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Abstract
Wepropose an enlarged framework to study transformations that drive an underdamped Brownian
particle in contact with a thermal bath from an equilibrium state to a new one in an arbitrarily short
time. To this end, wemake use of a time and space-dependent potential, that plays a dual role: confine
the particle, andmanipulate the system. In the special case of an isothermal compression or
decompression of a harmonically trapped particle, we derive explicit protocols that perform this quick
transformation, following an inverse engineeringmethod.We focus on the properties of these
protocols, which crucially depend on two key dimensionless numbers that characterize the relative
values of the three timescales of the problem, associatedwith friction, oscillations in the confinement
and duration of the protocol. In particular, we show that our protocols encompass the known
overdamped version of this problem and extend it to any friction for decompression and to a large
range of frictions for compression.

1. Introduction

Shortcuts to adiabaticity (STA) emerged in quantummechanics as fast protocols for state-to-state
transformations that would otherwise require the slow and therefore time-consumingmodification of a control
parameter of the system to reach the desiredfinal state following a quasi-adiabatic trajectory [1].Many strategies
have been proposed to set up non-adiabatic routes to reach the samefinal state through the use of dynamical
invariants [2], counter adiabatic driving [3–5], reverse engineeringmethods [6–8], fast-forward techniques
[9, 10], Lie algebraic approaches [11, 12], and optimal control [13–16] to name but a few. Slow processes
(adiabatic in quantummechanics jargon) and thus STA are quite common to prepare the state of the system in a
wide variety of domains including atomic andmolecular physics [17, 18], quantum transport [19–21], solid state
[22], many-body physics [23–25], classicalmechanics [26] and statistical physics [27–29]. STA also have
applications in the design of optimal devices, as recently proposed in optics [30] and in internal state
manipulation for interferometry [31]. STA therefore enjoy a large domain of applications, and the number of
experiments demonstrating their efficiency is soaring.

Recently, these techniques have given birth to new protocols in statistical physics. Thermodynamic
transformations that connect two different equilibrium states are not inmost cases quasi-static and thus
necessarily visit out-of-equilibrium states. Operating such transformations in afinite and short amount of time,
potentiallymuch shorter than the relaxation time of the system, is crucial formany applications, in particular in
micro and nano devices or engines [32–37], triggering a number of works considering how STA could boost
engines, amongwhich [38–41]. As in quantumphysics, performing this kind of quick transformations requires
to devise an appropriate driving of the intermediate out-of-equilibriumdynamics. A recent example has been
providedwith protocols to compress or decompress an isolated 3Dharmonically trapped cloud of atoms in an
arbitrarily short amount of time [27].More importantly, such an approach has been generalized to systems in
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contact with a thermostat which are ubiquitous in thermodynamics. The so-called engineered swift
equilibration (ESE) protocols have been introduced to study the isothermal compression of a colloidal particle
[28]. The ideawas then adapted to encompass the shift of the cantilever of an atomic forcemicroscope [29], and
has been generalized in [42] to underdamped processes using a non-conservative driving force.Here, our
interest also goes to the underdamped dynamics of a Brownian particle, under the proviso that the driving force,
used tomanipulate the systembut also to confine the particle, is conservative.

In section 2, we address the general case of ESE protocols in the underdamped regime, for a non-isothermal
transformation and generic potentials. Contrarily to theworks [40, 42], we resort to conservative drivings,
through potentials that only depend on space and not on velocity. This general framework leads to lengthy
equations, that are significantly simplified in the case of transport-free harmonic potentials.We next restrict to
this class of transformations in section 3 and showhow to obtain fully explicit isothermal protocols, choosing
the shape of one characteristic quantity of the particle density function and deducing from it the appropriate
evolution of the control parameter. Finally, in section 4we exhibit and analyze thoroughly the ‘phase diagram’ of
such protocols.We proceed to show that it largely depends onwhether the transformation is a compression or a
decompression, andwork out the various properties of these protocols, such as existence, crossover to the
overdamped regime, position-velocity decoupling or also transient negativity of the stiffness.We supplement
this by a discussion on the shape of the temporal evolution of the stiffness, through the comparison between the
relevant timescales of the problem.We also analyze the robustness of the phase diagramswith respect to the
shape of the protocol, and comment on the change occurring in the protocol when its duration is decreased.We
conclude in section 5.

2.General formalism

The ESE protocol brought to the fore in [28] addressed the case of an overdamped confinedBrownian object.
While the overdamped limit is suited for colloids in a solvent likewater, it is desirable to study the generalization
of the idea to underdamped situations, when inertial effects no longer are negligible, such as for anAtomic Force
Microscope tipwhere friction is on purpose reduced asmuch as possible [43], or for the study of a levitated
nanoparticle in air where friction can be tuned through gas pressure [44]. Generically, when viscous friction is
not high compared to the other characteristic frequencies of the problem, one should include the velocity
degrees of freedom in the description in addition to positional ones; the overdamped approximation, on the
other hand, assumes that the former are equilibrated at all times. To extend the ESEmethod proposed in [28] to
the underdamped description of an object immersed in a thermal bath trapped in a confining potential, we
introduce the probability density functionK(x, v, t) of the position x and velocity v of the particle. It obeys the
Kramers equation
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whereU(x, t) is the confining potential,mγ the damping coefficient in thefluidwithm themass of the particle,
kB the Boltzmann constant andT the temperature of the bath. At thermal equilibrium, this probability density
function is simply given by the Boltzmann law
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To connect an initial equilibrium state characterized by the potentialUi(x) and the temperatureTi to afinal
equilibrium state (Uf(x),Tf), we assume that the probability density function keeps aGaussian form in v during
the transformation

