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Fast quantum control in dissipative 
systems using dissipationless 
solutions
François Impens1 & David Guéry-odelin2,3

We report on a systematic geometric procedure, built up on solutions designed in the absence of 
dissipation, to mitigate the effects of dissipation in the control of open quantum systems. Our method 
addresses a standard class of open quantum systems that encompasses non-Hermitian Hamiltonians. It 
provides the analytical expression of the extra magnetic field to be superimposed to the driving field in 
order to compensate the geometric distortion induced by dissipation for spin systems, and produces an 
exact geometric optimization of fast population transfer. Interestingly, it also preserves the robustness 
properties of protocols originally optimized against noise. Its extension to two interacting spins restores 
a fidelity close to unity for the fast generation of Bell state in the presence of dissipation.

The dynamical control and the preparation of well-defined quantum states with a high degree of accuracy and 
fidelity is a prerequisite for several important applications. In Nuclear Magnetic Resonance (NMR)1,2 or in 
Nitrogen-Vacancy(NV) center3 experiments, the accurate control of quantum spins is essential. The generation 
of entangled states is of special interest for their use as resources in various contexts such as quantum computing4, 
quantum cryptography5 or quantum metrology6. For instance, extremely accurate optical clocks using the entan-
glement between ions7 have been realized8,9.

In spite of these achievements, engineering entangled states with massive particles is still a challenging experi-
mental task. Indeed, undesirable interactions of the quantum system with its environment unavoidably take place 
during the preparation stage, which tend to spoil the fidelity of the final state with respect to the target quantum 
state. The effects of such parasitic couplings increase with time, so that their influence may be attenuated by 
accelerating the quantum state preparation. For this purpose, shortcut to adiabaticity (STA) protocols10 have 
been used successfully in various contexts11–18. STA protocols have been proposed for the generation of entangled 
states with atomic spins19–24. Unfortunately, this acceleration comes at the price of a significant energy overhead. 
A perfect fidelity obtained through an extremely short time of preparation would generally require an unrealistic 
amount of energy.

Here, we combine STA protocols with a fine-tuning of the control parameters mitigating the effects of dissipa-
tion during the quantum state preparation to reach high fidelities with realistic parameters. We setup a systematic 
procedure to adapt in open quantum systems protocols optimized for dissipationless systems. It consists in main-
taining the original geometry of an optimal quantum path in a dissipative environment by a proper engineering 
of the control fields.

We first discuss one-body quantum systems. For spin 1/2-like quantum systems, we show that a magnetic 
field correction, involving a moderate overhead of resources, enables one to compensate exactly the effects of the 
dissipation onto the average spin orientation. The correcting field only depends on the geometry of the trajectory 
and on the spin-field coupling constant, and not on the details of the magnetic or electric fields used to generate 
the trajectory. The preservation of the quantum trajectory on a Bloch sphere is exact and non-perturbative. An 
important benefit of our method concerns Stimulated Raman Adiabatic Passage (STIRAP)25–27. Among other 
applications, STIRAP has proven to be a key element for the formation of ultra-cold molecules28,29. We show 
below how our procedure may enable a fast and reliable STIRAP in the presence of dissipation. Interestingly, our 
procedure also preserves the robustness to noise in protocols originally designed in the absence of dissipation and 
involving the interaction of a two-level system with a noisy laser source.
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This one-body procedure can be successfully transposed to more complex interacting quantum systems. 
Precisely, we show how the effects of dissipation in the quantum trajectories of two interacting spins controlled by 
a single magnetic field can be dramatically attenuated. We apply this approach to the fast generation of entangled 
Bell states in an environment presenting linear dissipation. For convenience, we shall model the effect of dissipa-
tion through non-Hermitian Hamiltonians contributions. Non-Hermitian Hamiltonians, eventually corrected 
through an effective procedure30, provide indeed a satisfactory simplified treatment of several phenomena such as 
superradiance31, transport32 in open quantum systems. Nevertheless, the method presented here could be adapted 
to account for the full quantum master equation.

Results
Cancellation of dissipation anisotropy through a fine-tuning of the driving field. We expose 
below our procedure, which relies on the adaptation of the driving field to a given dissipative environment. 
Starting from a control field inducing a quantum trajectory in a dissipationless environment, we build up a cor-
rection which depends on the geometry of the quantum trajectory and on the structure of the linear dissipation. 
Up to a renormalization factor, this technique enables one to preserve exactly the quantum trajectory in spite of 
the dissipation. This approach is non-perturbative and involves only a moderate overhead of energetic resources.

