Comment accélérer un processus physique ?

David Guéry-Odelin

Laboratoire Collisions Agrégats Réactivité

Sérendipité (anglicisme...)

La sérendipité est le fait de réaliser une découverte scientifique ou une invention technique de façon inattendue à la suite d'un concours de circonstances fortuit et très souvent dans le cadre d'une recherche concernant un autre sujet.

La sérendipité est le fait de «trouver autre chose que ce que l'on cherchait »

PLAN DE L'EXPOSE

1- Transport d'atomes

2- Manipulation d'un moment magnétique

3- Compression / décompression

4- Extension des méthodes à la physique statistiques - applications

1- Le gaz piégé

2- La bille dans une pince optique

3- La pointe de microscope

CONCLUSION

Transporter une particule dans une pince optique

Transport à l'aide d'une pince optique A. Couvert et al., EuroPhys. Lett. 83, 13001 (2008)

La pince optique exploite la polarisabilité

$$
\begin{aligned}
& \vec{p}=\varepsilon_{0} \alpha \vec{E}_{L} \\
& W(\vec{r})=-\frac{1}{2} \vec{p} \cdot \vec{E}_{L}=-\frac{\varepsilon_{0} \alpha}{2}\left|\vec{E}_{L}(\vec{r})\right|^{2}
\end{aligned}
$$

Transporter une particule dans une pince optique

Transport à l'aide d'une pince optique A. Couvert et al., EuroPhys. Lett. 83, 13001 (2008)

Au voisinage du minimum de potentiel (correspondant au maximum d'intensité)

$$
\begin{aligned}
W \propto-I(\vec{r}) & \simeq\left(m \omega_{\perp}^{2} r_{\perp}^{2}+m \omega_{0}^{2} z^{2}\right) / 2 \\
\left|\vec{F}_{\perp}\right| \gg\left|\vec{F}_{\|}\right| & \Longrightarrow \quad \omega_{\perp} \gg \omega_{\|}
\end{aligned}
$$

Un déplacement « adiabatique» le long de l’axe longitudinal prend du temps ...
Evolution assez lente

Transport : deux stratégies complémentaires

Stratégie 1

$$
H_{1}(t)=\frac{p^{2}}{2 m}+U\left(x-x_{0}(t)\right)
$$

On choisit $x_{0}(t)$ de manière adéquate

Stratégie 2

$$
H_{2}(t)=\frac{p^{2}}{2 m}+U\left(x-x_{0}(t)\right)-m \ddot{x}_{0} x
$$

On applique une force homogène dépendante du temps

La particule bouge dans le potentiel sous l'action de la force d'inertie d'entraînement. On peut envisager de contrecarrer cette force à chaque instant.

Question Pour la stratégie 1, peut-on choisir librement le temps de transport ou est-on obliger de choisir un temps « magique » ?
Comment déterminer $x_{0}(t) ?$
? $\ddot{x}+\omega_{0}^{2}\left(x-x_{0}(t)\right)=0$
Conditions aux limites $x(0)=0, \dot{x}(0)=0, \ddot{x}(0)=0$,

\[\)| Méthode dite de « reverse engineering " |
| :--- |
| Choisir une fonction $\quad x(t) \quad \text { qui remplit les conditions aux limites, }$ |
| puis déduire de l'équation du mouvement l'expression de $x_{0}(t)$ |
| Us $\left(t_{f}\right)=0, \ddot{x}\left(t_{f}\right)=0$ |

\]

Usage inverse des équations différentielles

Comment déterminer $x_{0}(t)$ et garantir la robustesse de la solution ?

On montre que l'excès d'énergie après transport se met sous la
forme d'une transformée de Fourier pour $\omega=\omega_{0}$

$$
\Delta E\left(t_{f}\right)=\frac{m}{2}\left|\int_{0}^{t_{f}} \ddot{x}_{0}\left(t^{\prime}\right) e^{-i \omega_{0} t^{\prime}} d t^{\prime}\right|^{2}
$$

La question qui se pose est donc la suivante Comment façonner les zéros de cette transformée de Fourier ?

Une petite astuce mathématique

$$
F(\omega)=\left|\int_{0}^{t_{f}} \ddot{x}_{0}\left(t^{\prime}\right) e^{-i \omega t} d t^{\prime}\right|
$$

On introduit la fonction auxiliaire $g(t)$ qui obéit aux conditions limites

$$
g(0)=g\left(t_{f}\right)=0, \quad g^{\prime}(0)=g^{\prime}\left(t_{f}\right)=0, \quad g^{\prime \prime}(0)=g^{\prime \prime}\left(t_{f}\right)=0
$$

On définit l'accélération du potentiel par le biais de la fonction auxiliaire selon

$$
\ddot{x}_{0}=\frac{d^{2} g}{d t^{2}}+\omega_{0}^{2} g
$$

Pour que cela soit cohérent, on ajoute les conditions intégrales

$$
\int_{0}^{t_{f}} g(t) \mathrm{d} t=0 \quad \text { and } \quad \int_{0}^{t_{f}} \mathrm{~d} t^{\prime} \int_{0}^{t^{\prime}} g\left(t^{\prime \prime}\right) \mathrm{d} t^{\prime \prime}=d .
$$

