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David	Guéry-Odelin	

Comment	accélérer	un	processus	physique	?	

Laboratoire	Collisions	Agrégats	Réactivité	

La	sérendipité	est	le	fait	de	réaliser	une	découverte	scientifique	ou	
	une	invention	technique	de	façon	inattendue	à	la	suite	d'un	concours	
	de	circonstances	fortuit	et	très	souvent	dans	le	cadre	d'une	recherche	
	concernant	un	autre	sujet.		
	
La	sérendipité	est	le	fait	de	«	trouver	autre	chose	que	ce	que	l'on	
	cherchait	»	

Sérendipité	(anglicisme…)	
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PLAN	DE	L’EXPOSE	

1-	Transport	d’atomes		
	
2-	Manipulation	d’un	moment	magnétique	
	
3-	Compression	/	décompression	
	
4-	Extension	des	méthodes	à	la	physique	statistiques	–	applications	
	
					1-	Le	gaz	piégé	
						
					2-	La	bille	dans	une	pince	optique	
	
					3-	La	pointe	de	microscope	
	
CONCLUSION	
	

Transport à l’aide d’une pince optique 

Transporter	une	particule	dans	une	pince	optique	

A.	Couvert	et	al.,	EuroPhys.	Lett.	83,	13001	(2008)	

La	pince	optique	exploite	la	polarisabilité	
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Transport à l’aide d’une pince optique A.	Couvert	et	al.,	EuroPhys.	Lett.	83,	13001	(2008)	

Transporter	une	particule	dans	une	pince	optique	
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Au	voisinage	du	minimum	de	potentiel	(correspondant	au	maximum	d’intensité)	

Un	déplacement	«	adiabatique	»	le	long	de	l’axe	longitudinal	prend	du	temps	…	
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Evolution rapide mais pas optimale 

Evolution rapide et optimale 
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L’amplitude	d’oscillation	du	centre	de	masse	après	transport	est	donnée	par	le	module	de	la	
transformée	de	Fourier	du	profil	de	vitesse	appliqué	au	potentiel	harmonique	de	confinement.	

(analogie	avec	la	diffraction	en	optique)	

Un	transport	optimal	requiert		

Transporter	une	particule	dans	un	potentiel	harmonique	

Expérience	versus	théorie	
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La	particule	bouge	dans	le	potentiel	sous	l’action	de	la	force	
d’inertie	d’entraînement.	On	peut	envisager	de	contrecarrer	

cette	force	à	chaque	instant.	

Stratégie 1 

Stratégie 2 
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Transport	:	deux	stratégies	complémentaires	

Question Pour	la	stratégie	1,	peut-on	choisir	librement	le	temps	de	transport	ou	
est-on	obliger	de	choisir	un	temps	«	magique	»	?	 

Comment	déterminer																		?	
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ẍ + (x� ) = 0

x0(t)

Icoll[fa] = 0

fa(r,v, t) =
1

⇡3
(↵� � �

2
/4)3/2 exp(�↵r

2 � �v
2 � �r · v)

Icoll[f (1)] =

Z
d
2⌦

d�

d2⌦
d
3
v2|v2�v1| [f (10)f (20)� f (1)f (2)]

@f

@t
+ v · @f

@r
� !

2
0r ·

@f

@v
= Icoll[f ] <

(�x0(t)�x0(t0)� �x0(t)�x0(t))

�x̃c[!0] =
!
2

!2 � !
2
0

�x̃0[!0] �! �!
2

!
2
0

�x̃0[!0]

�x̃c[!0 � !] ' �!
2

!
2
0

�x̃0[!0]

x0(t) = x
STA
0 (t) + �x0(t)

xc(t) = x
STA
c

(t) + �xc(t)
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Conditions	aux	limites		

Méthode	dite	de	«	reverse	engineering	»	
	
Choisir	une	fonction																							qui	remplit	les	conditions	aux	limites,	
		
puis	déduire	de	l’équation	du	mouvement	l’expression	de		
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x(tf) = d, ẋ(tf) = 0, ẍ(tf) = 0,

Icoll[fa] = 0

fa(r,v, t) =
1

⇡3
(↵� � �

2
/4)3/2 exp(�↵r

2 � �v
2 � �r · v)

Icoll[f (1)] =

Z
d
2⌦

d�

d2⌦
d
3
v2|v2�v1| [f (10)f (20)� f (1)f (2)]

@f

@t
+ v · @f

@r
� !

2
0r ·

@f

@v
= Icoll[f ] <

(�x0(t)�x0(t0)� �x0(t)�x0(t))

�x̃c[!0] =
!
2

!2 � !
2
0

�x̃0[!0] �! �!
2

!
2
0

�x̃0[!0]

�x̃c[!0 � !] ' �!
2

!
2
0

�x̃0[!0]

x0(t) = x
STA
0 (t) + �x0(t)

~p = "0↵
~EL

W (~r ) = �1

2
~p · ~EL = �"0↵

2
| ~EL(~r )|2
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Usage	inverse	des	équations	différentielles		
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Comment	déterminer																et	garantir	la	robustesse	de	la	solution	?	 	
	 		

~p = "0↵
~EL

W (~r ) = �1

2
~p · ~EL = �"0↵

2
| ~EL(~r )|2
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where γ is a time dependent variable, and X = x−xc(t) is
the position shifted by a scalar time dependent parameter
xc(t) to be determined. In the following we show how γ
and xc are related self-consistently. For this purpose,
we calculate separately the different terms of the time-
dependent Schrödinger solution:
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!γẋc +
!2

2m
γ2 +

1

2
mω2

0(xc − x0)
2

]

Φ.(A5)

By setting to zero the factor of ∂Φ/∂X and also the
factor of XΦ we get the relation between γ and xc,
γ = mẋc/m and the equation of motion of the variable
xc: ẍc + ω2

0(xc − x0) = 0. The variable xc corresponds
to the trajectory of the classical counterpart of the quan-
tum transport problem. The last term of Eq. (A5) is a
scalar time dependent term which contributes as a time
dependent phase. To remove it we introduce the wave
function Φ̃ defined by
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With this choice, the wave function Φ̃ obeys the time de-
pendent Schrödinger equation for a static harmonic po-
tential of angular frequency ω0,
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Appendix B: Energy

The instantaneous energy reads E(t) =
⟨Ψ(t)|H0(t)|Ψ(t)⟩. To perform this calculation using the
solution (A9), it is convenient to write the potential in
the form V (x−x0) = V (x−xc+xc−x0) = V (X+xc−x0).
As V is quadratic there are three contributions to the
energy:
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Assuming that the initial state corresponds to the n-th
eigenstate of the harmonic potential, we have Φ̃(X, t) =
ϕn(X)e−iEnt/! with En = !(n + 1/2)ω0 and the last
integral of Eq. (B1) vanishes by parity. The first term
can be readily calculated. We thus find
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2. (B2)

Let us introduce the position ξ = xc −x0 of the fictitious
classical particle in the frame of the moving potential.
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For the transport problem we are interested in [13]
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∣

∣

∣
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∣

∣

∣

∣
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. (B7)

In terms of dimensionless variables for time and trap-
position:

T = tω0,

y0 = x0/a0, (B8)

On	montre	que	l’excès	d’énergie	après	transport	se	met	sous	la	
	
forme	d’une	transformée		de	Fourier	pour		

La	question	qui	se	pose	est	donc	la	suivante	
	
Comment	façonner	les	zéros	de	cette	transformée	de	Fourier	?		
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On	introduit	la	fonction	auxiliaire									qui	obéit	aux	conditions	limites	g(t)
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1
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2
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2
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∫ t
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ẋSTA
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On	définit	l’accélération	du	potentiel	par	le	biais	de	la	fonction	auxiliaire	selon	