Problem statement. We consider the interaction of a spin 1/2 with a time-dependent magnetic field, following 
the Hamiltonian γ= − ⋅ˆĤ t ts B( ) ( ) with the spin operator σ= ˆs /2  defined through the Pauli matrices σk for 
k = x, y, z. γ is the gyromagnetic factor. The average spin value = 〈 〉ˆt tS s( ) ( ), follows a precession equation about 
the magnetic field. In several experimental situations discussed below, this precession equation must be comple-
mented by a dissipation term:

γ= × − Λ
d
dt
S B S S (1)

Λ is the second rank tensor with positive real eigenvalues accounting for the dissipation. This model captures 
well the interaction of a two-level quantum system with a generic Markovian environment with no restrictions on 
the dissipation rates (Different approaches may be used when considering the interaction with optical cavities22–24 
or wave-guides33, or in the presence of a non-Markovian environments with a suitable noise spectrum34). The 
effect of dissipation on a spin-1/2 trajectory is illustrated on Fig. 1a. Consider a magnetic field profile B0(t) 
designed to induce a given continuous average spin trajectory S0(t) on the Bloch sphere in the absence of dissipa-
tion between the instants t = 0 and t = T (S0(t) is solution of Eq. (1) with Λ = 0). We now ask the question: can 
one adjust the magnetic field to maintain the average spin trajectory S0(t) when Λ ≠ 0? A magnetic field modifi-
cation cannot compensate for the damping of the average spin caused by the dissipative term along the prescribed 
trajectory. Nevertheless, as explained below, a fine-tuning of the magnetic field may correct the change of spin 
orientation due to dissipation.

Figure 1. (a) Dissipationless (red curve) vs dissipative (blue curve) trajectory on the Bloch sphere of a spin-1/2 
particle subjected to a 2π-pulse. Dissipation is modeled by the tensor Λ = Γ +⊥ ˆ ˆ ˆ ˆxx yy( ). Since the magnetic field 
correction and the renormalized trajectory would be unaffected by an additional isotropic dissipation, this 
model indeed captures any linear dissipation tensor with a degenerate eigenvalue. The initial state density 
matrix is ρ σ σ= + +(0) ( ),x z

1
2

1
2 2

 and we apply a constant magnetic field = − +ˆ ˆB x z( )B
2
0 . We have 

renormalized the spin norm to unity for sake of clarity ( γΓ = . ×⊥ B0 7 ( )0 ). (b) Magnetic field correction 
= ⋅ ϕˆb t t tb u( ) ( ) ( ) (in G) as a function of time (ms) for a π-pulse induced by a constant magnetic field. We have 

used Eq. (3) and considered the transverse relaxation time = Γ⊥
−


⁎T 2 ms2
1 , taken Γ Γ⊥z  and a pulse 

duration T = 0.5 ms, corresponding to typical parameters of an hyperpolarized Helium −3 NMR experiment36 
(gyromagnetic ratio γ = 32.4 MHz/T59). (c) STIRAP transfer between the levels |1〉 and |3〉 through an 
intermediate level |2〉 undergoing a dissipative process.
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Principle of our method. We introduce a renormalized average spin = t t F tS S( ) ( )exp[ ( )], and look for a renor-
malization function F(t) and a magnetic field correction b(t) = B(t) − B0(t) such that the renormalized spin  tS( ) 
follows the original trajectory S0(t). For this purpose, the free parameters F(t) and b(t) need to fulfill the relation 
(Supplementary Material).

γ+ × = ΛF t t t t tS b S S( ) ( ) ( ) ( ) ( ) (2)0 0 0

where the dot denotes a time derivative. For an isotropic tensor Λ = Λ 1, the solution of Eq. (2) reads b(t) = 0 and 
F(t) = Λt.

The magnetic field correction, b(t), indeed only addresses the anisotropy of the dissipation. The renormaliza-
tion rate F t( ) is unique and determined by the projection of the right hand side of Eq. (2) onto the spin S0(t). In 
contrast, the solutions b(t) for the corrective magnetic field can be chosen among a straight line 

λ λ+ | ∈ .t tb S{ ( ) ( ) }0 0  b0(t) is a particular solution chosen without loss of generality such that b0(t)⋅S0(t) = 0 at 
all times. This freedom in the choice of the correction b(t) is reminiscent of the infinity of possible driving fields 
in the transitionless quantum driving method proposed by Berry35. Equation (2), together with the choice 
F(0) = 0, guarantees that the initial spin S0(t) and the renormalized spin  tS( ) trajectories are solutions of the same 
differential equation with the same initial condition. These two solutions thus coincide at any time during the 
interaction with the magnetic field. Up to a decay of the spin norm, one can thus maintain the original spin tra-
jectory in the presence of dissipation by a fine adjustment of the magnetic field. We stress that this result is exact 
and non-perturbative.

