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Abstract

We analyze the control of the motion of a charged particle by means of

an external electric field. The system is constrained to move along a given

direction. The goal of the control is to change the speed of the particle

in a fixed time with zero initial and final accelerations, while minimizing

a cost functional in order to achieve a smooth transport of the system.

We solve this linear control problem by using shortcut to adiabaticity

methods and optimal control techniques. STA protocols are built upon

local constraints. By extending the number of space variables, we explain

how optimal control protocols can accommodate for such constraints and

provide robust solutions against slight initial and final time uncertainties.

Conversely, optimal control can guide the choice of the class of functions

involved in STA processes. Such mutual benefices of the two approaches

remain valid beyond the specific example studied here.

1 Introduction

In physics and engineering, control theory provides a systematic way for driv-
ing a dynamical system from a given initial state into a desired target state [1,
2, 3, 4, 5, 6]. In this framework, optimal control theory (OCT) is a general
mathematical procedure which allows to design external fields or a sequence of
pulses, while minimizing or maximizing specific functionals such as the control
time or the used energy [1]. A rigorous setting for Optimal control theory was
given with the Pontryagin Maximum Principle (PMP) in the late 1950s [7]. Its
development was originally inspired by problems of space dynamics, but it is
now a key tool to study a large spectrum of applications ranging from robotics,
economics, and mechanics [8]. More recently, different applications at the micro-
scopic and quantum scales have been also developed [1, 2, 3, 4, 5]. Two different
types of approaches can be used to solve optimal control problems, namely ge-
ometric [8, 9] and numerical methods for dynamical systems [10, 11, 12] of low
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and high dimensions, respectively. Geometric techniques have different interests
which are complementary to numerical optimization procedures. In particular,
rigorous results of optimality can be established. The global optimal control
field can be designed analytically or, at least, with a very high numerical pre-
cision. The geometric methods are also interesting to unreveal the physical
mechanisms used by the control process [13, 14, 15, 16, 17, 18]. In contrast, nu-
merical algorithms do not generally provide physical insight about the dynamics
of the controlled system or the structure of the control field [1].

Other approaches have been proposed to date to solve control problems with
relatively simple fields, which can be derived analytically. They extend from in-
tuitive schemes such as sudden or adiabatic methods [19, 20], which are valid
in some specific limits, to more elaborate pulse sequences based on Shortcut
To Adiabaticity (STA) techniques [21, 22, 23, 24, 25, 26, 27, 28]. The original
motivation of STA protocols is to speed up adiabatic control of the dynamical
system, while preserving as much as possible its efficiency and robustness. Con-
trol techniques have been largely explored in the past few years in physics, but,
most of the studies focus on the control of non-linear systems, and very little
in the linear case [29, 30, 31, 32, 33, 34]. In particular, different works have
compared STA and OCT and shown how to combine them in this non-linear
setting [35, 36]. We propose in this paper to revisit this comparison for a linear
control system. From a mathematical point of view, such systems are partic-
ularly appealing because analytical solutions can be easily found and optimal
control problems are easier to solve [29, 30, 31, 33, 34]. Physically, this analysis
is useful because non-linear dynamics can be approximated to some extent by
linear ones. Such studies are also interesting in specific domains where model
systems are linear. An example is given by two-dimensional Fourier transform
ion cyclotron resonance mass spectroscopy for which control techniques can sig-
nificantly advance the sensitivity and the efficiency of current excitation and
detection processes [37, 38, 40, 39]. In this application, ions are subjected to a
static magnetic field and to a perpendicular time-dependent electric field which
is shaped to manipulate ion trajectories. Finally, it has also been shown in the
case of spin systems that a non-linear mapping can be established between non-
linear and linear control dynamics [41]. This mapping, which allows to design
analytical and efficient broadband pulses for spin dynamics from the control of
springs, reinforces the interest of studying linear systems.

In order to explain how both techniques can benefit mutually from each
other, we consider a minimal linear model involving the control of a classical
one-dimensional charged particle by means of an electric field. The goal of the
control is to change the speed of the system in a given time with the constraint
that the initial and final accelerations are zero. The optimal control problem
is defined through a cost functional, which allows a smooth transport of the
particle. The decisive advantage of this simple control scenario is that a complete
geometric and analytical description can be carried out for the two approaches.
In particular, different bases of functions to expand the solutions can be derived
in the STA case, singular and regular optimal fields can be also determined
analytically. The relative efficiency of the different control protocols is measured
with respect to the global optimal solution. We show that OCT can guide the
choice of the basis of functions in which the STA solution is expanded. This
approach can be generalized and the same analysis can be conducted in the
case of more constrained boundary conditions where the time derivatives of the
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speed at any order have to be zero.
The paper is organized as follows. We present the model system and the

control problem in Sec. 2. Different STA protocols using polynomial, trigono-
metric and real exponential function bases are proposed in Sec. 3. Section 4 is
dedicated to the derivation of the singular optimal solution. A regularization is
proposed in Sec. 5 to achieve finite-amplitude control fields. A thorough com-
parison is made between STA and OCT pulses. A generalization in which the
time derivatives of the speed at any order have to be zero at the initial and
final times of the process is considered in Sec. 7. Conclusion and prospective
views are given in Sec. 8. Technical details are reported in the Supplementary
Material.