� � �= - - -( ) ( ( ) ( ) ( ) ) ( )K x v t x t x t v x t v, , exp , , , . 32

This ansatz, inspired by previousworks onBoltzmann equationwhere it results from the use of BoltzmannH-
theorem [27], remains operational here. In equation (3), �1 plays the role of a kinetic temperature, that should
at equilibrium coincide with that of the bath (T), but is otherwise distinct. It is worth emphasizing here that the
bath temperature can be time dependent. In the colloidal realm for example, this is achieved by an appropriate
random shaking of the confinement potential [45, 46], which creates an effective temperature for the Brownian
object while the true bath temperature remains constant.

In the spirit of ESE techniques, we do not impose the control function/parameterU(x, t) andT(t)
beforehand to study the response of the system through the functions �, � and �. On the contrary, we adopt a
reverse engineering point of view, namelywe choose a desired dynamics for these functions and deduce from it
the temporal evolution of the control parameters that needs to be enforced to perform the chosen dynamics.
Functions�, � , � and control parametersU andT are linked via a set of equations that we obtain by plugging
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the ansatz form(3) into theKramers equation (1) and sorting the v3, v2, v and constant terms
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where the dot stands for time derivative. This set of equations, general within the ansatz(3), must be obeyed to
connect the two imposed equilibrium states. Of course, they have to be adapted to specific protocols with desired
constraints, such as duration of the protocol, amplitude of the transition andnumber and nature of control
parameters. The knowledge of the existence of at least one of these specific protocols is in general not a simple
task, as wewill see later.However, let us focus on these equations and try to extract asmuch information as we
can. They describeGaussian compressions and decompressions with transport whenU(x, t) remains quadratic,
but the x part of the particle density function can also stray from theGaussian shapewhen arbitrary potentials
are used. For clarity and simplicity purposes, wewill restrict ourselves to harmonic potentials of angular
frequencyω(t) (stiffnessκ=mω2) and center position x0(t)

w
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m t
x x t,

2
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so as to carry out a compression or a decompression from the initial state characterized by (ωi,Ti) to thefinal
state (ωf,Tf).With this harmonic potential, ourKramers equation is linear in x and v, ensuring that the particle
density function keeps aGaussian shape at all times. Afirst analysis of equations (4a) and(4b) shows that the
kinetic temperature �1 is time dependent only and does not depend on space, and that � is linear in x
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Integrating equation (4c)with respect to x then yields a quadratic form in x for�( )x t,
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where the function � ( )t0 is related to the normalisation of the distribution. Its temporal evolution can be left
aside fromour study, as our Fokker–Planck equation conserves probability during the transformation. If we
plug expressions(6) and(7) into equation (4d), and sort out themonomials in x, we obtain the equations
controlling the time evolution of �( )t
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aswell as the time evolution of � ( )t0
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Both equations are informative. Thefirst one is not very tractable in itself, but highlights that the inverse kinetic
temperature � is completely determined by the bath temperatureT and the trap stiffnessω, and thus
independent of the transport part x0(t) of the transformation.On the other hand, the second equation tells us
that � ( )t0 is fully induced by transport.With no transport, x0(t) vanishes during thewhole transformation, and
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so does � ( )t0 since initially � =( )0 00 . As a result, �( )x t, is simply proportional to x, referring to equation (6).
Finally, coming back to equation (7), in a transport-free case,�( )x t, is itself simply proportional to x2.

3.Harmonic transport-free protocol

3.1. Simplified formalism
Wenow restrict to transport-less transformations, carriedout by a time-dependent harmonic potential. A variant
of this problemwas numerically solved in [47], and the corresponding protocol displayed discontinuities at initial
andfinal times.Here, wewill provide an exact explicit solutionwhile imposing smooth boundary conditions, in
order to create a protocolwell-adapted to experiments.OurKramers ansatz can bewritten in the lighter form

a b d= - - -( ) ( ) ( ( ) ( ) ( ) ) ( )K x v t N t t x t v t xv, , exp , 102 2

with the correspondence � a= -( ) ( )x t t x N, ln2 , whereN(t) is a normalization factor, � b=( ) ( )x t t, and
� d=( ) ( )x t t x, , the function δ(t) being the amplitude of x−v correlations. The set of equations (4) then
comes down to

a w d
g

d- + =˙ ( )k T

m
a, 112 B 2

b d gb
g

b- - = - +˙ ( )k T

m
b2 4 , 11B 2

d a w b gd
g

bd- - + = - +˙ ( )k T

m
c2 2 4 , 112 B

with the following initial conditions

a
w

a
w

= =( ) ( ) ( )m

k T
t

m

k T
a0

2
,

2 ,
12i

i
f

f

f

2

B

2

B

b b= =( ) ( ) ( )m

k T
t

m

k T
b0

2
,

2 ,
12

i
f

fB B

d d= =( ) ( ) ( )t c0 0. 12f

For the sake of simplicity, we now rescale all quantities and variables as follows
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Wedistinguish the rescaled quantities from the corresponding dimensioned ones by a tilde. Fromnowon, the
dot stands for derivative with respect to rescaled time s. This rescaling yields the following set