Pour	que	cela	soit	cohérent,	on	ajoute	les	conditions	intégrales	

2

ẋc(0) = ẋc(tf ) = 0. By virtue of the equation fulfilled
by xc, we have also ẍc(0) = ẍc(tf ) = 0, as x0(t) is as-
sumed to be continuous. This set of boundary condi-
tions coincides with that obtained with the shortcut-to-
adiabaticity method based on Lewis-Riesenfeld invariants
[1, 5]. The solution for the transport function is then con-
structed by an inverse-engineering method which consists
in (i) choosing a function xSTA

c that obeys the appropri-
ate set of boundary conditions, and (ii) then inferring
from Eq. (2) the corresponding trajectory of the poten-
tial, xSTA

0 .
As shown in [7] the wave function of a Bose-Einstein

condensate satisfying a Gross-Pitaevskii equation in a
moving external harmonic potential is shape invariant
and the only possible excitations associated with such a
mode are center of mass oscillations, along the classical
trajectory in Eq. (2), with constant mean field energy.
The same STA strategy as for the one-body wave function
can therefore be used for the transport of a condensate.

III. TRANSPORT WITHOUT FINAL EXCESS
ENERGY AT TWO TRAP FREQUENCIES

The optimal transport of a particle corresponds to the
cancellation of the Fourier transform of the acceleration
of the displacement of the trap, ẍ0, at the trap angular
frequency ω0 (see Appendix B):

V(ω0) =

∣

∣

∣

∣

∫ tf

0
ẍ0(t

′)e−iω0t′dt′
∣

∣

∣

∣

= 0. (4)

Consider two angular frequencies ω1 and ω2 for which
we would like the final state to have no excitation:
V(ω1) = V(ω2) = 0. To design the appropriate acceler-
ation function, ẍ0(t), we introduce an auxiliary function
g(t) such that

ẍ0(t) =
d4g

dt4
+ (ω2

1 + ω2
2)

d2g

dt2
+ ω2

1ω
2
2g(t), (5)

and which obeys the boundary conditions g(tf ) = g(0) =
g′(tf ) = g′(0) = g′′(tf ) = g′′(0) = g(3)(xf ) = g(3)(0) =
0. The auxiliary function is defined through the differ-
ential equation (5) so that, after integrating by parts
and taking into account these boundary conditions, the
Fourier transform of the acceleration becomes the prod-
uct of a polynomial in ω2 with the desired zeros by the
Fourier transform of the auxiliary function:

V(ω) =

∣

∣

∣

∣

(ω2 − ω2
1)(ω

2 − ω2
2)

∫ tf

0
e−iωt′g(t′)dt′

∣

∣

∣

∣

. (6)

The squared frequencies in (ω2−ω2
1)(ω

2−ω2
2) imply zeros

at positive and negative frequencies. The latter might
seem to be superfluous, but they avoid imaginary factors
in Eq. (5) and guarantee the reality of x0(t) for real g.

After designing g(t) and deducing ẍ0 via Eq. (5), we
integrate this equation twice with the boundary condi-
tions x0(0) = 0, ẋ0(0) = 0, x0(tf ) = d and ẋ0(tf ) = 0 to

specify the transport function,

x0(t) =

∫ t

0
dt′

∫ t′

0
dt′′ẍ0(t

′′). (7)

Those latter boundary conditions imply that

∫ tf

0
g(t)dt = 0 and

∫ tf

0
dt′

∫ t′

0
g(t′′)dt′′ = d. (8)

Consider for instance the following polynomial interpo-
lation:

g(t) = N (t/tf )4(1 − t/tf )4(1 − 2t/tf). (9)

The normalization factor N is deduced from the second
condition in Eq. (8),

N = d/(t2f∆), (10)

with

∆ = −B0(5, 5) + 3B0(6, 5) − 2B0(7, 5)

+ B1(5, 5) − 3B1(6, 5) + 2B1(7, 5), (11)

where Bz(u, v) is the incomplete beta Euler function.
The second and third factors in Eq. (9) guarantee the
boundary conditions at the time edges and the fourth
one provides the odd symmetry to satisfy the first inte-
gral condition in Eq. (8). We therefore obtain an exact
analytical solution for the transport problem which ful-
fills exactly the desired boundary conditions.

Finally, note that it is possible to set ω1 = ω2. The
effect is to increase (double) the multiplicity of the zero at
ω = ω1 which flattens the excitation energy at that point.
Examples to illustrate this effect and its applications are
worked out in the following section.

IV. ULTRAROBUST PROTOCOLS

Ultrarobust protocols can be designed by generalizing
the previous idea. Suppose that we identify an angular
frequency region [ω0(1−η), ω0(1+η)] in which the values
of the trap frequencies corresponding to different runs
of the experiment are distributed. We would like our
transport protocol to provide excitation-free final states
in this region. For this purpose, we choose N angular
frequencies {ω1 < ω2, ..., < ωN}, with ω1 < ω0 < ωN ,
and ωN −ω1 ≈ 2ω0η. The function g(t) should have now
4N vanishing boundary conditions:

g(0) = g(tf ) = 0, g(1)(0) = g(1)(tf ) = 0,

..., g(2N−1)(0) = g(2N−1)(tf ) = 0, (12)

where g(k) ≡ dkg
dtk . For instance, we can use the following

simple polynomial interpolation, g(t) = N (t/tf )2N (1 −
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∣

∣

∣
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∣

∣

∣
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∣
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∣
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0g

g(0) = g(tf) = 0, g′(0) = g′(tf) = 0, g′′(0) = g′′(tf) = 0

ω = ω0

E(t) = ⟨Ψ(t)|H0(t)|Ψ(t)⟩

ξ = x − x0(t)

ξ̈ +
1

m
∂ξU (ξ) = −ẍ0

ξ̈ + ω2ξ = −ẍ0

E(t) − E(0) = ⟨Ψ(t)|H0(t)|Ψ(t)⟩ − ⟨Ψ(0)|H0(0)|Ψ(0)⟩

Après	intégration	par	parties,	on	a	

Par	construction,	on	a	un	zéro	
pour	la	valeur	attendue	!		
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Une	petite	astuce	mathématique
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Avec	un	choix	approprié	pour	les	conditions	aux	limites	
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ẋc(0) = ẋc(tf ) = 0. By virtue of the equation fulfilled
by xc, we have also ẍc(0) = ẍc(tf ) = 0, as x0(t) is as-
sumed to be continuous. This set of boundary condi-
tions coincides with that obtained with the shortcut-to-
adiabaticity method based on Lewis-Riesenfeld invariants
[1, 5]. The solution for the transport function is then con-
structed by an inverse-engineering method which consists
in (i) choosing a function xSTA

c that obeys the appropri-
ate set of boundary conditions, and (ii) then inferring
from Eq. (2) the corresponding trajectory of the poten-
tial, xSTA

0 .
As shown in [7] the wave function of a Bose-Einstein

condensate satisfying a Gross-Pitaevskii equation in a
moving external harmonic potential is shape invariant
and the only possible excitations associated with such a
mode are center of mass oscillations, along the classical
trajectory in Eq. (2), with constant mean field energy.
The same STA strategy as for the one-body wave function
can therefore be used for the transport of a condensate.