2 The model system

We consider the control of the dynamics of a charged particle by means of an
external electric field. The control process is aimed at accelerating the particle to
a given speed and we assume that the system can only move along one direction.
The position of the system is given by the real coordinate X ∈ R. The system
is also subjected to friction modeled by a force proportional to the speed of the
system. Using Newton’s law along the X- axis, it is straightforward to show
that:

mẌ + ηẊ = qE(t), (1)

wherem and q are respectively the mass and the charge of the particle, and η the
friction coefficient. The initial and target states are Ẋ(0) = 0 and Ẋ(T ) = V
where T is the fixed control time and V the final speed. The goal of the control is
to reach exactly the target state at time T , while minimizing a cost functional
C which can be expressed as the sum of the time average of the speed and
acceleration along the trajectory:

C =
1

T

∫ T

0

(Ẍ2 + αẊ2)dt,

where α is a positive parameter to express the relative weight between the two
terms of C. This choice ensures a smooth transport of the particle, avoiding, e.g.,
large speed variations. An additional constraint on the initial and final acceler-
ations, Ẍ(0) = Ẍ(T ) = 0 is also accounted for. Using normalized coordinates,
the dynamics of the system can be rewritten as:

ẋ+ x = u(t) (2)

where x is the normalized speed and u(t) the normalized control field used to
drive the particle from x(0) = 0 to x(T ) = 1 at a normalized time T . The control
has also to satisfy the constraints ẋ(0) = 0 and ẋ(T ) = 0, while minimizing the

running cost C =
∫ T

0
[x(t)2+ ẋ(t)2]dt. Without loss of generality, we will assume

that T = 1 in the rest of the paper.

3 Shortcut to Adiabaticity protocols

STA protocols have originally been developed in the context of quantum me-
chanics [21, 22, 23, 24]. They correspond to fast routes between initial and
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final states that are connected through a slow (adiabatic) time evolution when
a controlling parameter is changed in time. The different STA methods exploit
the algebraic structure of quantum mechanics. STA has been extended to sta-
tistical physics and classical mechanics. The simplest method used in this latter
context is reminiscent whilst slightly different of motion planning method in
control theory [42], and is commonly referred to as inverse engineering [24]. It
consists in extrapolating the trajectory from the required boundary conditions
and inferring from this interpolation the shape of the control field that should
be applied to the system under study.

We exemplify this approach in this paragraph by deriving a few simple an-
alytical solutions of Eq. (2). We consider three different ansatz for which the
trajectory of the system x(t) belongs to a family of functions, namely polyno-
mial, trigonometric or exponential functions. This choice is arbitrary and the
same study could be made for other families. The trajectory depends on a few
number of parameters which are determined from the boundary conditions and
correspond to the minimum of the cost functional C.

For the polynomial function family, we assume that the trajectory can be
expressed as a polynomial function in the time t up to a given order N . The
constraints x(0) = ẋ(0) = 0 impose that a0 = a1 = 0, and therefore:

x(t) =

N
∑

k=2

akt
k. (3)

From x(T = 1) = 1 and ẋ(T = 1) = 0, we deduce that:



















N
∑

k=2

ak = 1

N
∑

k=2

kak = 0

(4)

There are two equations and N − 1 unknowns, so N − 3 free parameters. For
instance, at the order N = 3, all the coefficients can be determined from the
boundary conditions and the unique solution x3(t) is:

x3(t) = 3t2 − 2t3.

At the order 4, it can be shown that a one-parameter family of polynomials
x4(t)|a is solution of the control problem:

x4(t) = (3 + a)t2 − (2 + 2a)t3 + at4,

where a is a free real parameter, which is chosen to minimize C. Numerical com-
putation leads to a = −0.8076923. The same study can be done for polynomials
of higher orders. The polynomials depend respectively on two and three free pa-
rameters at the orders 5 and 6. Technical details can be found in Supplementary
Sec. I. The parameters for N going from 4 to 6 are given in Tab. 1.

A trigonometric expansion can also be used to express the trajectory x(t):

x(t) =
N
∑

k=1

ak sin

(

kπ

2
t

)

. (5)
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N a b c

polynomial 4 −0.8076923 – –
5 23.636752 −9.(7) –
6 6.956942 5.627256 −5.135011

trigonometric 4 0.0202 – –
5 0.785988 −0.356639 –
6 1.0407 −0.312242 −0.0105136

Table 1: Values of the coefficients a, b, and c for the polynomial and trigonomet-
ric expansions of the STA solution (see the Supplementary Sec. I for a complete
description).

Note that x(0) = 0 is automatically satisfied, and the condition ẋ(0) = 0 leads
to:

N
∑

k=1

kak = 0. (6)

From x(1) = 1 and ẋ(1) = 0, we get:



















N
∑

k=1

ak sin
(

kπ
2

)

= 1,

N
∑

k=1

kak cos
(

kπ
2

)

= 0.

(7)

We have three equations and N unknowns, hence there are again N − 3 free
parameters to find (see Tab. 1 for the solutions in the cases N = 4, 5 and 6).