a kd d= -w gi iii i˙ ( )N N T a2 2 , 142

b d b b= - + -w g gii i ii˙ ( )N N N T b2 2 2 , 142
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Weintroduced the twodimensionless parametersNγ=γtf andNω=ωitf that appear independently in
equations (14). They turnout tobe twokeyparameters in thediscussionwithin theunderdamped framework. Indeed,
most of the physics of theproblemstems fromthe comparisonbetween the characteristic timescales, namely the time
associatedwith viscous friction1/γ, theperiodof oscillation in theharmonicpotential 1/ωor rather theposition and
velocity relaxation times g w=tx i

2 and tv=1/γ, and theduration tfof theprotocol, aswill bediscussed later on.
The twonumbersNγ andNω then simply compare thedurationof theprotocolwith, respectively, the viscous time
and thedurationof anoscillation in thepotential.Note that for clarity,weuse the initial oscillation time todefineNω,
as itwouldotherwise varyduring the transformation, preventingus fromperforming a general analysis.

In an ESE approach, as highlighted above, we choose the dynamics of some of the parameters of the particle
density function (here among ai, bi and di, or combinations of them) and deduce from them the required
temporal evolution of the control parameters: here ki (and possibly also the bath temperature [46]), that can be
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controlled experimentally. The three relations(14) includefive unknowns (ai, bi, di, ki and iT ). Therefore two of
the three functions ai, bi and di can be chosen freely, while the last function and the two control parameters are
extracted from the equations. This choice is not unique, which is often an advantage, since it opens for a great
versatility of STAor ESE protocols; wewill next see two particular ways to proceed.

3.2. Specification for afixed temperature bath
The equations that control the systemcouple non linearly the functions ai, bi and di and the control parameters ki
and iT , turning out to be rather complex to solve explicitly. As building an explicitprotocol is desirable for the
theoretical study of its properties aswell as for the experimental implementationof the transformation,we further
restrict our investigation to isothermal transformations =iT 1. In this case, our set of three equations becomes

a kd d= -w gi iii̇ ( )N N a2 2 , 162

b d b b= - + -w g gii i i˙ ( )N N N b2 2 2 , 162
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whereχ=κf/κi is the compression factor. Although the bath temperature iT is constant, the kinetic
temperature bi1 is in general not. The overdamped limit of this isothermal case, where the kinetic temperature
is supposed to stay at equilibrium at all times and consequently discarded from the treatment, was previously
addressed in [28]. Here, in the underdamped regime, the problem is intrinsicallymore complex as both position
and velocity distributions (via the functions ai, bi and di)need to be engineered only through the stiffness ki.

In this particular isothermal case, we rephrase our set of three equations in away that naturally leads to an
explicit expression of thewhole protocol.Wefirst introduce the quantity a and its rescaled equivalent ia
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It directly relates to the position-variance (width of themarginal distribution of the position of the particle)
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Consequently a is ameasurable quantity, whereas the physical information borne byα ismore elusive, and it is
advantageous toworkwith ia rather than ai. Using equations (16), it is easy to obtain a differential equation on ia

d
b
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i

i ii
˙ ( )a N a2 . 20

Thenwe extract di from equation (16b) and get
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It turns out that all the used quantities can be expressed in terms ofD
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and its derivatives. Indeed, from
equation (23), bi reads
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and ia follows from the definition ofD
~

(equation (22)). Then the expression of di stems from equation (20)

d
b

=
w

i i
i

i ˙
( )a

N a2
, 25

and ai from its definition(16a) together with equations (24) and(25). Finally, the control parameter ki ( )s can be
read on equation (16a)

k
a
d

d= +
w

g

wi
ii i̇ ( )

N

N

N2
. 26

3.3. Towards explicit protocols
The above hierarchy of equations is convenient to devise explicit protocols, and they consequently fully qualify
as STAor ESE in spirit. Indeed, the starting point provided by equations (16) is not convenient, for these coupled
equations involve the unknown forcing time-dependent term ki, a function that needs to obey subtle properties
to be compatible with the boundary conditions (17). Thus, as such, the problem is not amenable to numerical
solution, since it is of a functional-shooting type: find the proper family of ki ( )s enforcing the desiredfinal
condition.On the other hand, equations (22),(24),(25),(16a) and(26) pave theway to a simple analytical
solution: wefirst choose the shape ofD

~( )s and subsequently deduce from it the evolution of bimaking use of
(24), fromwhich ia is known invoking (22); di then follows from (25), ai from (16a) and the desired forcing is
computed, at the end of the chain, with equation (26). That solution is referred to as Protocol A.

