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1 Introduction to Basin Entropy

Dynamical systems describe quantities evolving in time according to deterministic
rules, and towards some asymptotic behavior depending on the initial conditions and
on the specific choice of parameters. Basins of attraction link a given set of initial
conditions to its corresponding final states. This notion appears in a broad range of
applications where several outcomes are possible, which is a common situation in
neuroscience, economy, astronomy, ecology and many other disciplines. Depending
on the nature of the basins, prediction can be difficult even in systems that evolve
under deterministic rules. From this respect, a proper classification of this unpre-
dictability is clearly required. To address this issue, we introduce the basin entropy,
a measure to quantify this uncertainty.
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1.1 Final State Unpredictability in Dynamical Systems

Imagine a rainy day. A droplet falls in the ground and runs until it eventually reaches
a river. Another droplet falls nearby, but in its run towards the lowest point, it ends
in a different mass of water, a lake for example. If we were to determine the fate
of each falling droplet, we should study the regions leading to each mass of water,
that is, we should study their different basins. This picture explains perfectly the
origin of the term basin in nonlinear dynamics: a basin is the set of initial conditions
leading to a particular region of phase space [1]. Dynamical systems specify the
evolution of some magnitudes in time according to deterministic rules, in a similar
way as the profile of the ground determines the path of streams ofwater. In dissipative
systems, the final destination is typically an attractor, in open Hamiltonian systems,
the particular region of phase space usually refers to an exit.

If a given dynamical systemhas only one attractor or exit, then the fate of any initial
condition is clearly determined. However, dynamical systems often present several
possible final outcomes and, in these cases of multistability, elucidating which orbits
tend to which attractor becomes a fundamental question. For instance, if a system
has two attractors, then two basins exist separated by a basin boundary. This basin
boundary can be a smooth curve or can be instead a fractal curve. The study of these
basins can provide much information about the system since their topology is deeply
related to the dynamical nature of the system. For example, systems with chaotic
dynamics usually display basins of attraction with fractal structures [2].

In order to give an intuitive picture of our problem we may look at Fig. 1a and b.
Thefigures show the escape basins of theHénon-HeilesHamiltonian for two different
values of the energy E above the critical energy that separates boundedmotions from
unbounded motions. Most initial conditions leave the region through one of the three
different exits to infinity for any E above this critical energy. The colors represent
points that taken as initial conditions leave the region through a specific exit. With
this in mind, we may intuitively understand that it is harder to predict in advance
which will be the final destination of an orbit in Fig.1a than in Fig. 1b.

The problem is that even though, we can have an intuitive notion that Fig. 1a is
more uncertain than Fig. 1b, there is no quantitativemeasure to affirm this.Moreover,
this is not easy to assess when we compare two figures of basins corresponding to
close values of the energy.

This is precisely the idea of uncertainty or unpredictability whichwe are consider-
ing here. This remark is important since we are aware that these terms are polysemic
and consequently its use in the literature might be confusing. Here we refer to unpre-
dictability or uncertainty as the difficulty in the determination of the final state of
a system, that is, to which attractor the initial conditions will tend to. Note that
we speak about attractors for simplicity, though the discussion is identical for open
Hamiltonian systems, where there are no attractors. This notion of unpredictability
strongly differs from others used in nonlinear dynamics, like the Kolmogorov-Sinai
entropy [3, 4], the topological entropy [5], or the expansion entropy [6], which refer
to the difficulty of predicting the evolution of the trajectories. All these quantities
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Fig. 1 Comparison between basins. Escape basins for the Hénon-Heiles system but different
energies. They represent which exit will take each initial condition. It is clear that determining the
final destination of the trajectories in the case (a) is harder than in the case (b)

Fig. 2 Uncertainty in the basin boundaries. Given some uncertainty in the initial conditions ε, the
final state of a dynamical system depends on the structure of its basins. In the left panel, two basins
separated by a smooth boundary. In the right panel, two basins separated by fractal boundaries. The
black-dashed boxes are for uncertain initial conditions (boxes intersecting the basin boundary)

are related to the topology of the trajectories, whereas our aim here is to develop an
entropy depending on the topology of the basins.

A first approach to study the final state uncertainty in dynamical systems was
investigated by Grebogi et al. [7]. Given two attractors, they studied how the pre-
dictability of the system depends on the fractal or smooth nature of the basin bound-
aries. Let us describe their methodology by looking at Fig. 2. In the picture, we can
see two different basins (red and green) leading to two different final destinations.
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Now consider that the initial conditions have some error or that they suffer a small
perturbation of size ε, a situation which is always unavoidable in practice. Therefore,
instead of considering initial conditions as points, we rather consider them as boxes
of linear size ε. If we study the evolution of many of these boxes of initial conditions,
we can find out the ratio f of boxes whose future is uncertain, in the sense that not
all the initial conditions within the box will end in the same attractor. These boxes
are represented by a black dashed line in Fig. 2, and we would have f = 3/10 for
the left panel and f = 5/10 for the right one. Coming back to our analogy, we are
counting howmany droplets fall in the boundary between basins in this rain of initial
conditions. If we vary the size of the boxes ε, we can find that for smooth bound-
aries the ratio of uncertain initial conditions f grows linearly with ε. However, for
fractal boundaries, the ratio of uncertain initial conditions is f ∼ εα , where α is the
dimension of the phase space D minus the capacity dimension d of the boundary
that separates both basins

α = D − d. (1)

This quantity α is called the uncertainty exponent, and we have α = 1 for smooth
boundaries whilst α < 1 for basins with fractal boundaries. The closer α gets to zero
the more difficult it becomes to predict the system as we zoom in. In cases where
smooth and fractal basins are mixed, the uncertainty exponent can still be calculated
for each boundary. However, the procedure in these cases is cumbersome [8].