We finally assume that the trajectory can be expressed as the sum of some
exponential real functions:

x(t) = a et +b e−t +c ekt +d e−kt, (8)

where k is a free real parameter. This ansatz which is inspired by optimal control
theory will become clear in the next section. From the boundary conditions
x(0) = 0, x(T = 1) = 1 and ẋ(0) = ẋ(T = 1) = 0, we obtain:

B~h = ~s, (9)

where

B =











1 1 1 1
e e−1 ek e−k

1 −1 k −k
e − e−1 k ek −k e−k











, (10)

and ~h = (a, b, c, d)⊺, ~s = (0, 1, 0, 0)⊺. We deduce that ~h = B−1~s. The complete

analytical expression of ~h is given in Supplementary Sec. I.
Table 2 gives the cost functional C for different STA protocols and for the

global minimum solution which is derived in Sec. 4 using optimal control tech-
niques. As could be expected for polynomial and trigonometric expansions,
the higher the order N is, the smaller C. We observe nevertheless that these
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Order Cost functional

N C
optimal solution – 1.3130

3 1.57143
polynomial 4 1.55797

5 1.40276
6 1.39986
3 1.70041

trigonometric 4 1.69843
5 1.48104
6 1.48099

exponential – 1.325271

Table 2: Cost functional C for the optimal and the polynomial, trigonometric
and exponential STA solutions. The parameter k is set to 100 for the exponential
functions. The optimal field is the singular one derived in Sec. 4.

solutions remain quite far from the global minimum solution, 6% and 12% re-
spectively for the polynomial and trigonometric solutions at the order 6. The
basis of real exponential functions seems to be more suited to the control prob-
lem since a small cost (1% larger than the optimal one) is achieved with the
simple expansion proposed in Eq. (51).

4 The singular geometric optimal solution

The control problem we consider belongs to a general class of linear optimal
control problems for which powerful mathematical tools, such as the PMP, have
been developed [7, 29, 8]. We solve this problem in this paragraph in a very
general setting without any constraint on the control field. In this case, we will
show that singular solutions with unbounded fields minimize the cost functional
C. Singular control fields have been exhibited in quantum physics in different
examples [43, 44, 45, 46].

Before applying optimal control techniques, we need to reformulate the dy-
namics of the system. To accommodate for the extra boundary conditions on
the first time derivative of the speed, we increase the number of state variables
over which the optimization is performed by introducing the variable z. We will
discuss in Sec. 7 a generalization of this strategy to ensure the robustness of
optimal solutions to higher derivative orders. We introduce the variables y = ẋ
and z = u. We have:

ẍ+ ẋ = u̇ = v,

where v(t) is the new control field. The dynamical system is now defined on R
2

by:
{

ẏ = v − y

ż = v,
(11)

with the boundary conditions y(0) = y(T ) = 0 and z(0) = 0, z(T ) = 1. The
original variables are determined by the relations x = z − y and u = z. The
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cost functional C to minimize is here given by:

C =

∫ T

0

[(z − y)2 + y2]dt.

The description of the dynamics is by now well suited to the application of
the PMP. However, since there is no direct constraint on the amplitude of the
control field v(t), the optimal control problem is singular. We assume that the
optimal solution is of the form B − S − B where B is a bang pulse and S, a
singular one. The bang pulse is here a Dirac pulse because in this ideal situation
the amplitude of the field is not bounded. The structure of the optimal field
will be confirmed by the regularization process introduced in Sec. 5.

The singular Pontryagin Hamiltonian HS can be expressed as:

HS = py(v − y) + pzv −
1

2
[(z − y)2 + y2],

where py and pz are the adjoint states associated respectively to y and z. We
deduce that the Hamilton’s equations are:

{

ṗy = −∂HS

∂y = py − z + 2y

ṗz = −∂HS

∂z = z − y.
(12)

The singular control fulfills the constraint:

∂HS

∂v
= 0,

which leads to the definition of the singular set: py+pz = 0. In the singular case,
this relation is satisfied for a non-zero time interval, so that the time derivatives
of py + pz are also equal to zero. From ṗy + ṗz = 0, we arrive at py = −y. From
ṗy + ẏ = 0, we obtain v = z. Therefore, we arrive for the singular trajectory
(ys(t), zs(t)) at:

{

ys = Y e−t + Z sinh(t)

zs = Zet.
(13)

The singular trajectories are labeled by the two parameters Y and Z. We
observe from Eq. (13) that the initial point cannot belong to the singular set,
showing the necessity of a bang pulse at time zero. The bang control is a Dirac
pulse of amplitude vτ and of very small duration τ such that vτ τ = A where
A is the area of the pulse, which remains finite in the limit τ → 0. We denote
by A1 and A2 the areas of the first and second bangs, respectively. During the
bang pulse of very large amplitude, the dynamical system is governed by:

{

ẏ = v

ż = v,
(14)

in which the drift term (y, 0)⊺ has been neglected. Since y(0) = z(0) = 0, we
deduce that y(0+) = z(0+) = A1. Note that t = 0+ corresponds to the time
right after the first bang. Finally, we arrive at the following linear system:

{

A1(e
−T + sinh(T )) +A2 = 0

A1e
T +A2 = 1.