We emphasize that special attention has to be paid to the temporal boundary conditions, as in every
shortcut-to-adiabaticity-type procedure, in order to avoid excitations of the systemwhen reaching equilibrium,
at the end of the protocol. In addition, a protocol that is smooth enough at initial time, when launched, ismore
conducive to a successful experimental realization.We thus enforce the same boundary conditions at initial time
s=0 andfinal time s=1, but it can be kept inmind that a different choice can bemade at s=0, under the
proviso that the boundary conditions at s=1 are as above. Equations (16) imply that thefirst derivative of ai, bi
and di vanishes at initial andfinal times, and so does thefirst derivative of ia . This condition on the first derivative
of di also forces the second derivative of ia to be zero, through equation (25). In turn, this imposes the same
condition on the second derivative of bi. Altogether, this requires at least that the first three derivatives ofD

~( )s
are zero at thefinal time. Finally, the values ofD

~
at initial andfinal times are simplyD =

~( )0 1and cD =
~( )1 .

For the sake of simplicity, we choose a polynomial forD
~
. The lowest order admissible function reads

cD = + - - + -
~( ) ( )( ) ( )s s s s s1 1 35 84 70 20 . 274 5 6 7

Thismethod is straightforward, and singles outD
~
, overwhich ‘control’ is exerted. It is a combination between

thewidth of the position distribution and the kinetic temperature (related to the velocity distribution), and thus
a rather ‘secondary’ quantity. Our goal is next to present an explicit variant, where another quantity is controlled,
withmore direct physicalmeaning.

Another route towards an explicit protocol consists in choosing the inverse kinetic temperature bi ( )s and
deducing from it the other functions, through the same aforementioned hierarchy. The temporal boundary
conditions required for bi ( )s are again b b= =i i( ) ( )0 1 1and thefirst two derivatives vanish at initial and final
times. Once bi ( )s is chosen, i ( )a s is obtained integrating equation (21)

òb
b= -gi i
i⎜ ⎟⎛

⎝
⎞
⎠( )

( )
( ( )) ( )a s

s
N u u

1
exp 2 d 1 28

s

0

while the other quantities can be expressed in terms of functions ia and bi. The initial condition =i ( )a 0 1 is
fulfilled since b =i ( )0 1, but thefinal condition c=i ( )a 1 imposes an additional integral constraint on the
chosen bi ( )s

ò b c- =g i( ( )) ( )N s s2 d 1 ln . 29
0

1

For the previous procedure, onlyD
~

and its derivatives were employed to express all the other functions, so that
specifying the boundary conditions ofD

~
was enough to ensure the right initial and final states. Here, the solving

procedure involves an integral of the chosen function bi ( )s in equation (28). As a result, the initial and final states
cannot be both encoded in the temporal boundary condition of bi and yield the integral constraint(29). Note
that this relation is truewhatever the protocol, and is in particular automatically verified for protocol AwhenD

~

has smooth enough boundary conditions.We coin this variant ‘protocol B’.
Finally, amore natural quantity to choose and control would be the inverse variance of position i ( )a s .

However, there is no straightforward solution of the equations in terms of i ( )a s , as therewas in terms ofD
~

or bi.
Moreover, a numerical resolution of the hierarchy of equations in terms of ia necessarily involves a numerical
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integration of a differential equation, for example equation (28). Even a careful choice of the boundary
conditions of ia fails to produce reliably the desired initial and final states for the transformation.Wemeet again
a functional-shooting problem,where the function i ( )a s , which is a parameter of the following equation

D = D -
D~ ~
~

g i

⎛
⎝⎜⎜

⎞
⎠⎟⎟

˙ ( )N
a

2 1 , 30

has to be tuned so that the solutionD
~

fulfills the desired initial andfinal conditions. Equippedwith protocols A
andB,we are nevertheless in a position to discuss the robustness of ourmain findings.

4. Charting out the phase diagrams of the problem

Wenow study the characteristics of protocol A, as a function of the two dimensionless parametersNγ andNω.
We focus in particular on the very existence of the protocol, on the applicability of the overdamped limit, on the
decoupling of the x and v degrees of freedom, and on the temporal evolution of the only control parameter of the
problem, namely the stiffness ki of the trap.We represent this thorough study on two phase diagrams infigures 1
and 2. They of course depend on the characteristics of the desired transformation, as will be discussed later on;
we have chosen here a compression factorχ=2 forfigure 1 and a decompression factorχ=0.5 forfigure 2.

4.1. Zones of the phase diagrams
4.1.1. Existence of the protocol
Wefirst investigate the existence of the underdamped protocol itself. For the underdamped ansatz(10) to be
well-defined, the functions ai and bi, as well as ia , must remain positive during thewhole transformation; our
ansatz is otherwise divergent. However, the expression(24) shows that bi is positive only as long as

D < D
~ ~

g
˙ ( )N2 . 31

This criterion can always be satisfied in the case of a decompression, whereD
~

can be chosenmonotonically
decreasingwhatever the value ofNγ, whileD

~
is by construction always positive. On the other hand, for a

compression, low values ofNγ canmake the function bi become negative, resulting in a diverging ansatz. This
happens typically whenNγ is of order 1. The exact threshold of course depends on the chosen shape ofD

~
and the

compression factorχ, as will be discussed later.Moreover, since the product bD =
~

iia isfixed and positive, ia
and bi are always of the same sign. As for ai, it is also positive when bi (and thus ia ) is positive too. Therefore, the