III. TRANSPORT WITHOUT FINAL EXCESS
ENERGY AT TWO TRAP FREQUENCIES

The optimal transport of a particle corresponds to the
cancellation of the Fourier transform of the acceleration
of the displacement of the trap, ẍ0, at the trap angular
frequency ω0 (see Appendix B):
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∣
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∣
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= 0. (4)

Consider two angular frequencies ω1 and ω2 for which
we would like the final state to have no excitation:
V(ω1) = V(ω2) = 0. To design the appropriate acceler-
ation function, ẍ0(t), we introduce an auxiliary function
g(t) such that

ẍ0(t) =
d4g

dt4
+ (ω2

1 + ω2
2)

d2g

dt2
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2
2g(t), (5)

and which obeys the boundary conditions g(tf ) = g(0) =
g′(tf ) = g′(0) = g′′(tf ) = g′′(0) = g(3)(xf ) = g(3)(0) =
0. The auxiliary function is defined through the differ-
ential equation (5) so that, after integrating by parts
and taking into account these boundary conditions, the
Fourier transform of the acceleration becomes the prod-
uct of a polynomial in ω2 with the desired zeros by the
Fourier transform of the auxiliary function:
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∣
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The squared frequencies in (ω2−ω2
1)(ω

2−ω2
2) imply zeros

at positive and negative frequencies. The latter might
seem to be superfluous, but they avoid imaginary factors
in Eq. (5) and guarantee the reality of x0(t) for real g.

After designing g(t) and deducing ẍ0 via Eq. (5), we
integrate this equation twice with the boundary condi-
tions x0(0) = 0, ẋ0(0) = 0, x0(tf ) = d and ẋ0(tf ) = 0 to

specify the transport function,

x0(t) =

∫ t

0
dt′
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0
dt′′ẍ0(t

′′). (7)

Those latter boundary conditions imply that

∫ tf

0
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0
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0
g(t′′)dt′′ = d. (8)

Consider for instance the following polynomial interpo-
lation:

g(t) = N (t/tf )4(1 − t/tf )4(1 − 2t/tf). (9)

The normalization factor N is deduced from the second
condition in Eq. (8),

N = d/(t2f∆), (10)

with

∆ = −B0(5, 5) + 3B0(6, 5) − 2B0(7, 5)

+ B1(5, 5) − 3B1(6, 5) + 2B1(7, 5), (11)

where Bz(u, v) is the incomplete beta Euler function.
The second and third factors in Eq. (9) guarantee the
boundary conditions at the time edges and the fourth
one provides the odd symmetry to satisfy the first inte-
gral condition in Eq. (8). We therefore obtain an exact
analytical solution for the transport problem which ful-
fills exactly the desired boundary conditions.

Finally, note that it is possible to set ω1 = ω2. The
effect is to increase (double) the multiplicity of the zero at
ω = ω1 which flattens the excitation energy at that point.
Examples to illustrate this effect and its applications are
worked out in the following section.

IV. ULTRAROBUST PROTOCOLS

Ultrarobust protocols can be designed by generalizing
the previous idea. Suppose that we identify an angular
frequency region [ω0(1−η), ω0(1+η)] in which the values
of the trap frequencies corresponding to different runs
of the experiment are distributed. We would like our
transport protocol to provide excitation-free final states
in this region. For this purpose, we choose N angular
frequencies {ω1 < ω2, ..., < ωN}, with ω1 < ω0 < ωN ,
and ωN −ω1 ≈ 2ω0η. The function g(t) should have now
4N vanishing boundary conditions:

g(0) = g(tf ) = 0, g(1)(0) = g(1)(tf ) = 0,

..., g(2N−1)(0) = g(2N−1)(tf ) = 0, (12)

where g(k) ≡ dkg
dtk . For instance, we can use the following

simple polynomial interpolation, g(t) = N (t/tf )2N (1 −
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ẋc(0) = ẋc(tf ) = 0. By virtue of the equation fulfilled
by xc, we have also ẍc(0) = ẍc(tf ) = 0, as x0(t) is as-
sumed to be continuous. This set of boundary condi-
tions coincides with that obtained with the shortcut-to-
adiabaticity method based on Lewis-Riesenfeld invariants
[1, 5]. The solution for the transport function is then con-
structed by an inverse-engineering method which consists
in (i) choosing a function xSTA

c that obeys the appropri-
ate set of boundary conditions, and (ii) then inferring
from Eq. (2) the corresponding trajectory of the poten-
tial, xSTA

0 .
As shown in [7] the wave function of a Bose-Einstein

condensate satisfying a Gross-Pitaevskii equation in a
moving external harmonic potential is shape invariant
and the only possible excitations associated with such a
mode are center of mass oscillations, along the classical
trajectory in Eq. (2), with constant mean field energy.
The same STA strategy as for the one-body wave function
can therefore be used for the transport of a condensate.

III. TRANSPORT WITHOUT FINAL EXCESS
ENERGY AT TWO TRAP FREQUENCIES

The optimal transport of a particle corresponds to the
cancellation of the Fourier transform of the acceleration
of the displacement of the trap, ẍ0, at the trap angular
frequency ω0 (see Appendix B):
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ẍ0(t) =
d4g

dt4
+ (ω2

1 + ω2
2)

d2g

dt2
+ ω2

1ω
2
2g(t), (5)
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0. The auxiliary function is defined through the differ-
ential equation (5) so that, after integrating by parts
and taking into account these boundary conditions, the
Fourier transform of the acceleration becomes the prod-
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Fourier transform of the auxiliary function:
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at positive and negative frequencies. The latter might
seem to be superfluous, but they avoid imaginary factors
in Eq. (5) and guarantee the reality of x0(t) for real g.

After designing g(t) and deducing ẍ0 via Eq. (5), we
integrate this equation twice with the boundary condi-
tions x0(0) = 0, ẋ0(0) = 0, x0(tf ) = d and ẋ0(tf ) = 0 to

specify the transport function,
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Those latter boundary conditions imply that
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0
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Consider for instance the following polynomial interpo-
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g(t) = N (t/tf )4(1 − t/tf )4(1 − 2t/tf). (9)

The normalization factor N is deduced from the second
condition in Eq. (8),

N = d/(t2f∆), (10)

with

∆ = −B0(5, 5) + 3B0(6, 5) − 2B0(7, 5)

+ B1(5, 5) − 3B1(6, 5) + 2B1(7, 5), (11)

where Bz(u, v) is the incomplete beta Euler function.
The second and third factors in Eq. (9) guarantee the
boundary conditions at the time edges and the fourth
one provides the odd symmetry to satisfy the first inte-
gral condition in Eq. (8). We therefore obtain an exact
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IV. ULTRAROBUST PROTOCOLS

Ultrarobust protocols can be designed by generalizing
the previous idea. Suppose that we identify an angular
frequency region [ω0(1−η), ω0(1+η)] in which the values
of the trap frequencies corresponding to different runs
of the experiment are distributed. We would like our
transport protocol to provide excitation-free final states
in this region. For this purpose, we choose N angular
frequencies {ω1 < ω2, ..., < ωN}, with ω1 < ω0 < ωN ,
and ωN −ω1 ≈ 2ω0η. The function g(t) should have now
4N vanishing boundary conditions:

g(0) = g(tf ) = 0, g(1)(0) = g(1)(tf ) = 0,

..., g(2N−1)(0) = g(2N−1)(tf ) = 0, (12)

where g(k) ≡ dkg
dtk . For instance, we can use the following
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ẍ0 =
d2g

dt2
+ ω2

0g

g(0) = g(tf) = 0, g′(0) = g′(tf) = 0, g′′(0) = g′′(tf) = 0

ω = ω0

E(t) = ⟨Ψ(t)|H0(t)|Ψ(t)⟩

ξ = x − x0(t)

ξ̈ +
1

m
∂ξU (ξ) = −ẍ0
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Conséquence	:	Transport	optimal	simultané	de	deux	particules	différentes	!		
	