(15)
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The solutions can be expressed as:






A1 = 1
sinh(T )

A2 = − 1
tanh(T ) .

(16)

We deduce that zs(t) − ys(t) = xs(t) =
sinh(t)
sinh(T ) and ys(t) =

cosh(t)
sinh(T ) . For T = 1,

we have CS = 1.3130, which is given in Tab. 2. Note that the bang pulses are
not taken into account in the computation of the cost functional. This solution
is the global minimum of the control problem. We point out that Dirac pulses
at time boundaries are required to fulfill the boundary conditions on the first
time derivative of the speed. In the absence of such boundary conditions, the
optimal solution boils down to the very same singular solution derived above.
As a matter of fact, the Dirac pulses originate from a mathematical limit but
may not be physically relevant. Optimal control laws of finite amplitude can
be derived through a regularization of the cost functional which is described in
Sec. 5.

5 Regular optimal solutions

5.1 Energy regularization

The singular solution derived in Sec. 4 is interesting since it gives the physical
limit of the process under study. As shown in Tab. 1 and 2, it also allows us to
quantify the efficiency of other solutions of the control problem. However, due
to its unbounded character, the corresponding field may pose a problem for its
experimental implementation. We propose in this paragraph a regularization of
the cost functional, denoted CR, and defined by:

CR =

∫ T

0

[(z − y)2 + y2 + λv2]dt,

where λ is a positive parameter. The singular case is obtained in the limit λ 7→ 0.
Note that other regularizations such as a bound on the maximum intensity of
the field could be also considered. The energy regularization has the advantage
to generate a smooth control field, its maximum amplitude being connected to
the parameter λ.

In this case, the regular Pontryagin Hamiltonian HR can be written as:

HR = HS − λ

2
v2.

We have the same Hamilton’s equations as in the singular situation but the
regular control field is given by:

vR =
py + pz

λ
.

We deduce the following relations:






















λẏ = py + pz − λy

λż = py + pz

ṗy = py − z + 2y

ṗz = z − y.

(17)
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The final step consists in integrating these equations and finding the initial
adjoint states py(0) and pz(0) so that the final boundary conditions are satisfied:
y(T ) = 0 and z(T ) = 1. A general theory called linear quadratic optimal control
was developed to solve this kind of optimal control problems [29, 30, 31]. We
recall in Sec. 5.2 the basic features of this theory.

5.2 Linear quadratic optimal control

We show in this paragraph that the optimal solution of some specific linear
quadratic optimal control problems can be expressed in terms of real or com-
plex exponential terms. Here, we briefly outline the different steps of this ap-
proach. The interested reader can find rigorous mathematical derivations in
some standard textbooks [29, 30, 31].

The control problem is defined as follows. The state of the system is a vector
x ∈ R

n whose dynamics are governed by the following differential equation:

ẋ = Ax+Bu, (18)

where the control field u(t) ∈ R
m, A ∈ Mn(R) and B ∈ Mnm(R) are two

constant matrices. Starting from the state x(0) = x0, the goal is to reach the
state x(T ) = xf at time T , while minimizing the cost functional C defined by:

C =

∫ T

0

[x⊺Wx+ u⊺Uu]dt, (19)

where W and U are two constant symmetric matrices which are respectively
positive and positive definite. The Pontryagin Hamiltonian HP of the system
can be written as:

HP = p⊺Ax+ p⊺Bu− 1

2
(x⊺Wx+ u⊺Uu), (20)

where p ∈ R
n is the adjoint state. The differential equation governing the

dynamics of p is:
ṗ = −A⊺p+Wx. (21)

The optimality condition ∂HP

∂u = 0 leads to:

u = U−1B⊺p. (22)

We finally obtain the optimal equations for the vectors x and p:
(

ẋ
ṗ

)

=

(

A BU−1B⊺

W −A⊺

)(

x
p

)

(23)

The solutions of this first order linear differential system can be expressed as
the sum of exponential functions. Using Eq. (23), the last step of the method
consists in finding the initial adjoint state p(0) such that the corresponding
trajectory reaches the target xf at time t. This can be made by deriving the
solution of Eq. (23). We emphasize that the previous reasoning can be readily
generalized to time-dependent matrices A and B in Eq. (18) [29].

In the example under study in Sec. 5.1, it is straightforward to show that:

A =

(

−1 0
0 0

)

, B =

(

1
1

)

, W =

(

2 −1
−1 1

)

, U = λ. (24)
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Note that W is positive since its two eigenvalues are real positive numbers. For
this example, Eq. (17) are equivalent to Eq. (23). The eigenvalues of the matrix
defined in Eq. (23) are 1, -1, 1/

√
λ and−1/

√
λ, so the time evolution of the states

and adjoint states can be expressed as the sum of real exponential functions as
in Eq. (51), with k = 1/

√
λ (see Supplementary Sec. III for details). This point

explains the efficiency of the corresponding STA process which corresponds to a
regularized optimal solution. It also shows how OCT can help selecting the best
basis of functions to expand the control field or the trajectory of the system.