A different approach to measure the unpredictability by means of its basins con-
sists of evaluating the volume of each basin in a certain region of phase space. The
ratio of the volume occupied by a single basin to the total volume defines the basin
stability [9]. It aims at classifying the different basins according to their relative
sizes: larger basins are considered more stable (in our picture, the larger the basin the
more droplets will fall into it). Although the basin stability may shed some light into
problems related to networks of coupled oscillators, it does not take into account the
morphology of the basins, but only their volume. For different sets of parameters, two
basins can show smooth or fractal boundaries while the volume of each basin remains
constant. The basin stability would be the same in both cases but obviously fractal
boundaries have a more complex structure and thus, the final state predictability is
not the same.

Figure3 reveals the limitations of both basin stability and the uncertainty expo-
nent α. The four basins have the same basin stability (the proportion of red and green
is the same in the four pictures) although they are clearly different. The uncertainty
exponent also fails to capture the uncertainty associated to these basins: it cannot
distinguish among different smooth boundaries or among different riddled bound-
aries [10–12]. However, the basin entropy [13] takes increasing values for each basin,
matching our intuition. In the following we introduce the mathematical definition of
the basin entropy and a method for its computation.
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Fig. 3 Comparison of basins and the methods to characterize them. The figure shows different
basins obtained from well-known dynamical systems with two attractors. In the two upper panels,
the uncertainty exponent is α = 1 since both boundaries are smooth, while for the two lower panels
α = 0 since both of them are riddled basins. The basin stability is equal to 1/2 for the four basins.
However, the basin entropy is able to distinguish the four cases and provides a method to measure
quantitatively the unpredictability in increasing order from (a) to (d)

1.2 Definition and Computation of the Basin Entropy

Suppose we have a dynamical system with NA possible final outcomes for a choice
of parameters in a certain region Ω of the phase space. We can discretize Ω via a
finite number of boxes covering it, or sample Ω randomly using a sufficient number
of boxes. Here we study two-dimensional phase spaces, so that we cover Ω with
boxes of linear size ε. Now we build an application relating each initial condition to
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its final destination, so that we will refer to that application as the color. Each box
contains in principle infinitely many trajectories, each one leading to a color labeled
from 1 to NA. In practice we can use only a finite number of trajectories per box.
We will discuss this point later in relation with an experimental setup used in the
scattering of cold atoms.

Although ε is our limiting resolution, the information provided by the trajectories
inside a box can be used to make hypotheses on the uncertainty associated to the
box. We consider the colors into the box distributed at random according to some
proportions. We can associate a probability to each color j inside a box i as pi, j
which will be evaluated by computing statistics over the trajectories inside the box.

Taking into account that the trajectories inside a box are independent in a statistical
sense, the Gibbs entropy of every box i is given by

Si = −
mi∑

j=1

pi, j log
(
pi, j

)
, (2)

where mi ∈ [1, NA] is the number of colors inside the box i , and the probability pi, j
of each color j is determined simply by the number of trajectories leading to that
color divided by the total number of trajectories in the box. Finally, using a sufficient
number of boxes N we can define the basin entropy as the mean value of the entropy
for those boxes:

Sb =
N∑

i=1

Si
N
. (3)

An interpretation of this quantity is associated to the degree of uncertainty of the
basin, ranging from 0 (a sole attractor) to log NA (completely randomized basins with
NA equiprobable attractors). This latter upper value is in practice seldom realized
even for extremely chaotic systems. It is important to remark that the basin entropy
depends on the scaling box size ε, i.e., the basin entropy is an extensive property.
Therefore, to make quantitative comparisons of different basins we must fix ε.

The procedure for the calculation of the basin entropy is quite similar to the
procedure used for the determination of the uncertainty exponent. However, there
are important differences. The first one is that whenwe compute the basin entropywe
use the information contained in the boxes. We do not just label the boxes as certain
or uncertain like for the uncertainty exponent, but we study the probabilities of the
different outcomes through the proportions of different colors inside each box. The
second important difference is that, as we will show later, we do not need different
scales ε to compare the uncertainty of different basins. Even more, we can detect
fractal structures using only one scale. This is fundamental to study the final state
unpredictability in experimental systems with finite resolution, like the beam splitter
for cold atoms described later.
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1.3 What Does the Basin Entropy Measure?

At this point,we can delve deeper into the consequences of this definition by consider-
ing a simple hypothesis, which is to assume that the colors inside a box are equiprob-
able, thus pi, j = 1/mi ,∀ j . If we add the entropy of all the trajectories in a box, then
we recover the Boltzmann expression for the entropy Si = log(mi ), wheremi are the
different colors inside a box (the accessible microstates of the Boltzmann entropy).
Then the equiprobable total entropy becomes S = ∑N

i=1 Si =
∑N

i=1 log(mi ). Fur-
thermore, if we have a grid on a given region of phase space, many boxes will have
an equal number of colors. That is, many boxes will be in the interior or lie near
the boundary between two or more basins. Then we can say that there are Nk equal
boxes (in the sense that they have the same number of colors), where k ∈ [1, kmax ]
is the label for the different boundaries. Boxes lying outside the basin boundaries
do not contribute to the entropy as they only have one color. In other words, what
matters is what happens at the basin boundaries. Then, the basin entropy reads

Sb =
kmax∑

k=1

Nk

N
log(mk). (4)

By following the method of the box-counting dimension Dk [14], by which we
compute fractal dimensions of basin boundaries, the number of boxes that contains
a boundary grows like Nk = nkε−Dk where nk is a positive constant. In the case of
smooth boundaries, the equation Dk = D − 1 holds, D being the dimension of the
phase space. For fractal boundaries Dk can be larger, but obviously we always have
Dk ≤ D. On the other hand, the number of boxes in the whole region of phase space,
grows as N = ñε−D, where ñ is a positive constant. Substituting these expressions
for Nk and N in Eq.4, and recalling that αk = D − Dk is the uncertainty exponent
[7] for each boundary, we get

Sb =
kmax∑

k=1

nk
ñ

εαk log(mk). (5)

This last expression reveals important information. The basin entropy has three com-
ponents: the term nk/ñ is a normalization constant that accounts for the boundary
size which is independent of ε; the term of the uncertainty exponent αk , is related
with the fractality of the boundaries and contains the variation of the basin entropy
with the box size; finally there is a term that depends on the number of different
colors mk . All these terms depend on the dynamics of the system, while the scaling
box size ε depends only on the geometry of the grid.