Figure 1.Phase diagramof the underdamped protocol A for a compression in the (Nγ≡γ tf,Nω≡ωi tf) plane, in a log–log scale. The
colors of the inset curves correspond to the different sectors defined (while thewhite region is ‘neutral’ regarding all the properties
discussed in this section). The overdamped regime is represented in green and can be extended to the hatched region (see
paragraph 4.1.2). In themiddle and bottom right insets, the solid curves display the stiffness ki (computedwithin the full
underdamped formalism), while the dashed curves are for its overdamped counterpart. Themiddle right inset is for a state point
within the overdamped region, while the bottom right is not (and hence, the dashed and continuous curves are distinct). The x−v
decoupling zone is blue (see paragraph 4.1.3), and the corresponding inset shows the collapsed evolution of ia and ai . The zone of non-
existence of the protocol is represented in red (see paragraph 4.1.1), and the behavior of the functions ia and bi near the boundary of
this region is shown in the left inset in red. Finally, the regionwhere ki becomes transiently negative (see paragraph 4.1.4) is in purple.
Here, the compression factor isχ=2,D

~
is given by equation (27), and the set of (Nγ,Nω) parameters is indicated by the position of

the dots on the phase diagram. The straight thin black line represents a ‘trajectory’ followed in the phase diagramwhen the duration tf
of the protocol is decreased, all other parameters beingfixed (seefigure 5 for further details). The stars correspond to the different
curves presented infigure 5.
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only region of the compression phase diagramwhere the ansatz is ill-defined is the left half-plane under a
threshold gN min of order unity. The ansatz is on the other handwell-defined in thewhole decompression phase
diagram.

We illustrate this onfigure 1, where ia and bi are plotted near the boundary of the existence region, on the red
left inset curves.We notice that theminimumof bi tends quite quickly to zerowhenNγ is decreased around one
and that in turn, ia becomes very large in this region.When the inverse kinetic temperature bi goes to zero, the
velocity distribution of the particle becomes very broad and the kinetic temperature diverges. In order to keep a
control on the particle, the stiffness of the confinement has to increase dramatically, yielding a very peaked ia , as
illustrated. In this region, where the protocol can be considered fast since it no longer allows for velocity
equilibration, it is necessary to use large stiffness to obtain the desired compression, which provides work to the
system. This results in a heating,marked by the drop ofβ.

Our approach fails when the duration tf of the compression protocol is of the order of the friction time 1/γ
(see figure 1, left area). This can be overcome by using a non-conservative potential that would penalize high
velocities and then prevent this dramatic increase of the kinetic temperature, as suggested in [40, 42]. On the
other hand, for a decompression, the kinetic temperature cannot diverge during the transformation, and our
approach remains valid at any friction in this case, without needing a non-conservative potential.We stress that
realizing such forces in an experiment can be a challenge, while the conservative case worked out here is
routinely employedwith optically confined colloids (see [45] and references therein).

4.1.2. Overdamped limit
Next, we consider the overdamped limit and show thatwe can recover the results obtained in [28] from the
underdamped formalismdeveloped here.We also determine the regime of validity of the overdamped
approximation, which amounts to treating the velocity degrees of freedom as equilibrated at all times. As their
distribution relaxes to theGaussian distribution on a timescale 1/γ, the overdamped approximation requires
this time to bemuch smaller than the other timescales of the problem; in our notations, this leads toNγ? 1 and

g w�N N . Note that in the following,D
~( )s is kept unspecified for the sake of generality, but is always of ‘order 1’,

in that it is chosen independently ofNγ andNω.Moreover, the following discussion holds both for a
compression and a decompression.

To investigate the overdamped limit, we focus on the temporal evolution of the stiffness of the potential ki.
Starting from the overdamped formalism, it was found in [28] to be related to the function i ( )a s of equation (19)
through

k - = g

w
i i

i
i

˙
( )a

N

N

a

a2
. 32

2

Therefore, we concentrate on the quantity k - ii a in the regime g �N 1 and g w�N N . Using
equation (16a),(18) and(20), we obtain

Figure 2.Phase diagramof the underdamped protocol A for a decompression in the (Nγ,Nω) plane. The color code is the same as in
figure 1, and the compression factorχ is 0.5. In a symmetric fashion compared to quick compressionswhere the stiffness exhibits
strong overshoots, quick decompressions rely on a stiffness that involves a strong undershoot (see the three insets). Exceeding the
target value of the stiffness (upwards for a compression, downwards for a decompression) is ameans to accelerate the transformation.
For very quick transformations, the shape of the stiffness can become very complex and display two undershoots as illustrated by the
left two insets. Again, the straight thin black line represents a ‘trajectory’ followed in the phase diagramwhen the duration tf of the
protocol is decreased, all other parameters being fixed, and the stars correspond to the different curves of figure 5.
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This expression can be developed in power series ofNγ.We emphasize that in the limit of largeNγ, bi remains
close to one (as expected, the kinetic temperature is equilibrated at all timeswith the bath temperature), and ia is
then approximatelyD