6 Comparison between STA and optimal control

protocols

We present in this section different numerical results to illustrate the comparison
between STA and OCT solutions and between singular and regular optimal
fields. Figures 1 and 2 display the trajectory and the control field corresponding
to the STA and to the singular processes. In the two cases, we observe that the
STA solutions present strong oscillations and are not able to reproduce optimal
dynamics, even for high order polynomial or trigonometric expansion. This
point is a clear indication that polynomial and trigonometric functions are not
a good basis to expand the control solution. This conclusion confirms the results
of the cost functional presented in Tab. 1 and 2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Figure 1: (Color online) Comparison between the STA and the optimal so-
lutions. Panels (a) and (b) represent respectively the time evolution of the
trajectory x and of the control field u. The solid and dashed black lines cor-
respond respectively to the singular and regular solutions. The parameter λ is
set to 10−4. The STA polynomial solutions are also plotted in blue (solid and
dashed) and red for the orders n = 3, 4 and 5. The solution at the order 6 is
very similar to the one at the order 5. Dimensionless units are used.

Figures 3 and 4 illustrate the convergence of the regular optimal solution
towards the singular one when the parameter λ goes to 0. Figure 3 shows that
the regular trajectory and control field converge smoothly towards the singular
ones. This numerical observation is an evidence strengthening the conjecture
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Figure 2: (Color online) Same as Fig. 1 but for the trigonometric STA solution.
Dimensionless units are used.

made in Sec. 4 about the structure of the optimal solution. The evolution of
the cost functional CR as a function of λ is displayed in Fig. 4. Numerical
simulations reveal a rapid convergence to the minimum value of 1.3130. As
shown in Fig. 4b, CR exhibits a square root behavior in the limit λ → 0. Due to
the complexity of the computations, we were not able to prove this statement
analytically. From a numerical point of view, the regular solution can be derived
up to λ = 2× 10−6, divergences occur for lower values of λ.

Figure 3: (Color online) Panel (a): Plot of the optimal regular and singular
trajectories in the (y, z)- plane. The dots indicate the initial and final points
of the trajectories corresponding to bang pulses. Panel (b): Plot of the time
evolution of the regular control field vR. The black solid line corresponds to the
singular solution, while the regular solutions are displayed in color. The color
bar indicates the value of λ× 105 for each regular process. Dimensionless units
are used.
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Figure 4: (Color online) Panel (a): Plot of the regularized cost functional CR

as a function of the parameter λ (solid blue line). The solid horizontal black
line indicates the value of the minimum cost functional for the singular solution.
Panel (b) is a zoom of panel (a) for 0 ≤ λ ≤ 10−4. The red curve is a square
root fit around λ = 0 of CR. The black dot indicates the minimum value of λ
for which CR has been computed numerically. Dimensionless units are used.
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7 Generalization to higher derivative orders

This section is aimed at generalizing the control problem to constraints of any
order on the initial and final time derivatives of the trajectory. The control pro-
tocol is defined by the differential equation ẋ+x = u with the boundary condi-
tions x(0) = ẋ(0) = · · · = x(n)(0) = 0 and x(T ) = 1, ẋ(T ) = · · · = x(n)(T ) = 0.
These conditions at the boundary of the control time interval lead to a robust-
ness of the protocol against slight variations at initial and final times. This
property is required to ensure a reliable experimental implementation of control
processes. As in Sec. 4, we enlarge the space of variables for the optimization
procedure by introducing extra coordinates x1 = ẋ, x2 = ẍ, · · · , xn = x(n) and
z0 = u, z1 = u̇, · · · , zn−1 = u(n−1) to replace the boundary conditions on the
derivatives by conditions on the state of the system. The new control term is
v = u(n). The dimension of the state of the system is n+1, (xn, zn−1, · · · , z1, z0).
The differential system to control can be expressed as:































































ẋn + xn = v

żn−1 = v

żn−2 = zn−1

· · ·
żk = zk+1

· · ·
ż1 = z2

ż0 = z1,

(25)

with the boundary conditions xn(0) = xn(T ) = 0, zn−1(0) = zn−1(T ) = 0, · · · ,
z1(0) = z1(T ) = 0 and z0(0) = 0, z0(T ) = 1. The cost functional in the regular
case can be written as:

CR =

∫ T

0

[(z0 − x1)
2 + x2

1 + λv2]dt,

with
x1 = z1 − z2 + z3 + · · ·+ (−1)nzn−1 − (−1)nxn.

