored in the interactions.

Finite-size lattice: surface states. – In this section,
we study the scattering of a soliton on a finite-size lattice.

Fig. 3: (Color online) Atomic density at t = 50ms inside the
potential well (after the switching off of interactions) from the
numerical dynamics (light blue/gray solid line), compared to
the (normalized to one) square modulus of the fundamental
eigenstate of the well with interaction and thus a smaller width
(magenta/gray) and the one without interaction (black line).
The dashed blue line which is perfectly superimposed to the
black line corresponds to the numerical trapped distribution
once renormalized to unity. The inset plot represents the vari-
ation of the part of the density inside the potential well C(t)
as a function of time. The switching off of the interactions
yields a small decrease of the trapped fraction. Interacting
bound states were calculated using the split operator method
in imaginary time.

Such a lattice can be produced by interfering two mutu-
ally coherent laser beams. We first consider the following
periodic potential with a square envelope (see fig. 4(a)):

U(x) = −U0

[

sin2
(πx

d
+ ϕ

)

E(x) − Υ
]

, (4)

E(x) =
1

2
[H (x) + H (Nd − x)] ,

where H(x) is the Heaviside step function, N the number
of sites (wells of size d) and Υ is an additional offset term.

In infinite periodic potentials, Bloch theory states that
the eigenvalues are grouped into bands separated by gaps
and correspond to extended states. However, for finite-
size systems such as (4) additional states appear that are
localized at the potential edges. Contrary to the gener-
alization of Bloch states to such finite-size lattices, which
are exponentially decreasing but only outside the lattice,
the surface states decrease exponentially on both sides of
the potential edge. In the limit of shallow potentials (small
U0/ER) they have been characterized in [19] and are called
Shockley states, whereas in the limit of deep potentials
(large U0/ER) they have been described in [20] and are
called Tamm states. Both states are bound states and ap-
pear inside the gaps separating the bands of Bloch states.
At positive energy, other analogous states appear as reso-
nances. These three kind of surface states are illustrated
in fig. 4.

In our numerical experiment, we launch a soliton on
potential (4). We observe a great variety of behaviors
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Fig. 4: (a) Schematic representation of the potential (4).
(b) Eigenvalues of the Hamiltonian for a single particle in the
potential (4) as the function of the potential depth. (T) de-
notes a Tamm surface state, (R) a resonant surface state, and
(S) a Schockley surface state.

depending on the soliton total energy and the depth of
the potential: the wave packet can be reflected, transmit-
ted across the lattice, or trapped at the boundary. As
previously, we relate these behaviors to the presence or
absence of bound states which can trap the soliton at a
given energy. We thus expect that if a surface state is
present the soliton can be trapped at the potential edge.

Such a phenomenon is visible in fig. 5(a). After scatter-
ing of the soliton on the finite-size lattice potential, part
of the wave packet is reflected, part is transmitted, but a
substantial fraction of the atoms remain trapped at the
potential edge for long time. In order to confirm that the
trapped part corresponds to a true surface state, we adia-
batically switch off the interactions at t = tprop = 150 ms
(see footnote 1). The result is shown in fig. 5(b): the final
wave function on the potential edge coincides exactly with
the left half of a true surface state, with exponential de-
crease of the envelope on both sides of the potential edge.

The envelope of potential (4) has two discontinuities.
To validate the experimental feasibility of our study, it
is worth exploring how the preceding results are modified
when the discontinuities are smoothened over a length ς
(see fig. 6(a)):

U(x) = −
U0

2
sin2

(

2πx

d
+ φ

) [

1 − tanh

(

x

ς

)]

. (5)

The corresponding energy spectrum is shown on
fig. 6(b). One recovers the results of the preceding para-
graphs for ς → 0: a single bound surface state is visible in

1The depth of the potential has also been lowered in order to
induce a fast disappearance of the components of the wave packets
that are contaminated by the extended states.
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Fig. 5: (Color online) (a) Scattering of a soliton of mean
velocity v̄ = 0.1vR with N |a| = 3. × 10−5 m onto the po-
tential (4) of depth U0 = 0.5ER. The density of gray repre-
sents the logarithm of density of atoms as a function of the
position and time. Interactions are switched off adiabatically
at tprop = 150 ms. (b) Final density distribution of atoms at
tfin = 1 s (magenta/gray line) compared to the correspond-
ing noninteracting surface state for the same potential (black
curve).

the gap. When ς increases, this particular state remains
unchanged, but more and more additional surface states
leave the bands and go inside the gap. This confirms the
existence of surface states for a periodic potential with a
smooth envelope.