Cette	méthode	peut	également	être	mise	à	profit	pour	améliorer	la	robustesse	
du	transport	

Généralisation	immédiate	
	 	 		

Incidemment,	ici	aussi	un	nouvel	usage	des	équations	différentielles		
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FIG. 1. Transport of a particle by moving its harmonic confine-
ment of angular frequency ω0. The parameters are chosen for the
transport of 40Ca+ ions over a distance of 0.4 µm (see text). (a)
The trajectory of the bottom of the trap, x0(t)/d for a one (solid
line, ω1 = ω0), two (dashed line, ω1 = ω2 = ω0) and three (dotted
line, ω1 = ω2 = ω3 = ω0) frequency robust protocol for a final time
tf given by ω0tf = 2π×1.25. The results of the one-point protocol
with ω0tf = 2π×5 are represented as a double dot-dashed curve. The
dotted-dashed line corresponds to the same kind of 3-point protocol
but for a transport duration increased by 25%: ω0tf = 1.5625×2π .
This slight increase of the transport duration reduces dramatically the
amplitude of the trap center trajectory. (b) Variation in log-scale of
the transient excess energy (in units of the quantum of energy !ω0).

due to the boundary conditions (12). As in Sec. III, it is also
possible to flatten the excitation energy curve versus ω around
ω0 by increasing the multiplicity of the zero, i.e., simply
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FIG. 2. Excess of energy #E(tf ) acquired after the transport
normalized to the quantum of energy !ω0 when the trap angular
frequency ω differs from the optimal choice ω0. Same notations as
in Fig. 1.
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FIG. 3. Robustness function $(η) for η = 0.02 for three different
protocols: one-point protocol with ω1 = ω0 (square), two-point pro-
tocol with ω1 = ω0(1 − ε) and ω2 = ω0(1 + ε) (circle) and the three-
point protocol with ω1 = ω0(1 − ε), ω2 = ω0, and ω3 = ω0(1 + ε)
(triangle). The transport time is ω0tf = 2π×1.25 for the filled
symbols, and ω0tf = 2π×2.5 for the open symbols.

choosing ω1 = ω2 = · · · = ωN = ω0. In Fig. 1, we compare
the one, two, and three frequency protocols with the choice
ωi = ω0. We have plotted both the trajectory x0(t) and the
transient excess of total energy #E(t) during the transport.
The parameters chosen for Fig. 1 are inspired by Ref. [16], in
which a transport of single 40Ca+ ions is performed over a dis-
tance 20 000 a0 where a0 = (!/mω0)1/2 is the harmonic length
associated with the angular frequency ω0 = 2π×1.41 MHz, in
a time ω0tf = 2π×5. We have chosen for Fig. 1 the same atom
and angular frequency ω0 but have considered a transport over
a larger distance, d = 30 000 a0, realized over a much shorter
time duration tf such that ω0tf = 2π×1.25.

We clearly observe in Fig. 2 an impressive increase of the
robustness against the variations of ω about ω0 through the
increasing local flatness about ω0 when N increases. A price
to pay to benefit from this robustness is a more involved trap
trajectory with a clear nonmonotonous character [Fig. 1(a)]
and with an increasingly large transient energy [Fig. 1(b)].1

The oscillatory character of the trajectory can be intuitively un-
derstood. Indeed, to ensure an optimal transport even for a trap
frequency slightly smaller or larger than ω0, one has to design
a trajectory that compensates for the delay or advance that the
two types of trapping about ω0 will imply. Such strategies are
reminiscent of the spin-echo technique in which a succession
of pulses is used to focus the spins toward the desired state
even though they experience different Rabi frequencies [19].

The performance of the protocols can be evaluated by
means of the function

$(η) = 1
2ω0η

∫ ω0(1+η)

ω0(1−η)

#E(tf )
!ω0

dω, (19)

which gives the average excitation number over a finite range of
frequencies about the central angular frequency ω0. It therefore
measures the robustness of the transport against the frequency
of the trap. Figure 3 compares the performance of the 1,2
and 3-point protocols for η = 0.02 and for two different final

1For a transport over a distance d = λa0 in an amount of time
T = 2πµ/ω0, the maximum of the transient energy normalized to
!ω0 scales as (md2/T 2)/!ω0 ∼ λ2/µ2 [5].
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Transport à l’aide d’une pince optique 

Transport magnétique 

A.	Couvert	et	al.,	EuroPhys.	Lett.	83,	13001	(2008)	

W.	Hansel	et	al.	Nature	413,	498	(2001)	 J.	P.	Home	et	al.		Science	325,	1227	(2009)	

Transport électromagnétique (ions) 

Transporter	des	atomes	

Transport	rapide	pour	le	traitement	de	l’information	quantique	

Physics 5, 94 (2012)

Viewpoint

Moving Traps O�er Fast Delivery of Cold Ions

Christian Roos
Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-6020 Innsbruck,

Austria

Published August 20, 2012

Two separate experiments have demonstrated the fast transport of trapped ions using trapping po-

tentials that trace out the path for the ions to follow.

Subject Areas: Atomic and Molecular Physics, Quantum Information

A Viewpoint on:
Coherent Diabatic Ion Transport and Separation in a Multizone Trap Array
R. Bowler, J. Gaebler, Y. Lin, T. R. Tan, D. Hanneke, J. D. Jost, J. P. Home, D. Leibfried, and D. J. Wineland
Phys. Rev. Lett. 109, 080502 (2012) – Published August 20, 2012

Controlling Fast Transport of Cold Trapped Ions
A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger
Phys. Rev. Lett. 109, 080501 (2012) – Published August 20, 2012

Quantum physics experiments with trapped atoms or
ions often require that the particles occupy the lowest
quantum state of the trapping potential. This presents
a challenge when the particles need to be moved to a
di�erent location in order to perform, for example, a
quantum computation. Previous experiments succeeded
in transporting trapped ions, albeit slowly, by modifying
the trapping potential in such a way that the particles re-
main in the lowest energy state throughout the transport.
Two groups of researchers have now succeeded in consid-
erably speeding up ion transport in microfabricated ion
traps. As described in separate papers in Physical Review
Letters[1, 2], the teams propelled the motion by strongly
exciting the ions for a short time before returning them
to their initial state at the end of the transport. The
demonstration of fast transport that preserves the mo-
tional state of trapped ions opens up interesting perspec-
tives in the context of quantum information processing
with trapped ions in multiplexed ion traps.

How can a trapped particle be transported over a dis-
tance without perturbing its motional state? Let’s as-
sume that the particle is trapped in a harmonic potential
well V (x, t) = 1

2mÊ2(x ≠ xú(t))2, whose center xú(t) we
want to displace from location xA to location xB . An
easy solution is to transport the particle adiabatically by
making slow temporal changes to the trapping potential
so that the particle’s wave function can adjust to keep its
center always at the minimum of the potential. This ap-
proach is too slow for quantum computing applications,
as the particle’s acceleration has to stay well below x0Ê2,
where x0 is the ground-state size of the particle and Ê
the particle’s oscillation frequency.

There are, however, other strategies that allow for

much faster transport if one drops the requirement of
preserving the particle’s quantum state during the whole
transport. As an extreme example of a diabatic (energy-
transferring) process, rapid switches in the potential well
can transport the particle within half an oscillation pe-
riod. Specifically, an instantaneous displacement of the
potential well from xA to the midpoint of the line be-
tween xA and xB would give the particle enough energy
so that it can oscillate from xA to xB (like a ball rolling
from one side of a valley to another). When the particle
arrives at xB , the potential well could once again be in-
stantaneously displaced to the endpoint xB . This second
step takes out all the potential energy given to the parti-
cle in the first step and returns the particle to its initial
state.