The singular limit is obtained for λ = 0.
The regular control can be derived by using the material of Sec. 5.2. For

each order, it can be verified that the matrices W and U satisfy the constraints
of the method. Different regular solutions for n = 1 to 3 are plotted in Fig. 5.
The behavior of the different trajectories at time 0 and T = 1 is clearly seen in
Fig. 5. The case n = 1 is the only case where the matrix defined in Eq. (23)
has real eigenvalues. For n > 1, some of the eigenvalues are complex numbers
and the trajectory is expressed as a linear combination of real exponential and
trigonometric functions. The arguments of the exponential terms can be deter-
mined explicitly from Eq. (23). The optimal trajectory and control field have a
relatively complicated evolution at the beginning and at the end of the control
process, due to the different boundary conditions to fulfill. However, we observe
a similar behavior at intermediate times for the three orders. As in the case
n = 1, this corresponds to the singular set of the optimal control problem, which
is the same at any order. This statement can be proved for any order n. For
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Figure 5: (Color online) Plot of the time evolution of the optimal trajectory (a)
and of the regular control field (b) for n = 1 (black), n = 2 (red) and n = 3
(blue). The parameter λ is set respectively to 10−5, 5 × 10−7 and 5× 10−9 for
n = 1, 2 and 3. In panel (a), the small insert is a zoom of the trajectories near
t = T . Dimensionless units are used.
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that purpose, we introduce the singular Pontryagin Hamiltonian which can be
expressed as:

HS = pn(v − xn) + pn−1v + pn−2zn−1 + · · ·+ p0z1

− (z0 − x1)
2 + x2

1

2
,

where the adjoint states pn, pn−1, ..., p1 and p0 are associated respectively to
xn, zn−1, ..., z1 and z0. Using HS , we also deduce the differential equations
governing the dynamics of the pis:































































ṗn = pn + (−1)n+1(2x1 − z0)

ṗn−1 = −pn−2 + (−1)n(2x1 − z0)

ṗn−2 = −pn−3 + (−1)n−1(2x1 − z0)

· · ·
ṗk = −pk−1 + (−1)k+1(2x1 − z0)

· · ·
ṗ1 = −p0 + 2x1 − z0

ṗ0 = z0 − x1.

(26)

The singular set is characterized by ∂HS

∂v = 0, which leads to pn + pn−1 = 0.
If the trajectory belongs to this set in a non zero time interval then the time
derivatives of pn+pn−1 are also equal to 0. We then obtain a series of constraints
given by:











































pn − pn−2 = 0

pn + pn−3 = 0

· · ·
pn + (−1)n−1p0 = 0

pn + (−1)n+1x1 = 0

z1 = z0

(27)

where each relation is obtained by deriving with respect to time the preceding
one. From z1 = z0, we deduce that z0 = z1 = z2 = · · · = zn−1 = v on the
singular set. The singular trajectories can then be written as:

{

xn(t) = Y e−t + Z sinh(t)

z0(t) = · · · = zn−1(t) = v(t) = Zet
(28)

where the two constants Y and Z characterize the singular solutions. Note that
the singular control field is the same for any value of n.

8 Conclusion and prospective views

Optimal Control Theory protocols are built on about a global constraint, the
minimization of a cost functional, while STA techniques are primarily built
to accommodate for local constraints, in particular at time interval boundaries.
The thorough analysis of the control of a linear system with boundary conditions
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at initial and final times has enabled us to establish how the two formalisms can
mutually benefit from each other.

In the simple STA approach used in this manuscript, the trajectory is ex-
panded over a basis of functions and depends on a finite number of parameters.
Such parameters are determined to fulfill the boundary conditions and to min-
imize the cost functional. We have shown that polynomial and trigonometric
functions are not well suited to the control problem under study, while a basis of
real exponential functions inspired by regularized optimal solutions gives very
efficient results.

Interestingly, STA protocols can be made robust against uncertainties on
the initial and final times by the cancellation of successive time derivatives at
time interval boundaries. In contrast, usual OCT solutions are perfectly suited
for a well defined given time interval but fail down in presence of time interval
uncertainties. Inspired by STA local constraints, we have improved the robust-
ness of OCT solutions by enlarging the parameter space of the optimal control
problem so to accommodate for local constraints at time interval boundaries.

This study can also be viewed as a test case showing the efficiency and
the flexibility of linear quadratic optimal control theory. This approach, well-
known in mathematics and in engineering, has been little applied in physics.
Such methods can be used when the system is governed by a linear differential
equation such as, e.g., in ion cyclotron resonance [37, 38, 40], but also in a
non-linear framework in a range where the linear approximation is valid [41].
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050404 (2013).

[28] L. Van Damme, D. Schraft, G. Genov, D. Sugny, T. Halfmann and S.
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Supplementary material of the paper:
A comparison between optimal control and short-
cut to adiabaticity protocols in a linear control
system

This supplementary material gives technical details about the derivation of
STA and regular optimal solutions in Sec. A and B, respectively.

A STA protocols

We start from the differential equation:

ẋ+ x = u, (29)

where x(t) and its derivative satisfy the boundary conditions x(0) = 0, x(T ) = 1
and ẋ(0) = ẋ(T ) = 0. We consider different function families in which the
trajectory of the system x(t) is expanded.