Equation5 sheds light into some interesting questions. First, we can compare
smooth boundaries (αk = 1) and fractal boundaries (αk < 1). For both of them,
smooth and fractal basins, we get Sb → 0 when ε → 0, but it converges faster in the
smooth case. That is, it is more difficult for the basin entropy to decrease its value in
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a system with fractal boundaries. Despite other important factors, fractal boundaries
introduce a larger uncertainty than the smooth ones. Furthermore, if αk = 0 then
Sb > 0 no matter the scaling box size (this might happen in riddled basins [10–12]).

These ideas can be successfully applied for Wada basins. Basins exhibiting the
Wada property have only one boundary that separates all the basins [15, 16]. We can
argue that increasing the number of colors in the boundary boxes increases the basin
entropy and therefore its uncertainty. In particular, having all possible colors in every
boundary box is a unique situation found only in Wada basins. Nevertheless, Eq.5
also reveals that some non-Wada basins can show larger basin entropy than others
exhibiting the Wada property. This can be the case when a system has the Wada
property but there is one basin which occupies most of the phase space. Other factors
like the number of attractors and the boundary size also play a role in the uncertainty
according to the basin entropy formulation. Therefore the Wada property increases
the uncertainty under the basin entropy perspective, but each case must be carefully
studied.

1.4 Numerical Examples to Help Understand the Basin
Entropy

Herewe illustrate themain features of basin entropywith several examples of dynam-
ical systems, showing how its dependence on the boundary size nk/ñ, the uncertainty
exponent αk and the number of attractors NA.

The term nk/ñ corresponds to an estimate of the size of the boundary, since
it normalizes the number of boxes containing the boundaries divided by the total
number of boxes covering Ω:

Nk

N
= nk

ñ
εαk . (6)

To study the contribution of this term, we consider the damped Duffing oscillator
given by

ẍ + δ ẋ − x + x3 = 0. (7)

This equation describes themotion of a unitmass particle in a doublewell potential
with dissipation. This system presents two attractive fixed points in (±1, 0) of the
(x, ẋ) phase space, which correspond to the minima of the double well potential
function. The higher the damping coefficient δ the faster the orbits tend to the fixed
points and, as a consequence, the basin of attraction appears more deformed for
smaller values of δ (Fig. 4a–c). The damped Duffing oscillator is bistable, NA = 2,
and has a smooth boundary with uncertainty exponent α = 1.

Observing the basins of attraction corresponding to the three different values of δ,
it is noticeable that the basin of Fig. 4c has a much simpler structure than the basin in
Fig. 4a. The outcome of an initial condition within an ε-box would be more difficult
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Fig. 4 Basin entropy dependence on the boundary size. a–c Basins of attraction of the damped
Duffing oscillator (Eq.7) for different values of the damping coefficient δ. As the damping increases
the boundary occupies a smaller region of the phase space. Although the boundary is always smooth
(α = 1), the uncertainty in basin (a) is larger than in basin (c) no matter the scaling box size ε. d A
log-log plot of the basin entropy versus the scaling box size for values of the damping coefficient
δ = 0.1 (triangles), δ = 0.2 (circles) and δ = 0.3 (crosses). The three fits have the same slope α = 1
within statistical error. However, the basin entropy is different for each value of the parameter δ,
reflecting the different uncertainty associated to each basin

to predict in the second case. Nevertheless, both basins have the same uncertainty
exponent α = 1 since in both cases the boundary is smooth. The differences in the
values of the basin entropy originates from the differences in the region of discretized
phase space occupied by the boundary, that is, the boundary size, which is reflected
by the term n/ñ (indices have been dropped since now there is only one boundary).



18 A. Daza et al.

In order to highlight this effect, we have computed the basin entropy Sb versus the
scaling box size1 ε for three different values of the damping coefficient δ. The results
are shown in the log-log plot of Fig. 4d, where each fit corresponds to a different
value of δ. In order to interpret these results, we can take logarithms on both sides
of Eq.5 yielding to

log(Sb) = α log(ε)+ log
(
log(NA)

n
ñ

)
. (8)

Since in this case, we have α = 1 and NA = 2 for all our simulations, it is clear
that the variation of the basin entropy with δ is entirely due to the term n/ñ. Most
importantly, we have obtained values of the slopeα = 1within the statistical error for
all the fits. Therefore, although all these basins have the same uncertainty exponent,
they have a different basin entropy for a given value of ε. The basin entropy is sensitive
to their different structure and is able to quantify their associated unpredictability.

The fractal dimension of the boundaries also plays a crucial role in the formulation
of the basin entropy. This is reflected in the uncertainty exponent αk [7] of Eq.5. In
order to highlight the effects of the variations in the uncertainty exponent, we have
chosen a model that can display the Wada property [17]. This means that there is
only one fractal boundary separating all the basins. The model is the Hénon-Heiles
Hamiltonian [18],

H = 1
2
(ẋ2 + ẏ2)+ 1

2
(x2 + y2)+ x2y − 1

3
y3, (9)

which describes the motion of a particle in an axisymmetrical potential well that for
energy values above a critical one, the trajectories may escape from the bounded
region inside the well and go on to infinity through three different exits. For this
Hamiltonian system, we define escape basins in a similar way to the basins of attrac-
tion in dissipative systems, i.e., an escape basin is the set of initial conditions that lead
to a certain exit. If we vary the energy from E = 0.2 to E = 0.22, the fractal dimen-
sion of the boundaries is modified with E , though the Wada property is preserved
[19] (see Fig. 5a–c). The proportion of red, blue and green remains as a constant
for these three basins, leading to constant values of the basin stability. However, the
basin entropy accounts for their different structures.