We have numerically simulated the scattering of a soli-
ton on such a potential. Reflected and transmitted waves
are still present and a substantial part of the atoms re-
mains trapped. A closer look to the trapped part reveals
the presence of a beating pattern (see fig. 7). Indeed, the
presence of several surface states with small energy dif-
ferences in the gap makes the trapping of the atoms in a
superposition of surface states possible. The frequency of
this beating pattern is directly related to the energy differ-
ence between the surface states populated, and allows to
realize a direct spectroscopy of these states. We note that
the topology (number of nodes) of the states are preserved
after free expansion and can be observed in time-of-flight
experiments.

Experimental feasability. – The experimental imple-
mentation requires the transposition of the ideas presented
here in a 3D situation. Let us work out a simple
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Fig. 6: (a) Schematic representation of the potential (5).
(b) Energy levels distribution for this potential as a function
of the smoothing parameter ς, for a depth of 2ER.
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Fig. 7: Density at the potential edge of (5), where surface
states are maximal and after the adiabatic switching off of in-
teractions at t = 150 ms. Parameters: soliton with N |a| =
3. × 10−5 m, mean velocity v̄ = 0.27vR, potential (5) of depth
U0 = 5ER and smoothing length ς = 2d (the density is in
logscale).

energetic argument to provide a sufficient condition to
populate a bound state (energy Ebound < 0). Consider
an incoming soliton of mean velocity v̄ and scattering
length a < 0, made of N atoms with therefore an en-
ergy EI = Nmv̄2/2 + S0ω2N3 with S0 = −ma2/6.
We assume that after the scattering (N − N ′) atoms
populate the bound state: they have an energy ET =
(N−N ′)Ebound+S0ω2

bound
(N−N ′)3, where ωbound charac-

terizes the bound state. The N ′ other atoms are assumed
to fly away from the scattering region with a velocity ±v̄
and an extra internal energy ∆E. Their energy there-
fore reads (N ′mv̄2/2 + ∆E). By energy conservation,
∆E = EI − ET − N ′mv̄2/2. For ∆E < 0, we shall
assume that the soliton exists even in an excited state
(see for instance the breathing mode in fig. 1). This
constitutes our simple condition for loading atoms in the
bound state. We propose in the following to work out
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Fig. 8: Trapped population (black square) through the scat-
tering of a soliton on the attractive potential (3). Param-
eters: v̄ = 0.2 mm/s, a = −5 nm, ω = 2π × 879 s−1 and
N = 36 atoms (a0 = 363 nm). The dashed line results from
a qualitative energetic argument (see text). Insets: snapshots
of the probability density as a function of time for two different
values of d: d = 1.4a0 and d = 6.2a0.

quantitatively a concrete example using the potential (3)
with a depth U0 = ER = h2/2md2 and a soliton width sat-
isfying N |a| = a0/2 i.e. the 3D stability criterion. Results
are summarized in fig. 8. We observe a threshold value of
d above which the soliton starts to populate te trap. For
d < 3a0, the remaining part of the soliton is reflected (sim-
ilarly to the quantum reflection phenomenon). For larger
values a transmission is observed and an increasing num-
ber of atoms is trapped. The energetic argument described
above is in rather good agreement with simulations. For
large value of d, we expect that the soliton follows “adia-
batically” the potential and does not populate the bound
state. Simulations show that the transition between those
two regimes occurs in a rather sharp manner. Those re-
sults are generic.

Conclusion. – In this paper, we have shown that the
scattering of solitonic wave packets built from interact-
ing atoms can be used to probe and populate virtual
and/or bound states of potentials, which could not be
performed in the absence of interactions. We have shown
that in the case of a single-well potential, it is possible
to detect the bound states of the potential and to trap
a fraction of the atoms in the well for specific values of
the potential depth. The threshold where the interacting
atoms are trapped appears below the bound-state energy
for noninteracting atoms. The adiabatic switching off of
the interaction enables one to make the density converge
to the correct noninteracting bound state, starting from
interacting atoms.

These results can be extended to the case of surface
states appearing at the potential edge of a finite-size opti-
cal lattice. In the experimentally relevant case of a slowly
varying envelope, where we have shown that many surface
states are present, it is possible to trap the atoms on a su-
perposition of surface states and use the beating pattern
of the wave function to perform a spectroscopy of these
states.

Our study has been carried out in the framework of the
Gross-Pitaevskii equation. An extension to a complete
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quantum treatment is a priori necessary to confirm quan-
titatively our predictions [22–24]. The scattering of soli-
tons is a versatile tool to probe the structure of potentials;
the imaging of the wave function allows to obtain spectro-
scopic information as well as density information, on both
interacting or noninteracting bound states. These effects
are at reach with current experimental technique.
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