~
, which does neither depend onNγnor onNω. This yields

'
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with' denoting a term of order of the argument. Finally under the assumption g w�N N , we can compare the
leading termof equations (34) and(35)

b
D

D

~

~
g

g

w
�i i

i
i

˙ ˙
( )a

N

N a

N a2
, 36
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andwe obtain

' 'k - = + +g
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2

2

Thismatches exactly equation (32) in the overdamped limit, as expectedwhen g w�N N and g �N 1. This
expression is also informative on the scalingswith respect toNγ andNω of the corrections to the overdamped
asymptotics. Yet, a subtlety should be outlined here, and it is related to the polynomial shape chosen forD

~( )s .
When our parameters qualify the protocol as belonging in the overdamped regime, ia inherits this functional
form,which is slightlymore complex than the one chosen in [28], where the smoothness requirement only
concerns itsfirst derivative. Indeed, the underdamped protocol requiresmore derivatives to vanish than its
overdamped counterpart as discussed in paragraph 3.3, which results in a polynomialD

~( )s of higher order. Note
here that comparing directly the stiffness ki computedwithin the full underdamped formalism to the
overdamped one, instead of focusing on k - ii a , yields a looser criterion: g �N 1without any condition onNω,
as represented on the phase diagrams 1 and 2 in hatched green.

To conclude this discussion, we point out that our criterion for the overdamped limit differs from the one
given in [42], which can be rephrased as w g�N N . This discrepancy likely comes from the fact that the authors
impose that the temperature of the particle (our inverseβ) remains constant during the transformation. Though
this choice offersmuch simpler calculations, it requires to implement a potential that is quadratic in impulsion,
therefore creating a set-up that strongly strays fromours, where the protocol only involves conservative drivings.

4.1.3. x−v decorrelation
An interesting characteristics of the protocol is whether or not position and velocity degrees of freedom are
correlated. This correlation ismeasured by comparing the (squared) cross term di2 to the product of position and
velocity variances abii. In particular, these correlations vanishwhen ia collapses onto ai. Following the definition
of ia in (18) and ofD

~
in(22), this amounts to the criterion d D

~
�i∣ ∣ ∣ ∣2 .

Going back to expression(25) for di,we see that its scaling depends on that of bi. At large gN , b �i 1 so that di
scales as 1/Nω. On the contrary,for lowNγ (that only concern decompressions as discussed in the
paragraph about the existence of the protocol), bi scales as gN1 so that di scales as 1/(NωNγ). The criterion

d D
~

�i∣ ∣ ∣ ∣2 then takes two different shapes in the limits of high and lowNγ. For highNγ,x and v degrees of
freedomare decorrelated for w �N 12 ,which is confirmed by the two phase diagrams (see figures 1 and 2). On the
other hand,for lowNγ and for decompressions,decorrelation arises when w g�N N1 . This is also confirmed by
the decompression phase diagram (figure 2), where the left frontier of the decorrelation area has a slope−1 in
double log scale. The border of this region is determined numerically as the curve onwhich the relative
difference between ia and ai is of one percent.

4.1.4. Implementation challenges and ESE relevance
Finally, a primordial aspect of a protocol such as devised here lies in the characteristics of the control parameter
ki that needs to be enforced experimentally to achieve the desired transformation. Themain experimental
challenge arises when the stiffness of the trap becomes transiently negative. In this case, the potential switches
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from confining to repulsive, a feature that cannot be achieved simplywith an optically trapped colloid.We
determine numerically the part of the phase diagramwhere this change in the sign of the trap curvature takes
place; it is represented in purple onfigures 1 and 2.

The global behavior of the stiffness has a complex dependence on the physical parametersNγ andNω.We
capture this diversity with figure 3, wherewe represent the shape of the stiffness as a function of rescaled time s
for representative points of the phase space (Nγ,Nω). From the phase diagrams offigures 1 and 2, we only keep
the features that concern the implementation of the protocol, namely the non-existence area for compressions,
and the aforementioned zonewhere the stiffness is transiently negative. Insights into the zoology of behaviors of
the stiffness can be gained by comparing the three timescales of the problem, namely the duration of the protocol
tf, the timescale of position relaxation g w=tx i

2 and the timescale of the velocity relaxation tv=1/γ, which are
combined inNγ andNω. Note that themaximumof these last two timescales defines the global relaxation
timescale of the problem.Onfigure 3, the dashed lines indicate where these timescales are equal two by two, and
the different colors stand for the six possible orders of the three timescales.We emphasize that for ESE purposes,
the two red areas, where the protocol is slower than the global relaxation scale of the problem, are less interesting
than the green areas where position or velocity (or both) relaxesmore slowly than the protocol. Themost

Figure 3.Compression (top) and decompression (bottom) diagrams in the plane (Nγ,Nω), showing the behavior of the stiffness
during the protocol, while comparing the three timescales, namely the duration of the protocol tf, the position relaxation time tx and
the velocity relaxation time tv. Dashed lines indicate where two of these timescales are equal, and define six zones. The red ones
represent the set of (Nγ,Nω) forwhich the ESE protocol is slow (tf is the largest timescale) and then less interesting. The green ones on
the contrary indicate areas where the ESE protocol is interesting for a relaxation shortcut (tf is not the largest timescale). The grey areas
show features fromfigures 1 and 2, that is the non-existence zone for compressions and the negative stiffness zone.
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interesting set of parameters (Nγ,Nω)ESE-wise are therefore the green zones of these two diagrams out of the
grey-shadowed areas.