As we compute the basin entropy for different scaling box sizes, we observe that
the main effect of varying the parameter E is a change of the slope in the log-log plot
of Fig. 5d. Equation8 relates these changes in the slope to the uncertainty exponent
α of the boundary. Smaller energies lead to smaller uncertainty exponents, since
the boundaries have a more complex structure and consequently the slopes in the
log-log plot also decrease. Obviously the offset also varies for the different values
of the energy. This is related to changes in the boundary size n/ñ which in this case
cannot be completely separated from the changes in α. This example shows that the

1In this work we have normalized the region of the phase space, so that the values of the scaling
box size ε in the plots are the inverse of the number of pixels used as a grid.
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Fig. 5 Basin entropy dependence on the uncertainty exponent. a–c Escape basins of the Hénon-
Heiles Hamiltonian (Eq.9) for different values of the energy E . Inside the circles the proportion of
red, blue and green boxes is always equal to 1/3. However, as E increases the boundary becomes
less uncertain, so that we can intuitively see that basin (a) is more unpredictable than basin (c). This
intuition is confirmed quantitatively by the computation of the basin entropy in the log-log plot of
panel (d). The most remarkable effect observed in the fits is that the slopes change because of the
different dimensions of the boundaries, as expected. This effect cannot be isolated since the offsets
also vary. Finally, for coarse-grained basins the basin entropy is almost equivalent

scaling of the basin entropy with box size directly reflects the fractal dimension of
the basin boundaries. For small box sizes this effect dominates and the largest fractal
dimensions of the basins gives the largest basin entropies, even though the offsets
are different (see Fig. 5).

The last factor that contributes to the basin entropy, according to Eq.5, is the num-
ber of attractors NA. In general, as the number of attractors increases, the uncertainty
increases too, and so does the basin entropy. Furthermore, it is impossible to isolate
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the effect of the number of attractors from the contribution of the boundary size,
since they are not independent: if a new attractor emerges while tuning a parameter,
a new boundary is also created. We illustrate these effects using a simple map where
the number of attractors can be tuned. This map comes from the Newton method to
find the complex roots of unity zr = 1 [20], and can be written as

zn+1 = zn − zr − 1
r zr−1

. (10)

FromEq.8we can predict that increasing the number of attractors increases the offset
in the log-log plot of the basin entropy versus the box size. This can be observed in
Fig. 6, where an increasing number of attractors leads to an increasing value of the
basin entropy for all the ε considered.

1.5 Basin Entropy Parameter Set

One of the most interesting applications of the basin entropy is to use it as a quanti-
tative measure to compare different basins of attraction. We propose an analogy with
the concept of chaotic parameter set [21], which is a plot that visually illustrates in a
parameter plane when a dynamical system is chaotic or periodic by simply plotting
the Lyapunov exponents for different pairs of parameters. Here, first we choose a
given scaling box size ε, and then we evaluate the basin entropy associated to the
corresponding basins of attraction for different parameter settings. We call the plot
of the basin entropy in a two-dimensional parameter space basin entropy parameter
set. To illustrate the possibilities of this technique, we study the periodically driven
Duffing oscillator

ẍ + δ ẋ − x + x3 = F sinωt, (11)

whose dynamics can be very different depending on the parameters. We vary the
forcing amplitude F and the frequency ω of the driving, and for each basin we
compute its corresponding basin entropy. We have used a resolution of 200 × 200
boxes (ε = 0.005) with 25 trajectories per box (a million trajectories per basin)
to compute the basins of attraction and the same region of the phase space Ω =
[−2.5, 2.5] × [−2.5, 2.5] for all the pairs (F,ω).

The result is presented in Fig. 7a, which is a color-code representation of the basin
entropy in the parameter plane (F,ω) for different values of the forcing amplitude
and frequency. The hot colors indicate higher values of the basin entropy, while
the white pixels are for zero basin entropy. The set of parameters with zero basin
entropy indicates that the basin of attraction has only one attractor. Although there is
no uncertainty about the final attractor of any initial condition, trajectories may still
be very complicated if the attractor is chaotic. This is actually the case for Fig.7b,
where there is only one chaotic attractor.



Basin Entropy, a Measure of Final State Unpredictability … 21

Fig. 6 Basin entropy dependence on the number of attractors. a–c The basins of attraction
indicate the initial conditions that lead to the complex roots of unity using the Newton method
described by zn+1 = zn − zr−1

r zr−1 . Here we plot the cases r = 4, 5, 6. The log-log plot of panel (d)
shows that the basin entropy increases when the number of attractors increases, leading to larger
values in the intercepts of the fits as predicted. Nevertheless, the effect of the increasing number
of attractors is impossible to separate from the other contributions to the basin entropy, since the
boundaries change with the number of attractors

The hottest point of the basin entropy parameter set corresponds to the basin of
attraction shown in Fig. 7c with eight different attractors whose basins are highly
mixed. The reason for having this high value of the basin entropy lies at a combi-
nation of a high number of attractors and the uncertainty exponent associated to the
boundaries that makes basins of attraction more unpredictable. In Fig. 7d, we can see
a basin of attraction with extremely mixed basins, but it has only three attractors so
its basin entropy is lower than for Fig. 7c. The converse situation arises in Fig. 7e,
where there are sixteen different attractors but the boundaries are not very intricate.
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(a)
(c)

(d)

(b)

(e)

Fig. 7 Basin entropy parameter set. a Basin entropy parameter set for the periodically driven
Duffing oscillator (Eq.11). It is a color-code map of the basin entropy for different values (F,ω)
of the forcing amplitude and frequency, where we have fixed the scaling box size ε = 0.005 and
the damping coefficient δ = 0.15. We have used a color code where the hot colors represent larger
values of the basin entropy. b Example of a basin of attraction with zero basin entropy because there
is only one attractor, actually a chaotic attractor (whose Poincaré section is plotted in black), for the
parameters F = 0.2575 and ω = 1.075. c Basins of attraction corresponding to the highest value of
the basin entropy in this parameter plane, for F = 0.2495 and ω = 1.2687. d Basins of attraction
with three attractors and a very low uncertainty exponent corresponding to F = 0.2455 and ω =
1.1758. e Basins of attraction with sixteen different attractors for the parameters F = 0.3384 and
ω = 0.2929

2 Application of Basin Entropy to Experiments with Cold
Atoms

In this section, we show how the basin entropy can be used to characterize the chaotic
dynamics of the system and to demonstrate the presence of fractal structures in phase
space. All the results presented here are numerical experiments, but we also describe
how to perform such experiments in real settings.