Après intégration par parties, on a
$F(\omega)=\left|\left(\omega^{2}-\omega_{0}^{2}\right) \int_{0}^{t_{f}} g\left(t^{\prime}\right) e^{-i \omega t} d t^{\prime}\right| \quad \begin{aligned} & \text { Par construction, on a un zéro } \\ & \text { pour la valeur attendue! }\end{aligned}$

$$
F\left(\omega_{0}\right)=0
$$

Généralisation immédiate

$$
\ddot{x}_{0}(t)=\frac{\mathrm{d}^{4} g}{\mathrm{~d} t^{4}}+\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \frac{\mathrm{d}^{2} g}{\mathrm{~d} t^{2}}+\omega_{1}^{2} \omega_{2}^{2} g(t)
$$

Avec un choix approprié pour les conditions aux limites

$$
\begin{aligned}
& F(\omega)=\left|\left(\omega^{2}-\omega_{1}^{2}\right)\left(\omega^{2}-\omega_{2}^{2}\right) \int_{0}^{t_{f}} e^{-i \omega t^{\prime}} g\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right| . \\
& F\left(\omega_{1}\right)=F\left(\omega_{2}\right)=0
\end{aligned}
$$

Conséquence : Transport optimal simultané de deux particules différentes !
Cette méthode peut également être mise à profit pour améliorer la robustesse du transport

Incidemment, ici aussi un nouvel usage des équations différentielles
Rar rapport à la fréquence de piégage

Transport rapide pour le traitement de l'information quantique

Physicics

Viewpoint

Moving Traps Offer Fast Delivery of Cold Ions

Christian Roos

Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-6020 Innsbruck, Austria
Published August 20, 2012
Two separate experiments have demonstrated the fast transport of trapped ions using trapping potentials that trace out the path for the ions to follow.

Subject Areas: Atomic and Molecular Physics, Quantum Information

A Viewpoint on:
Coherent Diabatic Ion Transport and Separation in a Multizone Trap Array
R. Bowler, J. Gaebler, Y. Lin, T. R. Tan, D. Hanneke, J. D. Jost, J. P. Home, D. Leibfried, and D. J. Wineland Phys. Rev. Lett. 109, 080502 (2012) - Published August 20, 2012

Controlling Fast Transport of Cold Trapped Ions
A. Walther, F. Ziesel, T. Ruster, S. T. Dawkins, K. Ott, M. Hettrich, K. Singer, F. Schmidt-Kaler, and U. Poschinger Phys. Rev. Lett. 109, 080501 (2012) - Published August 20, 2012

Court-circuiter l'adiabaticité

PLAN DE L'EXPOSE

1- Transport d'atomes

2- Manipulation d'un moment magnétique

3- Compression / décompression

4- Extension des méthodes à la physique statistiques - applications

1- Le gaz piégé

2- La bille dans une pince optique

3- La pointe de microscope

CONCLUSION

Manipulation d'un moment magnétique

$W=-\vec{M} \cdot \vec{B}(\vec{r}, t)$
Précession quand le champ est constant
$\frac{d \vec{M}}{d t}=\vec{\omega}_{0} \times \vec{M}$
[1] avec $\vec{\omega}_{0}=-\gamma \vec{B}$

La norme de $\vec{M}(t)$ est constante, ce vecteur évolue donc sur une sphère

Si on choisit un chemin dépendant du temps arbitraire sur cette sphère, on peut en inversant l'équation [1] déduire le champ magnétique qui imposera cette trajectoire

$$
\vec{B}(t)=\vec{B}_{0}(t) \frac{\vec{M}(t)}{\|\vec{M}\|}-\frac{1}{\gamma} \frac{\vec{M}(t) \times \frac{d \vec{M}}{d t}}{\|\vec{M}\|^{2}}
$$

Retournement du moment magnétique

Impulsion π_{x}

Stratégie de renversement optimal	
$\begin{gathered} \frac{d \vec{M}}{d t}=\vec{\omega}_{0} \times \vec{M} \\ \dot{\theta}=\gamma_{1}\left(B_{y} \cos \varphi-B_{x} \sin \varphi\right), \\ \dot{\varphi}=\gamma_{1}\left[B_{z}-\cot \theta\left(B_{x} \cos \varphi+B_{y} \sin \varphi\right)\right] \end{gathered}$	
On impose les conditions aux limites	
$\begin{array}{llc} \theta(0)=0 & \theta(T)=\pi & \text { Interpolation } \\ \varphi(0)=0 & \varphi(T)=0 & \theta(s)=\pi s \\ \cdots & & \varphi(s)=s-s^{2} \end{array}$	$B_{x}(t) \& B_{z}(t)$

Manipuler simultanément deux moments magnétiques différents (2)

(a) $\mathrm{K}=0,5$
(b) $k=2,5$
(c) $\mathrm{K}=3,1$
(d) $\kappa=4,5$
permet de réaliser des protocoles ultrarobustes