A.1 Polynomial function family

We assume that

x(t) =

N
∑

k=2

akt
k (30)

From x(T ) = 1 and ẋ(T ) = 0, we have:



















N
∑

k=2

akT
k = 1

N
∑

k=2

kakT
k−1 = 0

(31)

So, there are 2 equations and N − 1 unknowns, i.e. N − 3 free parameters.
N = 3:
Equation (30) becomes:

x3(t) = a2t
2 + a3t

3 (32)

Equation (31) leads to the system:

{

T 2(a2 + a3T ) = 1

T (2a2 + 3a3T ) = 0
(33)

which gives

a2 =
3

T 2
, a3 = − 2

T 3
, (34)

and we obtain:

x3 = 3

(

t

T

)2

− 2

(

t

T

)3
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The control field takes the form:

u3 =
6

T

(

t

T

)

+
3

T
(T − 2)

(

t

T

)2

− 2

(

t

T

)3

The cost functional has been numerically evaluated as C3 ≈ 1.57143, when
T = 1.
N = 4 :
We have:

x4 = a2t
2 + a3t

3 + a4t
4, (35)

and using the boundary conditions, we deduce that:

a2 =
3 + T 4a

T 2
, a3 = −2

1 + T 4a

T 3
, a4 = a,

where a is a free parameter. We arrive at:

x4(t) = (3 + T 4a)

(

t

T

)2

− 2(1 + T 4a)

(

t

T

)3

+ T 4a

(

t

T

)4

The minimization in this case can be done analytically. Plugging the solution
into the cost functional yields:

C4 = 2

[

(

1

1260
+

1

105

)

a2 +
1

60
a+

11

14

]

,

and hence
{

amin = − 21
26 ≈ −0.8076923

C ≈ 1.55797.

N = 5 :
Starting from:

x5 = a2t
2 + a3t

3 + a4t
4 + a5t

5,

we obtain with the boundary conditions:

a2 = (3 + a+ 2b), a3 = −(2 + 2a+ 3b), a4 = a, a5 = b,

where a and b are free parameters. We finally arrive for T = 1 at:

{

x5 = (3 + a+ 2b)t2 − (2 + 2a+ 3b)t3 + at4 + bt5

u5 = 2(3 + a+ 2b)t− (3 + 5a+ 7b)t2 + (−2 + 2a− 3b)t3 + (a+ 5b)t4 + bt5

A numerical minimization leads to:

a ≈ 23.636752, b ≈ −9.(7), C5 ≈ 1.40276

N = 6 :
We have:

x6 = a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6,

and from the boundary conditions, we obtain:

a2 = (3 + a+ 2b+ 3c), a3 = −(2 + 2a+ 3b+ 4c), a4 = a, a5 = b, a6 = c
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where a, b and c are free parameters. We get:

x6 = (3 + a+ 2b+ 3c)t2 − (2 + 2a+ 3b+ 4c)t3 + at4 + bt5 + ct6

and

uP6(t) = 2(3 + a+ 2b+ 3c)t− (3 + 5a+ 7b+ 9c)t2 + (−2 + 2a− 3b− 4c)t3+

+ (a+ 5b)t4 + (b+ 6c)t5 + ct6

The corresponding numerical values for the free parameters and for the cost
functional are:

a ≈ 6.956942, b ≈ 5.627256, c ≈ −5.135011, C6 ≈ 1.39986.

A.2 Trigonometric function family

We assume that the trajectory can be expressed as:

x(t) =
N
∑

k=1

ak sin

(

kπ

2
t

)

(36)

x(0) = 0 is automatically satisfied and the condition ẋ(0) = 0 leads to:

N
∑

k=1

kak = 0 (37)

From x(1) = 1 and ẋ(1) = 0, we deduce that:


















N
∑

k=1

ak sin
(

kπ
2

)

= 1

N
∑

k=1

kak cos
(

kπ
2

)

= 0

(38)

We have 3 equations to fulfill and N unknowns, so N − 3 free parameters.
N = 3:
Equation (36) leads to:

x3(t) = a1 sin

(

π

2
t

)

+ a2 sin (πt) + a3 sin

(

3π

2
t

)

(39)

From the boundary conditions, we obtain:

a1 =
3

4
, a2 = 0, a3 = −1

4
. (40)

We finally arrive at:






x3(t) =
3
4 sin

(

π
2 t
)

− 1
4 sin

(

3π
2 t
)

u3(t) =
3
4

(

π
2 cos

(

π
2 t
)

+ sin
(

π
2 t
)

)

− 1
4

(

3π
2 cos

(

3π
2 t
)

+ sin
(

3π
2 t
)

)

The corresponding cost functional is:

C3 ≈ 1.70041 (41)
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N = 4:
Starting from:

x4(t) = a1 sin

(

π

2
t

)

+ a2 sin (πt) + a3 sin

(

3π

2
t

)

+ a4 sin (2πt) (42)

we obtain:

a1 =

(

3

4
− 2a

)

, a2 = 2a, a3 = −
(

1

4
+ 2a

)

, a4 = a, (43)

where a is a free parameter. Thus we finally arrive at:

x4(t) =

(

3

4
− 2a

)

sin

(

π

2
t

)

+ 2a sin (πt)−
(

1

4
+ 2a

)

sin

(

3π

2
t

)

+ a sin (2πt)

u4(t) =

(

3

4
− 2a

)

(

π

2
cos

(

π

2
t

)

+ sin

(

π

2
t

)

)

+ 2a
(

π cos (πt) + sin (πt)
)

−

−
(

1

4
+ 2a

)

(

3π

2
cos

(

3π

2
t

)