2.1 Cold Atoms and the Crossed Beam Configuration

In the past few years, beam splitters for guided propagating matter waves were thor-
oughly investigated in the thermal regime [22–26]. More recently, the Bose-Einstein
condensate regime was explored using optical waveguides [27, 28]. Despite the
quantum nature of these systems, some results could be understood using classi-
cal mechanics. For instance, a classical approximation was employed to unveil the
chaotic dynamics underlying the experimental results in Ref. [28]. Positive Lyapunov
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Fig. 8 The crossed beam configuration. On the left, two classical trajectories of the Hamiltonian
defined by Eq.12 with parameters α1 = α2 = β1 = β2 = 1, θ = 45◦. The dashed circle represents

the scattering region
√
x2 + y2 < 3σ , with σ =

√
2
βi
. On the right, an experimental absorption

image of the crossed beam configuration in the splitter regime (α2/α1 ≈ 1). Hot colors indicate
atoms escaping through the four different exits

exponents, a hallmark of chaos, were also estimated from experiments with ultra-
cold atoms [27]. Here we exploit the concept of basin entropy to characterize this
kind of systems and, more importantly, we explain how to use basin entropy in real
experiments with cold atoms.

For concreteness, we focus in the configuration experimentally investigated in
Refs. [25–28]. In these experiments, atoms are moving into two crossed waveguides
(see Fig. 8). For the sake of simplicity, we shall use a two-dimensional model that
captures the main features of the experimental system [28, 29]. Using some general
assumptions [30], the motion of the particles in the Gaussian potential of the laser
beams can be described by the following Hamiltonian,

H = 1
2

(
ẋ2 + ẏ2

)
− α1e−β1 y2 − α2e−β2(x sin θ+y cos θ)2 . (12)

The features of each laser beam are condensed into two characteristic parameters:
α, related to the depth of the potential and β, related to the laser waist. Along this
work, we will use αi = βi = 1.

Figure8a shows two examples of a classical trajectory of this Hamiltonian. In
Fig. 8b we can see an absorption image where a cloud of atoms is scattered, and we
canmeasure the population of atoms in each branch. The coupling of the longitudinal
and the transverse degrees of freedom that occurs at the crossing region is responsible
for the complexdynamics. Surprisingly, as shown in [28], the classical description can
account for the experimental results. The physical reasons are twofold: (1) the typical
scale of variation of the potential is large compared to the de Broglie wavelength
associated with the incoming velocity, and (2) interference effects were marginal
because of the relatively short time that the wave packet spends in the scattering
region, and the 3D dynamics limiting the overlap of the packet with itself. In the
following, we shall investigate the fractal properties of this system using a tiling
of the classical phase space. The results presented here remain pertinent for the
experiments once the phase space cells considered for the statistical analysis are
significantly larger than !.
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If we fix the shooting distance x0, and consider vx0 and θ as parameters we can
analyze the dynamics in terms of (y0, vy0). The set of initial conditions (y0, vy0) that
yields an escape through a given exit is referred to as an escape basin [17]. Given the
Gaussian profile of the potentials, we define unbounded trajectories as those going

further than 3σi of each laser beam i = 1, 2, with σi =
√

2
βi
. An example of such a

scattering region is delimited in Fig. 8a by dashed lines. Graphical representations of
escape basins are provided in Fig. 9b–d, where each color represents an exit accord-
ing to the color code of Fig. 9a. White pixels are for trajectories associated to atom
losses (because of the finite depth of the potential) and also forwhat we call sticky tra-
jectories, i.e., that spend more than 2 × 106 time steps without escaping. These two
kinds of trajectories will not be considered for the calculations of the basin entropy
due to their negligible influence. Their corresponding basin is however interwoven
with the other basins but it is only important for extremely low values of vy0 and
large initial transverse positions y0. In the following, we will restrict our study to the
parameter ranges vy0 ∈ [−1.5, 1.5], y0 ∈ [−1.5, 1.5].

(b)

(d)(c)

(a)

Fig. 9 Escape basins for the crossed beam configuration. The parameters for these basins are
θ = 45◦, x0 = −50,α1 = α2 = β1 = β2 = 1 in Eq.12. a Color code for the escape basins. b–d
Escape basin for a shooting speeds vx0 = 0.2, 0.5, 0.8 respectively. Basins are less fractalized (they
have smaller basin entropy) as the shooting speed vx0 increases
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The presence of fractal structures is noticeable for low speed basins (see Fig.9b),
but harder to appreciate in the case of high speed, e.g., Fig. 9d. Quantifying the
different degrees of fractality can be done with the help of the basin entropy.

2.2 How to Compute Basin Entropy from Experimental Cold
Atom Data

The scattering experiments with cold atoms and the procedure to calculate the basin
entropy share significant similarities. In both cases we consider ensembles of trajec-
tories instead of individual trajectories. In the experiments we have clouds of atoms
with different values of position and velocity, and for the basin entropy calculation
wemust compute many trajectories with different initial conditions inside every box.
Scattering experiments essentially study the output of the trajectories in order to gain
knowledge about the system, just as the basin entropy does. We propose to use as the
equivalent of boxes in the basin entropy scheme, wave packets of atoms which are
fired towards the scattering region. Indeed, these wave packets correspond to a group
of atoms distributed around a mean value of the velocity and the position following
a Gaussian distribution. The experimental measurement through absorption pictures
(see Fig. 8b) provides access to the population of different branches, and thus to the
probabilities inside every box.