The above protocol is, however, impractical for two
reasons. First, if the distance L = xB ≠ xA is much
larger than the ground-state size x0, then a huge amount
of energy is transferred to the particle, exciting it to a
motional state with about (L/x0)2 quanta. Under these
conditions, even minute fluctuations of the experimental
control parameter would prevent the particle from ending
up in the desired final quantum state. Second, instanta-
neous potential changes are not achievable. The time
required to switch the potential shape is limited by the
finite bandwidth of the experimental hardware.

The recent experiments [1, 2] from Ryan Bowler and
colleagues at NIST in Boulder, Colorado, and Andreas
Walther and colleagues at the University of Mainz, Ger-
many, followed an intermediate strategy for realizing a
fast, diabatic quantum transport of ions. Both research
groups confined ions in microfabricated linear Paul traps,
which use a combination of static and radio-frequency

DOI: 10.1103/Physics.5.94

URL: http://link.aps.org/doi/10.1103/Physics.5.94
c• 2012 American Physical Society
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Zero-g	experiments	

146 m tall 

110 m drop height 

Free fall: 4.7 s 

Catapult: 9.2 s 

10-5 m/s2 below 
100 Hz 

3 flights per day 

Capsule deceleration 

up to 500 m/s2 

E.	Rasel	
Hannover	

Etat	initial	

Court-circuiter	l’adiabaticité	

Etat	cible	

Transformation	adiabatique	

Transformation	rapide	
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Etat	initial	 Etat	cible	

Transformation	adiabatique	

Transformation	rapide	

Méthodes	numériques	:	contrôle	optimal,	algorithme	génétique,	…	(boîte	noire)		
	
Méthodes	analytiques	:	requiert	la	modélisation	adéquate	du	système	à	piloter.	

Court-circuiter	l’adiabaticité	

Transformation	rapide	par	
façonnage	temporel	d’hamiltonien	

Les	méthodes	exactes	

La	problématique	des	Shortcuts	To	Adiabaticity	(STA)	

1-	Transitionless	tracking	algorithm		
	
2-	Les	invariants	dynamiques	
	
3-	Fast-forward	
	
4-	…	

Transformation		
adiabatique	
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2m
+ U(x − x0(t))

H2(t) =
p2

2m
+ U(x − x0(t)) − mẍ0x

H(t) I(t) I†(t) = I(t)

dI
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=

∂I

∂t
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1

ih̄
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I(t)|φn(t)⟩ = λn(t)|φn(t)⟩, λn(t)

λn(t) = λn

I(t) =
∑

n

|φn(t)⟩λn⟨φn(t)|
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Manipulation	d’un	moment	magnétique	

Si	on	choisit	un	chemin	dépendant	du	temps	arbitraire	sur	cette	sphère,	on	peut	
en	inversant	l’équation	[1]	déduire	le	champ	magnétique	qui	imposera	cette	
trajectoire	

X

Y

Z

M.	V.		Berry	J.	Phys.	A	42	365303	(2009)	
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Précession	quand	le	champ	est	constant	

La	norme	de													est	constante,	ce	vecteur	évolue	donc	
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Retournement	du	moment	magnétique	

inversion	de	population	
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Retournement	en	présence	de	dispersion	
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Robustesse	vis-à-vis	d’une	disparité	des	fréquences	de	Rabi	Ω0

Retournement	en	présence	de	dispersion	(écho	de	spin)	

Roos	&	Molmer,	PRA	69,	022321	(2004)	
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C. Inverting the precession equation

Alternatively, we can work out the equations of motion
for the mean value of the spin

dhs1i
dt

=
1

i~ h[s1, H]i = �1hs1i ⇥B(t). (7)

In the following, we note S1 = 2hs1i/~ and
use the spherical coordinates to describe the
motion of the spin on the Bloch sphere:
S1(sin ✓(t) cos'(t), sin ✓(t) sin'(t), cos ✓(t)). To work
out our reverse protocol, we calculate the left-hand side
of precession equations (7)

Ṡ1x = ✓̇ cos ✓ cos'� '̇ sin ✓ sin', (8)

Ṡ1y = ✓̇ cos ✓ sin'+ '̇ sin ✓ cos', (9)

Ṡ1z = �✓̇ sin ✓. (10)

Combining Eqs. (8)-(10), we get

✓̇ = �1 (By cos'�Bx sin') , (11)

'̇ = �1[Bz � cot ✓(Bx cos'+By sin')], (12)

from which we infer the expression of the transverse mag-
netic field components. With this set of equations we al-
ready obtain a class of solution by setting Bx = Bz = 0
and ' = 0, we find ✓̇ = �1By. The reverse engineering
protocol consists here in choosing for ✓(t) a function that
obeys the boundary conditions ✓(0) = 0 and ✓(tf ) = ⇡,
and to infer from it the expression for By(t). We can
readily recover here also the ⇡-pulse solution.

It is interesting to let the possibility to shape any curve
on the Bloch sphere [45]. For this purpose, we need non
trivial dependence of both ✓(t) and '(t). However, as
suggested by Eqs. (11) and (12), we can engineer only
transverse magnetic field components and impose the
variation of the longitudinal magnetic field component.
This choice amounts to using explicitly the non unique-
ness of the solution. The solution is then quite simple,
we set the evolution of ✓(t), '(t) and Bz(t) according to
our boundary conditions. We have to be careful since we
need to avoid divergences. This means that we have to
take care of the terms having a tan ✓. This latter terms
diverge for ✓ = ⇡/2, at time t = t

⇤ for which ✓(t⇤) = ⇡/2.
To compensate for this divergence, we have to cancel also
'̇(t⇤) = 0 and B1z(t⇤) = 0. A way out for the last term
consists in choosing B1z(t) = B0 cos(✓(t)). The set of
equations (11) and (12) then reads

Bx = � ✓̇

�1
sin'� '̇

�1
tan ✓ cos'+B0 sin ✓ cos', (13)

By =
✓̇

�1
cos'� '̇

�1
tan ✓ sin'+B0 sin ✓ sin'. (14)

Consider the following example, we want to spin flip
the spin from |+i to |�i in an amount of time t = tf . For
convenience, we use in the following the dimensionless
time s = t/tf . We use the boundary conditions ✓(0) = 0
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FIG. 1. (a) Evolution of the magnetic field components
Bz/B0 (solid line), By/B0 (dashed line) and Bx/B0 (dot-
ted line) as a function of time. The shaping of the magnetic
field components is obtained self-consistently from a reverse
engineering protocol in which we impose the variations of the
spin components according to the target state (spin flip in this
case) and the time duration of the transformation. (b) Spin
components S1z (solid line), S1y (dashed line) and S1x (dot-
ted line) as a function of time. Parameters: �̃1(⌘ �1tf ) = 2,
B0 = 1.

and ✓(1) = ⇡. The simplest polynomial interpolation
between those two boundary conditions is ✓(s) = ⇡s. In
this case, s⇤ = 1/2. The boundary conditions for ' are
therefore '(0) = 0, '(1) = 0 and '̇(1/2) = 0. We choose
here a polynomial ansatz '(s) = s � s

2 to fulfill those
conditions. Equations (13) and (14) take then the simple
form

Bx = � ⇡

�1tf
sin(s� s

2)� 1� 2s

�1tf
tan(⇡s) cos(s� s

2)

+ B0 sin(⇡s) cos(s� s
2), (15)

By =
⇡

�1tf
cos(s� s

2)� 1� 2s

�1tf
tan(⇡s) sin(s� s

2)

+ B0 sin(⇡s) sin(s� s
2). (16)