Explicit evaluation of the correction. To illustrate our method, we evaluate the magnetic field correction for a 
general trajectory S0(t) and with a dissipation tensor exhibiting different transverse Λxx = Λyy = Γ⊥ and longitudi-
nal Λ = Γzz //  relaxation rates. Such anisotropy occurs in NMR1,2 and NV center3 experiments, where the quantum 
spin longitudinal relaxation time T1 is usually several orders of magnitude larger than the transverse relaxation 
time T2. To determine the magnetic field correction b0(t), we use a decomposition on the spherical coordinate 
basis θ ϕ

ˆ ˆ ˆt t tS u u( ( ), ( ), ( ))0  with the unit vector θ ϕ θ ϕ θ=ˆ t t t t t tS ( ) (sin ( )cos ( ), sin ( )sin ( ), cos ( ))0  corresponding 
to the average spin direction. From Eq. (2), one obtains

γ
θ=

Γ − Γ
ϕ

⊥ ˆt t tb u( )
2

sin2 ( ) ( ),
(3)

//

which provides a non zero correction only in the anisotopic case. This correction cancels when the spin points 
towards the poles or crosses the equatorial plane. At these specific times, the average spin is indeed an eigenvector 
of the dissipation tensor, which preserves the spin orientation. An example of such time-dependent magnetic field 
correction, with parameters taken from an hyperpolarized Helium −3 NMR experiment36, is depicted on Fig. 1.

Energy considerations. We now discuss the energy overhead induced by our magnetic field correction. For our 
method, the amplitude of the magnetic field correction scales as the maximal difference between the dissipation 
tensor eigenvalues, and is completely determined by the spin orientation. In particular, it is unaffected by the 
average spin damping and is also independent of the magnetic field strength used to generate the dissipationless 
trajectory. We consider a π-pulse in a system with negligible longitudinal dissipation Γ Γ⊥ ,z  as often observed 
in NMR spectroscopy1,2. Precisely, we require that the final spin orientation be exactly along the axis Oz, but par-
tially relax the constraint on the spin norm by imposing only ||S(T)||/||S(0)|| ≥ 1 − ε for a fixed ε > 0 at the final 
time T (left undetermined a priori). We take as dissipationless spin trajectory an ordinary π pulse involving a 
constant magnetic field B0, and evaluate the minimum energy ∫= || ||π .E dt tB( )T

corr
1
2 0

2 associated to the cor-
rected magnetic field B(t) = B0 + b(t). The damping of the average spin sets an upper bound on the total time T. 
The minimum energy takes the form of two additive contributions π γ ε= − Γ −π

−
⊥E /[4 ln(1 )]2 2  and 

γ εΔ = − Γ −π
−

⊥E ln(1 ),1
8

2  respectively associated to the constant magnetic field and to the magnetic field cor-
rection (Supplementary Material). In the low-damping limit ε  1, adequate description of most NMR experi-
ments, the overhead induced by our magnetic correction becomes a small fraction of the total energy as 

ε πΔ .π π . E E/ /(2 )corr
2 2

Application to fast population transfer. The procedure described above is particularly well-suited to 
enhance the performance of fast population transfer in open quantum systems. We show indeed that our method 
drastically enhances the efficiency of a STIRAP population transfer and avoids the contamination of the final state 
by the initial or/and intermediate states despite the presence of dissipation. As discussed below, an additional key 
feature of our procedure is that it preserves the benefits of a previous optimization toward a noise source.