As described in Ref. [30], we must pay attention to some technical details con-
cerning the basin entropy computation in scattering problems. Nonetheless, in the
experiments we have described these issues can be easily tackled. First, the distrib-
utions of the clouds of atoms must be in a stationary regime before arriving to the
scattering region. This can be achieved varying the launching distance x0 appropri-
ately. Second, the basin entropy is a statistical measure, so that we need a sufficient
number of initial conditions per box to get accurate values for the probabilities of
the different colors. But the number of trajectories in each box is directly related to
the number of atoms in a wave packet, which in real experiments is in the thousands
providing excellent statistics. In fact, it could be further increased by repeating the
experiment for a wave packet with same initial mean values.

Remarkably, theMonteCarlo sampling of phase space can be done experimentally
by selecting different sets of initial conditions with different mean velocity vy0 and
mean position y0. In practice, small clouds of atoms will be successively delivered
from a trap that accommodates a reservoir of atoms such as a Bose-Einstein conden-
sate placed upstream. The transverse position for outcoupling the atoms can be tuned
by modifying with optical means the reservoir trap geometry, while the mean trans-
verse velocity can be transferred to the packet of atoms by applying a well-calibrated
transverse magnetic gradient pulse. The successive repetition of such outcoupling
procedures until the reservoir is empty permits to reduce drastically the number of
experimental runs.We have checked numerically that for a realistic number of exper-
imental runs (N ∼ 50) the relative error in the basin entropy computation is below
10% [30].
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Another important point is the size of the boxes used in the basin entropy com-
putation, that is, the minimal resolution that can be reached in this experimental
procedure. This corresponds to the size of the wave packet relative to the size of the
range of phase space that we want to explore. Using experimental settings available
at present time, a linear resolution of several tens can be obtained up to a maximum
of one hundred [30]. This means that the experimental escape basins would have a
resolution between 10 × 10 and 100 × 100 in practice.

In short, to compute the basin entropy Sb in the crossed beam configuration,
one should perform a sufficient number of experiments. Each of these experiments
consists in sending a wave packet with some mean transversal velocity and position.
The experiments must be carried out for sufficiently long launching distances to
assure the stationarity of the distributions. Then, the population escaping through
each channel should be measured by absorption images. Each experimental run
provides a value of the basin entropy in a box Si . With an appropriate sampling of
the region of phase space considered, the total basin entropy can be computed by
averaging the basin entropy associated to each run.

2.3 Detecting Fractal Structures in Experiments with Cold
Atoms

In this section, we investigate transient chaos and fractal structures appearing for low
values of the horizontal velocity vx0 . A low speed implies that particles spend more
time in the scattering region, i.e., the crossing region of the two beams. Therefore, the
exponential divergence of trajectories induced by the intricate shape of the potential
at the crossing makes the system difficult to predict. The basin entropy captures
this strong unpredictability due to the highly fractalized phase space. We have used
a numerical Monte Carlo procedure to sample the basin entropy Sb for different
shooting speeds vx0 (see Fig. 10a). We can see that the basin entropy is lower for
higher speeds, providing us a quantitative basis to our intuition: it is easier to predict
the final destination of particles with high speed vx0 . Indeed, the basin entropy seems
to approach zero for very high launching speeds, where almost all the particles escape
through the same exit.

In order to study the fractal nature of the basin boundaries, it is convenient to
introduce the idea of boundary basin entropy, which can be defined as

Sbb =
∑Nb

i=1 Si
Nb

, (13)

where Nb < N is the number of boxes containing more than one color, that is, the
number of boxes falling in the boundaries.

Using the boundary basin entropy Sbb we can derive a useful criterion to detect
fractal boundaries in experiments. For the demonstration of this criterion we will
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(a) (b)

Fig. 10 Basin entropy computation using different values of the launching speed. The volume
of the phase space investigated is vy0 ∈ [−1.5, 1.5], y0 ∈ [−1.5, 1.5], x0 ∈ [−760,−750]. For each
mean value of

〈
vx0

〉
we consider that vx0 ∈ [

〈
vx0

〉
−

〈
vx0

〉
/10,

〈
vx0

〉
+

〈
vx0

〉
/10]. The basin entropy

Sb is computed using 100 boxes (experimental runs) for each represented point, and this procedure
is repeated three times so that we get the error bars displayed in the figures. a As we increase the
horizontal speed vx0 the basin entropy decreases. b The boundary basin entropy Sbb is above the
log 2 threshold (dashed line) for low speeds vx0 , and is below for high speeds

proceed by denying the premise, so that first we assume that our basins are separated
by smooth basins. In this case, we have α = 1, which means that the number of
boxes lying in the boundary that separates two basins (boxes with two colors) grows
as N2 = n2ε−(D−1), where D is the dimension of the phase space. For D = 2, the
boundary between two basins is a smooth line, for D = 3, the boundary separating
two basins is a smooth surfaces and so forth.

However, if we have more than two basins, there might be some boxes Nk lying
in the boundaries of k > 2 different basins. These boxes are in the intersection of
at least two subspaces of dimension D − 1, that is, they are the intersection of two
smooth boundaries. For instance, when D = 2, two or more smooth curves intersect
in a point or collection of points, and when D = 3, two or more smooth surfaces
intersect forming smooth curves. Thus, the dimension of the subspace separating
more than two basins must be D − 2, and the boxes Nk belonging to this subspace
must grow as Nk = nkε−(D−2).