Determining the shape of the stiffness from general considerations on our explicit protocol is challenging, as
it involves several quantities that themselves depend non trivially onNγ andNω (see equation (26)). However, we
can grasp some features of the shape of the stiffness with the help of the diagrams of figure 3. First, the stiffness
has a very smooth behavior in the red zones, as expected, where the protocol is slow compared to the intrinsic
dynamics of the system. At largeNγ, in the regionwhere the stiffness is appropriately described by its
overdamped expression(37) as discussed in section 4.1.2, the dependence on the parametersNγ andNω of the
stiffness required to perform the transformation is proportional to g wN N2 (see equation (32)), i.e. tx/tf. Then the
regionwhere the amplitude of the stiffness is large compared to 1 corresponds to the part of the diagrams that is
well below the line tf=tx, as shown on the bottom right insets for compression diagram andmost of the bottom
insets for the decompression diagram. The farther from the line tf=tx, the greater the amplitude of the stiffness.
This tendency to have large variations in the stiffness is also amplifiedwhen tf becomes smaller than tv, as shown
on the two bottom left insets of the decompression diagram. Finally, the regions in dark green, where ESE
protocols are highly desirable because shorter than both position and velocity relaxation times, display extreme
shapes of stiffness. These bizarre shapes result from the difficulty to control the evolution of both position and
velocity, which cannot equilibrate themselves that quickly, with only one control parameter.

4.2. Robustness of the phase diagrams
Wehave analyzed above protocol A phase diagrams, inwhich somedetails can depend on the functional choice
made for the chosenD

~( )s .We nowquickly address protocol B properties, as ameans to put to the test the
robustness of ourfindings. In this discussion, we choose to only address protocols where the kinetic temperature
is temporarily increased in the case of a compression (resp. decreased in the case of a decompression). In other
words, we suppose that bi ( )s is always smaller than one (resp. bigger than one). This is equivalent to restricting to
monotonousD

~( )s , as indicated by equation (23). AsD =
~( )0 1and cD =

~( )1 , this function remains bounded,
irrespective of the values of the parametersNγ andNω. The previous discussions about the overdamped limit and
the decorrelation of position and velocity degrees of freedom are therefore still valid. These areas are then
completely robust with respect to the exact shape of the protocol.

On the other hand, the exact position of the regionwhere the ansatz no longer exists depends on the shape of
the chosen function bi for protocol B orD

~
for protocol A. The corresponding boundary is always a vertical line

in the compression phase diagram, as equation (23) does not involveNω. Themost favorable case, inwhich the
existence domain is the largest, corresponds to a situationwhere bi ( )s isflat during almost thewhole
compression (except near initial andfinal times to fulfill the temporal boundary conditions). Together with the
fixed integral(29) for bi, this indicates that the protocol-dependent existence threshold gN min is always such that

c
>g ( )N

ln

2
. 38min

Therefore this non-existence zone is a generic feature of the process and cannot be eliminated by tinkeringwith
the shape of the protocol. In particular, there is noway to devise a very fast isothermal compression protocol:

Figure 4.Comparison between protocols A andB. The thicker curve corresponds to the chosen function fromwhich thewhole
protocol is deduced, b c= - -gi ( ) ( )N s s1 140 ln 2 13 3 for protocol B (blue curves), andD

~
given in equation (27) for protocol A

(orange curves). The parameters areχ=2,Nγ=Nω=1 (fast compression).
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tf>γ−1 (lnχ)/2. This is a strict lower bound, that can be significantly exceeded in cases whereD
~

is non-
monotonous (protocol A), or equivalently when bi presents an overshoot (protocol B). The integral of bi ( )s
beingfixed by equation (29), such an overshoot necessarily needs to be compensated by lower values of bi ( )s in a
different part of the transformation, therefore approaching the forbidden zero value. Thismay endanger the
convergence of the ansatz and thus provide a further reason to dismiss non-monotonousD

~
.

As for the rather exotic shapes of the stiffness ki discussed earlier, we show infigure 4 the differences between
protocols A andB. As expected from the hierarchy of equations, a slightmodification in the driving function
yields significant changes, affecting all other quantities, including ki. However, figure 4 indicates that the
essential features reported in the phase diagrams are robust with respect to a protocol change.

4.3. Consequences of accelerating the protocol
Wefinally address the effect of accelerating the protocol (diminishing tf, other parameters being fixed). Howdo
the functions i ( )a s , bi ( )s , di ( )s andmost importantly the stiffness ki ( )s evolve? The results are reported in
figure 5(a). For this ‘cut’ across the phase diagrams (line of slope 1), we chooseNγ=Nω, i.e.ωi=γ (straight
thin black line infigures 1 and 2). This corresponds to the situationwhere tx=tv.

Infigure 5(a), the purple curves represent a very slow transformation. As expected, the stiffness ki ( )s
interpolates smoothly between the boundary values, and is well followed by the inverse variance of position i ( )a s :
the dynamics is indeed slower than the timescales tx and tv. The velocity distribution always remains at
equilibriumwith the inverse kinetic temperature bi ( )s that stays close to 1. Velocity and position degrees of
freedomare decoupled, as shownby a very low crossed term di ( )s .