Fast Stimulated Raman Adiabatic Passage. STIRAP enables robust population transfers between two states, 
denoted |1〉 and |3〉, which are both coupled to a third intermediate state |2〉 with two quasi-resonant fields. 
Differently from the usual STIRAP protocols, in the quantum-accelerated STIRAP protocols16,37–39 the system 
quantum state may experience a significant overlap with the intermediate state |2〉 during the transfer. This dis-
tinctive feature turn these quantum-accelerated STIRAPs more fragile to a dissipation process involving the inter-
mediate state. In a Λ-level configuration, the intermediate state has a higher energy and may thus suffer a stronger 
dissipation than the lower levels |1〉 and |3〉. As discussed below, our procedure provides a significant enhance-
ment of these quantum protocols in such a dissipative three-level system.
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We consider the Λ-level configuration of Fig. 1b where only the intermediate state |2〉 is subject to dissipation, 
corresponding to a transfer outside the multiplicity {|1〉,|2〉,|3〉}, and modelled by a non-Hermitian Hamiltonian 

= − Γ| 〉〈 |ΓĤ i 2 2 . As our procedure is immune to an isotropic dissipation, the discussion below would also 
address a configuration with two equally dissipative levels |1〉,|3〉. Within the Rotating Wave Approximation 
(RWA) and in the interaction picture, the control Hamiltonian associated to the resonant field pulses reads 

= Ω | 〉〈 | + Ω | 〉〈 | + . .Ĥ t t t( ) [ ( ) 1 2 ( ) 2 3 ] h c ,p s0 2
 with Ωp(t) and Ωs(t) the Rabi frequencies of the pump and Stokes 

fields respectively. The Schrödinger equation for the state |ψ(t)〉 = C1(t)|1〉 + C2(t)|2〉 + C3(t)|3〉 with Ĥ t( )0  boils 
down to a precession equation for a pseudo-spin = − − +ˆ ˆ ˆt C t iC t C tS x y z( ) ( ) ( ) ( )3 2 1  involving a 
pseudo-magnetic field = Ω + Ωˆ ˆt t tB x z( ) [ ( ) ( ) ]p s

1
2

40. The Hamiltonian ΓĤ  results in an additional dissipation ten-
sor Λ = Γ ˆ ˆyy, turning the precession equation into Eq. (1). In the fast STIRAP protocol, the system quantum state 
fol lows an eigenstate |ψ 0(t)〉  of  a  dynamical  Lewis-Riesenfeld invariant parametrized as 
ψ γ β γ γ β| 〉 = | 〉 − | 〉 − | 〉.t t t i t t t( ) cos ( )cos ( ) 1 sin ( ) 2 cos ( )sin ( ) 30  The correction to the pseudo-magnetic field 

δ δ= Ω + Ωˆ ˆt t tb x z( ) [ ( ) ( ) ]p s
1
2

, following the procedure above, corresponds to a change in the Rabi frequencies 
δ γ βΩ = −Γt t t( ) sin2 ( )cos ( )p  and δ γ βΩ = Γt t t( ) sin2 ( )sin ( )s . Using the simple dissipationless fast STIRAP 
based on the second quantum protocol of ref.37 with the parameters ε = 0.05 and δ = π/4 in a dissipative system 
such that ΓT = 1.0, one obtains a final state with a fraction of roughly 6.5% in the states |1〉 and |2〉 (see 
Supplementary Material). Using the dissipationless fast STIRAP corrected by our procedure, one obtains only the 
desired final state with strictly no overlap with the initial and intermediate states.

Preservation of the robustness to noise. Several methods have been developed to optimize the control of two-level 
systems against noise, either due to the thermal environment41 or to the field driving the system42. We investigate 
here the effect of our procedure on a quantum protocol of fast population transfer in a two-level atomic system 
originally optimized against the amplitude noise of a laser source and in the absence of any dissipation. As dis-
cussed below, our procedure preserves the benefits of the optimization towards this noise source, while improving 
the population transfer in the presence of an additional dissipation process.

Following ref.42, the dynamics of a two-level atomic system controlled by the noisy laser field are adequately 
described by a Bloch equation of the form (1) involving an effective magnetic field = Ω + Ω +ˆ ˆt t tB x y( ) ( ) ( )R I
Δ ˆt z( )  and a dissipation tensor accounting for the laser amplitude noise λΛ = Ω +ˆ ˆt t xx( ) [ ( )ILaser

1
2

2 2 Ω +ˆ ˆt yy( )R
2

Ω + Ω ˆ ˆt t zz( ( ) ( )) ]I R
2 2 . Ruschhaupt et al.42 have obtained optimally robust STA for the population inversion, that 

maximize the robustness against laser amplitude noise within a large set of fast quantum transfer protocols. We 
take as initial Bloch vector trajectory S0(t) an optimal shortcut described in spherical coordinates by θ =t( )
π π ϕ π− =t T t T t/ sin(2 / ), ( ) /4,1