Taking into account that the total number of boxes needed to cover the phase
space grows as N = ñε−D , we can express N2 in terms of N as

N2 = n2

(
N
ñ

) D−1
D

, (14)

and for the boundary boxes separating more than two basins Nk , we have
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Nk = nk

(
N
ñ

) D−2
D

. (15)

At this point, we recall that the maximum possible value of the entropy in a box
Si withmi different colors is Si = logmi , which is the Boltzmann expression for the
entropy of mi equiprobable microstates. Then, we can find that all the boxes in the
boundary of two basins have Si ≤ log 2, while for boxes in the boundary of k basins,
k > 2, we have that Si ≤ log k. Notice that the equality of the previous equations is
only possible in pathological cases where all the boxes in the boundaries have equal
proportions of the different colors.

Then, the boundary basin entropy Sbb for our hypothetical system with smooth
boundaries is

Sbb ≤ N2 log 2+ Nk log k
N2 + Nk

. (16)

After substituting N2 and Nk using Eqs. 14 and 15 we get the following expression

Sbb ≤ n2N log 2+ nkñ log k
n2N + nkñ

, (17)

where ñ, n2, nk are constants. Finally, we can take the limit of the previous inequality
for a large number of boxes, that is when N → ∞, leading to

lim
N→∞

Sbb ≤ log 2. (18)

Therefore, we have proven that if the boundaries have uncertainty exponent α = 1
(smooth boundaries), then Sbb ≤ log 2. This is equivalent to say that if Sbb > log 2,
then α < 1, i.e., the boundaries are fractal. This is known as the log 2 criterion.

This criterion is especially useful for experimental situations where the resolution
cannot be arbitrarily chosen. In these caseswe have a fixed value ε > 0.Nevertheless,
if we take a sufficient large number of boxes N , then the log 2 criterion holds.
Moreover, the equality of Eq. 18 never takes place, so that there is some room for
the possible deviations caused by the impossibility of making an infinite number of
simulations or experiments.

The log 2 criterion is a sufficient but not necessary condition for fractality: some
fractal basins do not pass this criterion, for instance those having only two outcomes.
In the case of the double beam configuration for the scattering of cold atoms, the
system presents four possible exits, and for low speeds the values of Sbb largely
exceed the log 2 threshold, as shown in Fig.10b. Furthermore, we can see that for
very small values of the launching speed the Sbb approaches its maximum value for
this systemwhich is log 4. This can be seen as an asymptotic value similar to systems
where exits get smaller [31], since for the limiting value vx0 = 0 the particle would
never escape. We have also checked in numerical experiments that the log 2 criterion
can be fulfilled for all the angles θ (except the limit cases θ = 0◦, 90◦) as shown in
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Fig. 11 Log 2 criterion and the angle of the beams. The boundary basin entropy Sbb is
computed for different angles θ . The region of initial conditions sampled is vx ∈ [0.09, 0.11],
x ∈ [−250,−200], vy ∈ [−1.5, 1.5], y ∈ [−1.5, 1.5]. The black line is for a computation made
with 100 boxes composed of 54 trajectories each one, and the shaded region is the absolute error
with respect to an asymptotic value taken at 800 boxes. We can see that the log 2 criterion is fulfilled
for all the angles except the limit cases θ = 0◦, 90◦

Fig. 11. If such values were obtained in real experiments, it could be considered an
experimental demonstration that the phase space is fractal.

Nevertheless, it is important to recall that the log 2 criterion detects fractals at a
given resolution. Indeed, given a finite resolution it is impossible to distinguish a real
fractal from something which is not a fractal, but that looks like it at that resolution.
The log 2 criterion presents a major advantage compared to other techniques like
implementing directly the box-counting algorithm: it avoids the use of different
scales of velocity and position, which, in the context of experiments and in particular
with cold atoms, is fundamental. The log 2 criterion is a strong argument to test fractal
structures using minimal requirements. Of course, we will detect fractal structures
at the resolution that can be achieved in the experiments, which depends on the size
of the wave packet compared to the size of the region of phase space considered.

Finally, it is remarkable that some escape basins are not only fractal, but also may
posses the stronger property of Wada [15, 16]. This means, that all the basins have a
common boundary separating them. The experimental evidence of theWada property
would be that in this regime every time that more than one branch is populated, all
the branches are populated. If the experiment is in the Wada regime, we will never
detect atoms escaping through only two or three different branches.
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3 Other Tools from Nonlinear Dynamics Applied
to the Chaotic Scattering of Cold Atoms

In previous sections we have shown how the basin entropy can be very useful to
characterize the unpredictability in experiments with cold atoms. Now we discuss
how other methods like the basin stability allow to predict the efficiency of the switch
and splitter regimes in a cross beam configuration. The escape time distribution can
also be obtained and gives access to the dynamical evolution of the system. All these
proposals can be implemented with current experimental techniques.

3.1 Splitter and Switch Regimes

Incident particles with high initial horizontal speed spend less time in the scattering
region and most of them tend to escape through exits in the positive x direction. As
a consequence, their asymptotic behavior is easier to predict, implying a decrease of
the basin entropy for high vx (t = 0) (see Fig. 10a). Despite the fact that the phase
space is still fractal, the log 2 criterion is no longer fulfilled, as shown in Fig. 10b.
This happens because there are dominant basins occupying most of the phase space,
and the number of boxes lying in the boundaries decreases (see Fig. 10c).

Nevertheless, the appearance of a dominant basin is crucial for the efficiency of
the switch regime, an experimental regime where we try to get as much atoms as
possible escaping through the second beam. The basin entropy can give us a clue
to find the parameters for this switch regime: if most particles escape through an
exit, then the basin entropy must be low. Then, we can also apply the basin stability
[9] to fully characterize the efficiency of the switch. The basin stability is simply
the portion of phase space occupied by each basin, so BSi ∈ [0, 1] for i = 1, . . . , 4
and

∑4
i=1 BSi = 1. Therefore, computing the basin stability for the exit basin 2 is

equivalent to calculate its efficiency. In cold atom experiments the basin stability
can be computed using the same Monte Carlo sampling method used for the basin
entropy computation.