Figures (1a) and (1b) provide respectively the evolution
of the components of the magnetic field and of the spin.
The choice of smooth polynomial ansatz for the reverse
engineering protocol generates a smooth solution. As
intuitively expected, the shorter tf , the larger the varia-
tion. This feature can be seen directly on Eqs. (15) and
(16) through the 1/tf factors.
In conclusion of this section, we have shown that dif-

ferent formulations of the same problem yield di↵erent

Interpolation	
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take care of the terms having a tan ✓. This latter terms
diverge for ✓ = ⇡/2, at time t = t

⇤ for which ✓(t⇤) = ⇡/2.
To compensate for this divergence, we have to cancel also
'̇(t⇤) = 0 and B1z(t⇤) = 0. A way out for the last term
consists in choosing B1z(t) = B0 cos(✓(t)). The set of
equations (11) and (12) then reads

Bx = � ✓̇

�1
sin'� '̇

�1
tan ✓ cos'+B0 sin ✓ cos', (13)

By =
✓̇

�1
cos'� '̇

�1
tan ✓ sin'+B0 sin ✓ sin'. (14)

Consider the following example, we want to spin flip
the spin from |+i to |�i in an amount of time t = tf . For
convenience, we use in the following the dimensionless
time s = t/tf . We use the boundary conditions ✓(0) = 0
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FIG. 1. (a) Evolution of the magnetic field components
Bz/B0 (solid line), By/B0 (dashed line) and Bx/B0 (dot-
ted line) as a function of time. The shaping of the magnetic
field components is obtained self-consistently from a reverse
engineering protocol in which we impose the variations of the
spin components according to the target state (spin flip in this
case) and the time duration of the transformation. (b) Spin
components S1z (solid line), S1y (dashed line) and S1x (dot-
ted line) as a function of time. Parameters: �̃1(⌘ �1tf ) = 2,
B0 = 1.

and ✓(1) = ⇡. The simplest polynomial interpolation
between those two boundary conditions is ✓(s) = ⇡s. In
this case, s⇤ = 1/2. The boundary conditions for ' are
therefore '(0) = 0, '(1) = 0 and '̇(1/2) = 0. We choose
here a polynomial ansatz '(s) = s � s

2 to fulfill those
conditions. Equations (13) and (14) take then the simple
form
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Figures (1a) and (1b) provide respectively the evolution
of the components of the magnetic field and of the spin.
The choice of smooth polynomial ansatz for the reverse
engineering protocol generates a smooth solution. As
intuitively expected, the shorter tf , the larger the varia-
tion. This feature can be seen directly on Eqs. (15) and
(16) through the 1/tf factors.
In conclusion of this section, we have shown that dif-

ferent formulations of the same problem yield di↵erent
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C. Inverting the precession equation
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from which we infer the expression of the transverse mag-
netic field components. With this set of equations we al-
ready obtain a class of solution by setting Bx = Bz = 0
and ' = 0, we find ✓̇ = �1By. The reverse engineering
protocol consists here in choosing for ✓(t) a function that
obeys the boundary conditions ✓(0) = 0 and ✓(tf ) = ⇡,
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suggested by Eqs. (11) and (12), we can engineer only
transverse magnetic field components and impose the
variation of the longitudinal magnetic field component.
This choice amounts to using explicitly the non unique-
ness of the solution. The solution is then quite simple,
we set the evolution of ✓(t), '(t) and Bz(t) according to
our boundary conditions. We have to be careful since we
need to avoid divergences. This means that we have to
take care of the terms having a tan ✓. This latter terms
diverge for ✓ = ⇡/2, at time t = t

⇤ for which ✓(t⇤) = ⇡/2.
To compensate for this divergence, we have to cancel also
'̇(t⇤) = 0 and B1z(t⇤) = 0. A way out for the last term
consists in choosing B1z(t) = B0 cos(✓(t)). The set of
equations (11) and (12) then reads

Bx = � ✓̇
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sin'� '̇

�1
tan ✓ cos'+B0 sin ✓ cos', (13)
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✓̇

�1
cos'� '̇
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Consider the following example, we want to spin flip
the spin from |+i to |�i in an amount of time t = tf . For
convenience, we use in the following the dimensionless
time s = t/tf . We use the boundary conditions ✓(0) = 0
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FIG. 1. (a) Evolution of the magnetic field components
Bz/B0 (solid line), By/B0 (dashed line) and Bx/B0 (dot-
ted line) as a function of time. The shaping of the magnetic
field components is obtained self-consistently from a reverse
engineering protocol in which we impose the variations of the
spin components according to the target state (spin flip in this
case) and the time duration of the transformation. (b) Spin
components S1z (solid line), S1y (dashed line) and S1x (dot-
ted line) as a function of time. Parameters: �̃1(⌘ �1tf ) = 2,
B0 = 1.

and ✓(1) = ⇡. The simplest polynomial interpolation
between those two boundary conditions is ✓(s) = ⇡s. In
this case, s⇤ = 1/2. The boundary conditions for ' are
therefore '(0) = 0, '(1) = 0 and '̇(1/2) = 0. We choose
here a polynomial ansatz '(s) = s � s

2 to fulfill those
conditions. Equations (13) and (14) take then the simple
form
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Figures (1a) and (1b) provide respectively the evolution
of the components of the magnetic field and of the spin.
The choice of smooth polynomial ansatz for the reverse
engineering protocol generates a smooth solution. As
intuitively expected, the shorter tf , the larger the varia-
tion. This feature can be seen directly on Eqs. (15) and
(16) through the 1/tf factors.
In conclusion of this section, we have shown that dif-

ferent formulations of the same problem yield di↵erent
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FIG. 2. (color online) We design the magnetic field B(⌘,, t)
components as a function of time to ensure the exact spin flip
of spin 1 (of gyromagnetic factor �1) in an amount of time
tf . The parameter space of such solutions has two free extra
parameters ⌘ and . We then calculate the evolution of spin
2 in the time interval [0, tf ) in the presence of B(⌘,, t). We
plot the probability, �, that spin 2 remains in its initial state
as a function of �2/�1 and ⌘ parameter for di↵erent values of
the  parameter: (a)  = 0.5, (b)  = 2.5, (c)  = 3.1 and
(d)  = 4.5.
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FIG. 3. Example for which the same B(t) spin flips perfectly
3 di↵erent spin having di↵erent gyromagnetic factor: (a) �1 =
2, (b) �2 = 5.34 and (c) �3 = 8.94. Parameters:  = 0.5 and
⌘ = 5.Note that the result for �2 is reminiscent of the spin
echo strategy: to increase the trajectory a loop is done. Two
loops are required for the third case.

the subset of parameters that also ensure the spin flip
of the second spin. We therefore use a more involved
'(s) ansatz with two free parameters,  and ⌘: '(s) =

⇥
s+ (⌘ � 1)s2 � 2⌘s3 + ⌘s

4
⇤
. This interpolating func-

tion fulfills the required boundary conditions '(0) = 0,
'(1) = 0 and '̇(1/2) = 0. Using Eqs. (??), we can read-
ily infer the time-dependent components of the magnetic
field that one should apply.

In Fig. 2, we plot � = 1 � |h�| (tf )i|2 = (1 � S2z)/2
as a function of the two parameters �2/�1 and ⌘, and
this for di↵erent values of . � provides a direct mea-
surement of the projection of the spin on the z axis at
the end of the transformation. The blue zone are those
for which we approach the target of a perfect reversing of
spin two. This calculation shows (i) that whatever is the

ratio �2/�1 there exists a couple of (⌘,) parameters that
will ensure a perfect rotation of the two spins despite the
fact that their coupling strength to the magnetic field is
di↵erent and (ii) the existence of dense blue zones (for
�2 ⇠ �1) for which the rotation for both spin can be
very good, this feature is the one required for robustness
against dispersion of the values of �2 (see below). The
existence of many curves with minimum values of � in
Fig. 2 means that we can simultaneously spin flip spins
having di↵erent gyromagnetic factors with the appropri-
ate magnetic field. An example is depicted in Fig. 3 for
three di↵erent spins where we have represented on the
Bloch sphere the time-evolution of each spin. Interest-
ingly, our protocol generates loops on the Bloch sphere
to ensure that all spin trajectories end up at the oppo-
site pole at the same time. The one loop trajectory is
reminiscent of the spin echo technique but is generated
automatically by our protocol.