12
 and implemented by resonant laser pulses (Δ(t) = 0) of time-dependent Rabi 

frequencies θΩ = Ω = − .t t t( ) ( ) ( )/ 2R I
(opt) (opt)

We consider a situation where, in addition to the laser noise, the Bloch vector experiences a constant trans-
verse dissipation tensor Λ = Γ +⊥ ˆ ˆ ˆ ˆxx yy( ). We compare the efficiency of the optimal protocol modified by our 
procedure to both the uncorrected protocol and to a simple π-pulse. The transfer efficiency is estimated using the 
normalized probability = − || ||P̂ S T TS(1 ( )/ ( ) )z2

1
2

 in the excited state at the final time T. By construction this 
quantity is insensitive to an isotropic damping and equal to unity for a perfect transfer. Figure 2 reveals that the 
dissipationless optimal protocol is improved by our procedure for a broad range of transverse dissipations. In the 
strongly dissipative regime, the transverse damping induces a final Bloch vector almost parallel or antiparallel to 
the Oz axis. Above a critical value of the transverse dissipation, the flip of the Bloch vector is inhibited for the 
uncorrected protocols, while it is preserved thanks to our procedure. In the presence of a transverse attenuation 
Γ⊥T = 6 and a laser amplitude noise corresponding to λ = 0.3, one obtains the respective transfer probabilities 

= .πp 0 4552
( ) , = ..p 0 4652

(opt )  and = ..p 0 5322
(opt /c)  for a standard π-pulse, for the optimal shortcut and for the 

optimal shortcut improved by our procedure. Beyond the specific protocol considered here, our method can be 
implemented to mitigate the effects of dissipation in different families of STA trajectories, optimized toward 
strong noise sources43 or toward the presence of unwanted transitions44.

Figure 2. Values of the normalized probability Γ⊥P̂ T( )2  transfer probabilities as a function of the transverse 
attenutaion Γ⊥T for different protocols: standard π-pulse (dotted line), optimal shortcut toward the laser 
amplitude noise (dashed line), and optimal shortcut modified by our procedure (solid line). We have taken the 
strength of the laser noise as λ = 0.3.

https://doi.org/10.1038/s41598-019-39731-z


5Scientific RepoRts |          (2019) 9:4048  | https://doi.org/10.1038/s41598-019-39731-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Application to fast generation of entangled states. We now discuss the benefits of our procedure for 
the fast generation of two-qubits entangled states in open quantum systems. Quantum teleportation, relying on 
the ability to prepare entangled states, has early been considered as an important resource for scalable quantum 
architectures45. More generally, single and two-qubits quantum operations are the building blocks for quantum 
information processing in experimental architectures involving spin chains and arrays46–53. Any enhancement of 
the quantum fidelity in these basic operations is thus important for larger quantum information processing tasks.

We consider a system of two identical spins-1
2

 controlled by a single magnetic field and interacting through an 
Ising potential ξ=ˆ ˆ ˆV S S4

dd
z zint

( )
1 2  with the operator Ŝmz accounting for the z-component of the spin m with eigen-

values ± /2 . The Hamiltonian, γ= − + ⋅ +ˆ ˆˆ ˆH t VS S B( ) ( )
dd

1 2 int
( )

, is invariant under the permutation of labels 1 
and 2. As a result, the symmetric subspace |++〉 | 〉 = |+−〉+|−+〉 |−−〉{ , Bell ( ), }1

2
 is stable during the evo-

lution. The adiabatic passage technique can be used to generate an entangled Bell state from a fully polarized 
state54, and involves a careful design of the time-dependent magnetic field in order to decouple the subspace 
|++〉 | 〉{ , Bell } from the state |−−〉. The magnetic field is engineered to avoid energy crossings, which would 

otherwise jeopardize the adiabaticity conditions ensuring the stability of this subsystem. The stability of the sub-
system |++〉 | 〉{ , Bell } is indeed a mere approximation valid only for sufficiently slow variations of the magnetic 
field, differently from the stability of the subspace |++〉 | 〉 |−−〉{ , Bell , } which is exact. With this technique, a 
Bell state can be reliably generated from a fully polarized state in a typical time of  ξT 30 /adiabatic  for a magnetic 
field strength ξ γ.B 0 8 /( ). The use of STA19 provides a speed-up of roughly one order of magnitude20,21. For 
shorter generation times, the two-dimensional subspace |++〉 | 〉{ , Bell } is no longer stable and thus the fidelity 
decreases. This shortcut is implemented using the superposition of a rotating transverse magnetic field 