Some angles like θ = 33◦ display a large switch efficiency for high speeds, as
shown in Fig. 12a. This prediction could be checked in real experiments. We have
also tested the robustness of these results against small perturbations of the laser
parameters (α1,α2,β1,β2). Sometimes in chaotic dynamics small perturbations of
the system parameters may lead to different dynamical behaviors [21]. However this
is not the case here, and the switch regime turns out to be robust against perturbations
of the wave guide parameters.

In the splitter regime, we try to get approximately half of the atoms escaping
through the first beam and the other half through the second beam. Using the basin
stability, we can define the efficiency of the switch regime as the correlation between
basin stability of exits 1 and 2, which can be calculated as their normalized product
c = 4BS1BS2, where the factor 4 is to normalize at the maximum correlation value
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Fig. 12 Efficiency of the switch and splitter regimes. a Color map representing the fraction of
trajectories escaping through exit 2, that is, the efficiency of the switch regime. For these computa-
tionswe have used initial conditions in the region vy ∈ [−0.5, 0.5], y ∈ [−0.5, 0.5] and x0 = −250.
b Color map for the correlation of the basin stability of exits 1 and 2, defined as the normalized
product of their basin stability c = 4BS1BS2. For values close to 1 the system is close to a perfect
50-50 splitter regime. This takes place for larger angles as the speed increases

of BS1 = BS2 = 0.5. This efficiency of the splitter c is calculated for different vx
and θ and represented in Fig. 12b. We can see that as the horizontal speed vx is
increased, the splitter regime happens for larger angles. The splitter is more sensitive
to perturbations of the parameters than the switch regime, as can be inferred from
the non-trivial structure of Fig. 12b.

3.2 Survival Probability

The experimental setup described in Ref. [28] allows to measure not only the atom
population of the branches, but also the population that lies in the crossing region
for some time. Therefore, we can define the escape time as the time spent by atoms
in a region of radius 3σ centered in (0, 0), which we call the scattering region. We
also define the survival probability as the probability P of finding an atom at a time
t in the scattering region, which exactly corresponds with the measurements made
in experiments.

Depending on the hyperbolic or non-hyperbolic nature of the system, the survival
probability is expected to present exponential or algebraic decay for long times. In
numerical simulations, we normalize time dividing by t0 = x/vx0 , which is the time
that a particle would take to cross the scattering region if there were only one laser,
and we find curves of probability versus time like the ones depicted in Fig. 13. The
first plateau of this curve reflects that all the particles take at least t = t0 to escape the
scattering region. After the plateau, we can see an exponential decay for short times
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Fig. 13 Survival probability as a function of time. The survival probability P of the atoms in
the scattering region as a function of time. After the initial plateau (in blue), there is an exponential
decay (see inset) and for very long times an algebraic decay (in red). a vx = 0.3. b vx = 0.9. The
rest of parameters are θ = 45◦, vy ∈ [−0.5, 0.5], y ∈ [−0.5, 0.5] and x0 = −250

(see insets of Fig. 13). For very long times the decay is algebraic, a typical behavior
of non-hyperbolic systems [32]. However, in real experiments we expect to see only
the exponential decay for two reasons. The first one is that non-hyperbolic systems
are structurally unstable [33, 34]. This means that the slightest perturbation provokes
the change from algebraic to exponential decay for long times. The second reason
is that in real experiments, the long time behavior is hard to follow because small
atom populations are difficult to detect. Moreover, when a non-hyperbolic system
is weakly perturbed the curve of probability versus time behaves as the first part of
the non-perturbed system, that is, it shows an exponential decay characterized by the
same mean-life τ [35].

4 Conclusions

In nonlinear dynamics, different tools are commonly used to gain knowledge of a
system. For instance, Lyapunov exponents are used to characterize its dynamics.
On its behalf, basins of attraction contain much information about the asymptotic
behavior of the system. Some efforts had already beenmade in the past to characterize
the complex structure of basins of attraction, such as the uncertainty exponent [7]
and the notion of basin stability [9]. The uncertainty exponent takes into account the
nature of the boundary between two basins, and the basin stability informs about the
percentage of phase space occupied by each basin. However, in many situations these
concepts are insufficient to describe the complex structure of the basins of attraction
[19].



Basin Entropy, a Measure of Final State Unpredictability … 33

The basin entropy integrates these concepts from the theoretical perspective of
information entropy. It provides a quantitative measure of the uncertainty associated
to the basins of attraction for a given scaling box size. This should become a very
useful tool with a wide range of applications, as exemplified by the different systems
that we have used to illustrate this concept.

In particular, here we have shown how the basin entropy can be applied to investi-
gate the dynamics of propagating matter waves. We have focused on a double guide
configuration, where the atoms can escape through four different exits. So far, non-
linear dynamics had only been used as an approximation to explain a posteriori
some results concerning the chaotic dynamics of the atoms. But here we propose to
go far beyond. In real experiments, we can measure the atom population escaping
through each branch, that is, we can measure the probabilities of the atoms of escap-
ing through the different exits. Gathering this information through an appropriate
Monte Carlo sampling, we can measure the basin entropy for a given set of parame-
ters. This enables the characterization of the final state unpredictability associated
to different experimental parameters. Using the same data, we have shown how the
presence of fractal structures in phase space could be detected for a certain ranges
of parameters. An interesting modification of the experimental setting would be the
inclusion of more guides. Indeed, with more exits, the log 2 criterion would be more
easily fulfilled, facilitating the detection of fractality.

In terms of applicability, the tools developed here can be usedmore systematically
to investigate the efficiency and robustness of the different experimental regimes
of the crossed beam configuration in order to use it reliably as part of a matter
wave circuit [36]. The protocols that we propose have been designed for a direct
implementation with state of the art experimental techniques.
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