B. Magnetic field shaping to ensure the robustness
of the spin flip procedure

The inverse protocol procedure is well adapted to add
further constraints. An important issue is to design spin
flips protocols that are robust against the dispersion in
the parameters governing the time evolution of the sys-
tem. A standard example is provided by the dispersion of
Larmor frequencies of an ensemble of two-level systems in
liquid and solid NMR experiments [10]. This question is
important for the implementation of quantum computing
algorithm [11, 12].
To address this issue, we introduce ⇤(✏) which mea-

sures an average distance towards the exact spin flip by
averaging the di↵erent probabilities of remaining in the
initial state in an interval of size 2�̄✏ about the mean
gyromagnetic factor �̄ under consideration:

⇤(✏) =
1

2�̄✏

Z �̄(1+✏)

�̄(1�✏)
�(�2)d�2. (20)

Figure 4 shows the decimal logarithm of the robustness
function ⇤ as a function of  where ✏ = 0.01 and ⌘ = 20
is fixed. We observe the existence of a set of discrete
“magic” values for  that ensures an optimal spin flips.
The quality of the spin flips increases with the value of the
magic  value. For instance, we get log10[⇤(✏ = 0.01)] =
�7.8815924194 for the first magic value  = 2.056368,
log10[⇤(✏ = 0.01)] = �8.712660398177 for  = 3.26205.
We have also represented the evolution of the second
spin on the Bloch sphere in the inset of Fig. 4 for
 = 9.18918 which corresponds to log10[⇤(✏ = 0.01)] =
�9.42973096210676.
For a given time duration tf of the process, the ro-

bustness increases at the expense of an increasingly large
transient magnetic field amplitude. Note that the use of
high optimal values of magic  may yield many rotations
of the spin on the Bloch sphere (see the inset of Fig. 4).
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FIG. 2. (color online) We design the magnetic field B(⌘,, t)
components as a function of time to ensure the exact spin flip
of spin 1 (of gyromagnetic factor �1) in an amount of time
tf . The parameter space of such solutions has two free extra
parameters ⌘ and . We then calculate the evolution of spin
2 in the time interval [0, tf ) in the presence of B(⌘,, t). We
plot the probability, �, that spin 2 remains in its initial state
as a function of �2/�1 and ⌘ parameter for di↵erent values of
the  parameter: (a)  = 0.5, (b)  = 2.5, (c)  = 3.1 and
(d)  = 4.5.
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FIG. 3. Example for which the same B(t) spin flips perfectly
3 di↵erent spin having di↵erent gyromagnetic factor: (a) �1 =
2, (b) �2 = 5.34 and (c) �3 = 8.94. Parameters:  = 0.5 and
⌘ = 5.Note that the result for �2 is reminiscent of the spin
echo strategy: to increase the trajectory a loop is done. Two
loops are required for the third case.

the subset of parameters that also ensure the spin flip
of the second spin. We therefore use a more involved
'(s) ansatz with two free parameters,  and ⌘: '(s) =

⇥
s+ (⌘ � 1)s2 � 2⌘s3 + ⌘s

4
⇤
. This interpolating func-

tion fulfills the required boundary conditions '(0) = 0,
'(1) = 0 and '̇(1/2) = 0. Using Eqs. (??), we can read-
ily infer the time-dependent components of the magnetic
field that one should apply.

In Fig. 2, we plot � = 1 � |h�| (tf )i|2 = (1 � S2z)/2
as a function of the two parameters �2/�1 and ⌘, and
this for di↵erent values of . � provides a direct mea-
surement of the projection of the spin on the z axis at
the end of the transformation. The blue zone are those
for which we approach the target of a perfect reversing of
spin two. This calculation shows (i) that whatever is the

ratio �2/�1 there exists a couple of (⌘,) parameters that
will ensure a perfect rotation of the two spins despite the
fact that their coupling strength to the magnetic field is
di↵erent and (ii) the existence of dense blue zones (for
�2 ⇠ �1) for which the rotation for both spin can be
very good, this feature is the one required for robustness
against dispersion of the values of �2 (see below). The
existence of many curves with minimum values of � in
Fig. 2 means that we can simultaneously spin flip spins
having di↵erent gyromagnetic factors with the appropri-
ate magnetic field. An example is depicted in Fig. 3 for
three di↵erent spins where we have represented on the
Bloch sphere the time-evolution of each spin. Interest-
ingly, our protocol generates loops on the Bloch sphere
to ensure that all spin trajectories end up at the oppo-
site pole at the same time. The one loop trajectory is
reminiscent of the spin echo technique but is generated
automatically by our protocol.

B. Magnetic field shaping to ensure the robustness
of the spin flip procedure

The inverse protocol procedure is well adapted to add
further constraints. An important issue is to design spin
flips protocols that are robust against the dispersion in
the parameters governing the time evolution of the sys-
tem. A standard example is provided by the dispersion of
Larmor frequencies of an ensemble of two-level systems in
liquid and solid NMR experiments [10]. This question is
important for the implementation of quantum computing
algorithm [11, 12].
To address this issue, we introduce ⇤(✏) which mea-

sures an average distance towards the exact spin flip by
averaging the di↵erent probabilities of remaining in the
initial state in an interval of size 2�̄✏ about the mean
gyromagnetic factor �̄ under consideration:

⇤(✏) =
1

2�̄✏

Z �̄(1+✏)

�̄(1�✏)
�(�2)d�2. (20)

Figure 4 shows the decimal logarithm of the robustness
function ⇤ as a function of  where ✏ = 0.01 and ⌘ = 20
is fixed. We observe the existence of a set of discrete
“magic” values for  that ensures an optimal spin flips.
The quality of the spin flips increases with the value of the
magic  value. For instance, we get log10[⇤(✏ = 0.01)] =
�7.8815924194 for the first magic value  = 2.056368,
log10[⇤(✏ = 0.01)] = �8.712660398177 for  = 3.26205.
We have also represented the evolution of the second
spin on the Bloch sphere in the inset of Fig. 4 for
 = 9.18918 which corresponds to log10[⇤(✏ = 0.01)] =
�9.42973096210676.
For a given time duration tf of the process, the ro-

bustness increases at the expense of an increasingly large
transient magnetic field amplitude. Note that the use of
high optimal values of magic  may yield many rotations
of the spin on the Bloch sphere (see the inset of Fig. 4).
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4

class of solutions. Within a given formulation, there is
an infinitely large number of solutions for given bound-
ary conditions. Those observations are useful to setup
protocols for which we can add more constraints. In the
following, we discuss the simultaneous spin flip of two
spin having di↵erent gyromagnetic factors with the same
time-dependent magnetic field, and the design of mag-
netic field trajectories that ensure an optimal spin flip
fidelity robust against the value of the exact value of
the gyromagnetic factor. We will focus on the preces-
sion equations which presents the advantage of a direct
possible visualization of the spin trajectory on the Bloch
sphere.