= + ω
⊥ ˆ ˆt B t i eB x y( ) ( )Re[( ) ]i t  and a time-dependent longitudinal field = ˆt B tB z( ) ( )z//  obtained from a reverse 

engineering method within the subspace |++〉 | 〉{ , Bell }19,20 (Supplementary material).
In the following, we assume that the fully polarized and the Bell spin states suffer dissipative processes with 

different relaxation rates Γ|++〉 and Γ|Bell〉, described by the non-Hermitian Hamiltonian ˆ = − Γ |++〉〈++|Γ |++〉H i
− Γ | 〉〈 || 〉i Bell BellBell . The ratio between these two relaxation rates, considered here as fixed parameters, may depend 

on coherence effects such as superradiance. In order to design the magnetic field correction for the shortcut trajec-
tory, we focus on the quantum motion within the |++〉 | 〉{ , Bell } subspace, considering only the associated 
reduced density matrix. The generation of a Bell state from the fully polarized state corresponds to a simple popu-
lation inversion within this subspace. The equation of motion for the reduced density matrix involves a commuta-
tor of the density matrix for the Hermitian part of the Hamiltonian and an anti-commutator for the non-Hermitian 
part. Stricly speaking, the quantum motion occurs within a space isomorphic to 4. This is so because the trace of 
the reduced density matrix in the |++〉 | 〉{ , Bell } multiplicity is damped by dissipative processes. Nevertheless, in 
a perturbative treatment of the dissipation, one may treat to leading order this trace as an invariant of motion. The 
quantum motion can then be captured by the usual three-dimensional Bloch vector picture by using a projection 
of the reduced density matrix on the three Pauli matrices. This yields an equation of motion for the Bloch vector 
involving a precession due to the magnetic field and an additional constant drift induced by the dissipation aniso-
tropy. Finally, we find the corresponding magnetic field correction by considering the undamped Bloch vector 
motion (Supplementary material). A similar perturbative approach still holds for the Optical Bloch Equations 
while they cannot be accounted for by a non-Hermitian Hamiltonian55. The associated Bloch vector follows indeed 
a precession equation involving simultaneously a linear anisotropic dissipation tensor and a constant drift.

Beyond the dissipation, non-adiabatic couplings between the subspace |++〉 | 〉{ , Bell } and the state |−−〉 may 
also spoil the fidelity of the Bell state generation. We consider scenario for which the additional quantum state 
|−−〉 is undamped. We investigate the efficiency of our method by performing numerical simulations of the 
Schrödinger equation in the full subspace |++〉 | 〉 |−−〉{ , Bell , } accessible from the the initial state |++〉, and 
study the renormalized Bell state fidelity ψ ψ ψ= |〈 | 〉| |〈 | 〉|F̂ T T TBell ( ) / ( ) ( )2 2 as a function of the dissipation ani-
sotropy characterized by the ratio = Γ ΓΓ |++〉 | 〉R / Bell  between the relaxation rates. As the anisotropy increases, the 
renormalized fidelity decreases in the uncorrected quantum protocol whereas it remains close to unity with our 

Figure 3. Renormalized fidelity ψ ψ ψ= |〈 | 〉| |〈 | 〉|  F̂ T T TBell ( ) / ( ) ( )2 2 obtained in the generation of the entangled 
state as a function of the ratio = Γ ΓΓ |++〉 | 〉R / Bell  with (solid line) or without (dashed line) correction. We have 
taken  ξ=T 100 /  and Γ = .| 〉T 2 5Bell .
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trajectory correction procedure (see Fig. 3). The quantum protocol improved by our method achieves a pure Bell 
state by filtering out efficiently the |++〉 |−−〉{ , } states.

Discussion
Our analytical approach builds up quantum protocols in dissipative systems from their dissipationless counter-
part. It is based on the preservation of the geometric motion of a quantum state vector on the Bloch sphere and 
addresses dissipative processes described by non-Hermitian Hamiltonians. The resource overhead required to 
implement the corrected control fields is small. It successfully enhances the efficiency of fast STIRAP transfers in 
a dissipative environment. Interestingly, our modified protocol can preserve an optimization made in a dissipa-
tionless context. Our approach could thus be particularly relevant in situations where shortcuts to adiabaticity are 
used jointly with optimal control protocols56–58. This procedure has been extended to quantum systems involving 
two interacting quantum spins. Our method for enhancing the quality of two-spin entanglement could be fruit-
fully incorporated within single or two-qubit operations in larger quantum architectures46–53.
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