When the protocol duration tf decreases, the inverse kinetic temperature deviates, temporarily butmore and
more, from its unit equilibrium value, undergoing a transient heating for a compression and a transient cooling
for decompression. As explained in paragraph 4.1.1, the protocol no longer exists for too fast a compression,

Figure 5. (a)Evolution of the functions ki ( )s , di ( )s , bi ( )s , i ( )a s when the duration tf of the protocol is decreased, therebymoving along
the thin black bisectrix infigures 1 and 2 (ωi=γ). The left column is for a compression (χ=2) and the right column is for a
decompression (χ=0.5). Both columns are for protocol A (with equation (27)). The color code is explained in the upper logarithmic
time arrow. The red curves are thus for the faster protocol, that we omitted for decompression, as it does not bring a different
information from the orange curve. (b) Illustration of the relation between the sign of δ and themonotony of a. If δ is positive, the
particle density function tends to compress whereas when it is negative, it tends to expand.
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since bi ( )s becomes temporarily negative, preventing the ansatz for the particle density function frombeing
well-defined.We also observe a change of sign in the crossed term di during the transformation. As this quantity
is proportional to the derivative of i ( )a s (see equation (25)), a change of sign transposes into a change of
monotony of i ( )a s , as illustrated infigure 5(b). This can be understood as follows.Wefirst recast our ansatz(10)
as

b
d
b

= - - +
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟( ) ( ) ( )K x v t N t ax v

x
, , exp

2
, 392

2

so as to bring out a localmean velocity d bá ñ = -( ) ( )v x x 2loc . The sign of δ then indicates the tendency for the
local velocity, as sketched infigure 5(b). This yields a compression if δ is positive and a decompression if δ is
negative. Indeed, the variance of the position decreases for a positive d and increases in the opposite case (see
figure 5(a)).

When tf diminishes, i ( )a s steepens, leading to a pronounced overshoot for a fast compression (resp.
undershoot for a fast decompression). Finally, the corresponding trap stiffness turns into a complicated non-
monotonic function for fast protocols, with negative portions aswell as peaked variations, as discussed in
paragraph 4.1.4. This rather unexpected behavior stems from the fact that controlling the dynamics of both the
position and the velocity of the systemwith only one control function, the harmonic force depending on
positional degrees of freedomonly, is a delicate task. Figure 5(a)highlights the difficulty facedwhen devising an
ESE protocol, since even in a case where tf exceeds the natural relaxation time by a factor three (yellow curves),
the driving force and associated response significantly depart from their quasi-static counterpart.

5. Conclusion

In this article, we provide a general framework to study ESE beyond the overdamped regime inwhich it was
initially formulated. A Brownian particle is here confined in a harmonic potential, the stiffness of which can be
changed in time as desired. In addition, the thermal bath is allowed to have a time-dependent temperatureT. As
surprising as this situationmight appear, the latterT-control is achievable in the laboratory with, for instance,
optically confined colloids [45, 46]. Trap stiffness and temperature are the two driving functions, that need in
general to be carefully shaped tomeet the desired goal: reaching the target state at the end of a chosen time tf. Yet,
the formalismbecomes cumbersomewhenT is time dependent, and explicit solutions become elusive. ESE
techniques being designed especially for experiments and concrete applications, it is crucial to be able to exhibit
such an explicit protocol. For this reason, we restricted our discussion to harmonic isothermal transport-free
transformations, that is to say compression and decompression, where the formalism gets significantly simpler.
Trap stiffness is thus the only quantity that ismonitored by the experimentalist.

We discussed the explicit and analyticalmethods that can be employed, and analyzed the corresponding
protocols as a function of the two key quantities of the problem, formed by the ratio between the relevant
characteristic timescales.We summarized this analysis in two phase diagrams and discussed the range of
applicability of our approach, that is ‘limitation-free’ in the case of a decompression and limited to protocols
longer than some lower bound ruled by the friction time in the case of compression.We also investigated core
characteristics of our protocol, such as the crossover to the overdamped limit (where algebra ismuch simpler).
Some attentionwas also paid to the relevance of the ESE protocol for each set of parameters, leading to
investigate the influence of the protocol duration compared to the relaxation timescales on the shape of the trap
stiffness. Finally, we discussed the robustness of the phase diagrams presented, by comparing the outcome of two
distinct protocols in a parameter rangewhere rather exotic drivings emerge.

Interesting venues for futurework include extending our treatment to bathswith time-dependent
temperature. This additional driving degree of freedompresumably leads tomore regular protocols. Roughly
speaking, the stiffness will ensure the compression or decompression in position spacewhile temperaturewill
take care of the velocity degrees of freedom.We thereby expect to overcome the limitations brought to the fore
here, such as the non-existence of the underlying ansatz (whichmay become un-normalizable) and the odd
shape of the stiffness. Afirst evidence of such an experimental achievement is presented in [46]where an
effectivemodulation of the bath temperature allowed to perform a quick decompressionwithout having to
resort to a transiently negative stiffness. Ourwork also opens interesting perspectives for transformations
including transport. Finally, the study of non-harmonic driving, energetics, and optimal features appears timely.
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