III. SIMULTANEOUS CONTROL OF TWO
DIFFERENT SPINS
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FIG. 2. (color online) We design the magnetic field B(⌘,, t)
components as a function of time to ensure the exact spin flip
of spin 1 (of gyromagnetic factor �1) in an amount of time
tf . The parameter space of such solutions has two free extra
parameters ⌘ and . We then calculate the evolution of spin
2 in the time interval [0, tf ) in the presence of B(⌘,, t). We
plot the probability, �, that spin 2 remains in its initial state
as a function of �2/�1 and ⌘ parameter for di↵erent values of
the  parameter: (a)  = 0.5, (b)  = 2.5, (c)  = 3.1 and
(d)  = 4.5.

A. Spin flip of di↵erent spins

We now consider a second spin S2 having a di↵erent gy-
romagnetic factor �2 (we assume that there is no interac-
tions between the two spins) [56, 57]. To setup the reverse
engineering protocol allowing to control both spins with
the same time-dependent magnetic field, we proceed in
the following manner: we enlarge the space of functions

a) b) c)

FIG. 3. Example for which the same B(t) spin flips perfectly
3 di↵erent spin having di↵erent gyromagnetic factor: (a) �1 =
2, (b) �2 = 5.34 and (c) �3 = 8.94. Parameters:  = 0.5 and
⌘ = 5.

that flip the first spin, and search for the subset of param-
eters that also ensure the spin flip of the second spin. We
shall use the same variation as previously for ✓ (= ⇡s) but
a more involved '(s) ansatz with two free parameters, 
and ⌘: '(s) = 

⇥
s+ (⌘ � 1)s2 � 2⌘s3 + ⌘s

4
⇤
. This in-

terpolating function fulfills the required boundary condi-
tions '(0) = 0, '(1) = 0 and '̇(1/2) = 0. Using Eqs. (13)
and (14), we can readily infer the time-dependent com-
ponents of the magnetic field that one should apply.
In Fig. 2, we plot � = 1 � |h�| (tf )i|2 = (1 + S2z)/2

as a function of the two parameters �2/�1 and ⌘, and
this for di↵erent values of . � provides a direct mea-
surement of the projection of the spin on the z axis at
the end of the transformation. The blue zone are those
for which we approach the target of a perfect reversing of
spin two. This calculation shows (i) that whatever is the
ratio �2/�1 there exists a couple of (⌘,) parameters that
will ensure a perfect rotation of the two spins despite the
fact that their coupling strength to the magnetic field is
di↵erent and (ii) the existence of dense blue zones (for
�2 ⇠ �1) for which the rotation for both spin can be
very good, this feature is the one required for robustness
against dispersion of the values of �2 (see below). Actu-
ally, the existence of many curves with minimum values
of � in Fig. 2 means that we can simultaneously spin flip
many spins having di↵erent gyromagnetic factors with
the appropriate magnetic field. An example is depicted
in Fig. 3 for three di↵erent spins where we have repre-
sented on the Bloch sphere the time-evolution of each
spin. Interestingly, our protocol generates loops on the
Bloch sphere to ensure that all spin trajectories end up
at the opposite pole at the same time. The one loop tra-
jectory is reminiscent of the spin echo technique but is
here generated automatically by our protocol.

B. Magnetic field shaping to ensure the robustness
of the spin flip protocol

The reverse engineering protocol is well adapted to add
further constraints. An important issue is to design spin
flip protocols that are robust against the dispersion in
the parameters governing the time evolution of the sys-
tem. A standard example is provided by the dispersion
of Larmor frequencies of an ensemble of two-level sys-
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class of solutions. Within a given formulation, there is
an infinitely large number of solutions for given bound-
ary conditions. Those observations are useful to setup
protocols for which we can add more constraints. In the
following, we discuss the simultaneous spin flip of two
spin having di↵erent gyromagnetic factors with the same
time-dependent magnetic field, and the design of mag-
netic field trajectories that ensure an optimal spin flip
fidelity robust against the value of the exact value of
the gyromagnetic factor. We will focus on the preces-
sion equations which presents the advantage of a direct
possible visualization of the spin trajectory on the Bloch
sphere.
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FIG. 2. (color online) We design the magnetic field B(⌘,, t)
components as a function of time to ensure the exact spin flip
of spin 1 (of gyromagnetic factor �1) in an amount of time
tf . The parameter space of such solutions has two free extra
parameters ⌘ and . We then calculate the evolution of spin
2 in the time interval [0, tf ) in the presence of B(⌘,, t). We
plot the probability, �, that spin 2 remains in its initial state
as a function of �2/�1 and ⌘ parameter for di↵erent values of
the  parameter: (a)  = 0.5, (b)  = 2.5, (c)  = 3.1 and
(d)  = 4.5.

A. Spin flip of di↵erent spins

We now consider a second spin S2 having a di↵erent gy-
romagnetic factor �2 (we assume that there is no interac-
tions between the two spins) [56, 57]. To setup the reverse
engineering protocol allowing to control both spins with
the same time-dependent magnetic field, we proceed in
the following manner: we enlarge the space of functions

a) b) c)

FIG. 3. Example for which the same B(t) spin flips perfectly
3 di↵erent spin having di↵erent gyromagnetic factor: (a) �1 =
2, (b) �2 = 5.34 and (c) �3 = 8.94. Parameters:  = 0.5 and
⌘ = 5.

that flip the first spin, and search for the subset of param-
eters that also ensure the spin flip of the second spin. We
shall use the same variation as previously for ✓ (= ⇡s) but
a more involved '(s) ansatz with two free parameters, 
and ⌘: '(s) = 

⇥
s+ (⌘ � 1)s2 � 2⌘s3 + ⌘s

4
⇤
. This in-

terpolating function fulfills the required boundary condi-
tions '(0) = 0, '(1) = 0 and '̇(1/2) = 0. Using Eqs. (13)
and (14), we can readily infer the time-dependent com-
ponents of the magnetic field that one should apply.
In Fig. 2, we plot � = 1 � |h�| (tf )i|2 = (1 + S2z)/2

as a function of the two parameters �2/�1 and ⌘, and
this for di↵erent values of . � provides a direct mea-
surement of the projection of the spin on the z axis at
the end of the transformation. The blue zone are those
for which we approach the target of a perfect reversing of
spin two. This calculation shows (i) that whatever is the
ratio �2/�1 there exists a couple of (⌘,) parameters that
will ensure a perfect rotation of the two spins despite the
fact that their coupling strength to the magnetic field is
di↵erent and (ii) the existence of dense blue zones (for
�2 ⇠ �1) for which the rotation for both spin can be
very good, this feature is the one required for robustness
against dispersion of the values of �2 (see below). Actu-
ally, the existence of many curves with minimum values
of � in Fig. 2 means that we can simultaneously spin flip
many spins having di↵erent gyromagnetic factors with
the appropriate magnetic field. An example is depicted
in Fig. 3 for three di↵erent spins where we have repre-
sented on the Bloch sphere the time-evolution of each
spin. Interestingly, our protocol generates loops on the
Bloch sphere to ensure that all spin trajectories end up
at the opposite pole at the same time. The one loop tra-
jectory is reminiscent of the spin echo technique but is
here generated automatically by our protocol.

B. Magnetic field shaping to ensure the robustness
of the spin flip protocol

The reverse engineering protocol is well adapted to add
further constraints. An important issue is to design spin
flip protocols that are robust against the dispersion in
the parameters governing the time evolution of the sys-
tem. A standard example is provided by the dispersion
of Larmor frequencies of an ensemble of two-level sys-
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permet	de	réaliser	des		
protocoles	ultrarobustes	

Manipuler	simultanément	deux	moments	magnétiques	différents	(2)	

(a) κ = 0,5	
(b) κ = 2,5 	
(c)  κ = 3,1	
(d) κ = 4,5	