+ sin

(

3π

2
t

)

)

+ a
(

2π cos (2πt) + sin (2πt)
)

The corresponding values for the free parameter and for the cost functional are:

a ≈ 0.0202, C4 ≈ 1.69843. (44)

N = 5:
Equation (36) leads to:

x5(t) = a1 sin

(

π

2
t

)

+ a2 sin (πt) + a3 sin

(

3π

2
t

)

+ a4 sin (2πt) + a5 sin

(

5π

2
t

)

(45)
and we obtain:

a1 =

(

3

4
− 2a

)

, a2 = 2(a−b), a3 = −
(

1

4
+ 2a− b

)

, a4 = a−b, a5 = b (46)

where a and b are free parameters. We get:

x5(t) =

(

3

4
− 2a

)

sin

(

π

2
t

)

+ 2(a− b) sin (πt)−

−
(

1

4
+ 2a− b

)

sin

(

3π

2
t

)

+ (a− b) sin (2πt) + b sin

(

5π

2
t

)

u5(t) =

(

3

4
− 2a

)

(

π

2
cos

(

π

2
t

)

+ sin

(

π

2
t

)

)

+ 2(a− b)
(

π cos (πt) + sin (πt)
)

−

−
(

1

4
+ 2a− b

)

(

3π

2
cos

(

3π

2
t

)

+ sin

(

3π

2
t

)

)

+ (a− b)
(

2π cos (2πt) + sin (2πt)
)

+

+ b

(

5π

2
cos

(

5π

2
t

)

+ sin

(

5π

2
t

)

)
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The corresponding values for the free parameters and for the cost functional
are:

a ≈ 0.785988, b ≈ −0.356639, C5 ≈ 1.48104. (47)

N = 6:
The trajectory can be expressed as:

x6(t) = a1 sin

(

π

2
t

)

+a2 sin (πt)+a3 sin

(

3π

2
t

)

+a4 sin (2πt)+a5 sin

(

5π

2
t

)

+a6 sin (3πt)

(48)
and we obtain:

a1 =

(

3

4
− 2a− 2b

)

, a2 = 2a−3c, a3 = −
(

1

4
+ 2a+ b

)

, a4 = a, a5 = b, a6 = c

(49)
where a, b and c are free parameters. We finally deduce that:

x6(t) =

(

3

4
− 2a− 2b

)

sin

(

π

2
t

)

+ (2a− 3c) sin (πt)−

−
(

1

4
+ 2a+ b

)

sin

(

3π

2
t

)

+ a sin (2πt) + b sin

(

5π

2
t

)

+ c sin (3πt)

u6(t) =

(

3

4
− 2a− 2b

)

(

π

2
cos

(

π

2
t

)

+ sin

(

π

2
t

)

)

+ (2a− 3c)
(

π cos (πt) + sin (πt)
)

−

−
(

1

4
+ 2a+ b

)

(

3π

2
cos

(

3π

2
t

)

+ sin

(

3π

2
t

)

)

+

+ a
(

2π cos (2πt) + sin (2πt)
)

+ b

(

5π

2
cos

(

5π

2
t

)

+ sin

(

5π

2
t

)

)

+ c
(

3π cos (3πt) + sin (3πt)
)

The corresponding values for the free parameters and for the cost functional
are:

a ≈ 1.0407, b ≈ −0.312242, c ≈ −0.0105136, C6 ≈ 1.48099. (50)

A.3 Exponential function family

We consider in this paragraph that the trajectory can be written as follows:

x(t) = a et +b e−t +c ekt +d e−kt (51)

where a, b, c, d and k are free parameters. From the boundary conditions
x(0) = 0, x(1) = 1 and ẋ(0) = ẋ(1) = 0, we have:

B~h = ~s,

where

B =











1 1 1 1
e e−1 ek e−k

1 −1 k −k
e − e−1 k ek −k e−k











, ~h =









a
b
c
d









, ~s =









0
1
0
0








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The vector ~h is given by ~h = B−1~s, where

B−1 =
1

detB



















|B|11 |B|21 |B|31 |B|41
|B|12 |B|22 |B|32 |B|42
|B|13 |B|23 |B|33 |B|43
|B|14 |B|24 |B|34 |B|44



















where |B|11 , |B|12 , . . . are the cofactors of the B matrix and detB is the deter-

minant. We deduce that ~h can be expressed as:

~h =
1

detB









|B|21
|B|22
|B|23
|B|24









Straightforward computations lead to the following determinant and cofactors:


































































detB = −(1− k)2 e−(1+k) −(1− k)2 e1+k +(1 + k)2 e−(1−k) +(1 + k)2 e1−k −8k

|B|21 = k
(

−2 e−1 +(1 + k) e−k +(1− k) ek
)

|B|22 = k
(

−2 e+(1− k) e−k +(1 + k) ek
)

|B|23 = k

(

(

1 +
1

k

)

e−1 +

(

1− 1

k

)

e−2 e−k

)

|B|24 = k

(

(

1− 1

k

)

e−1 +

(

1 +
1

k

)

e−2 ek

)

Whence the coefficients a, b, c and d read:


























































a =
k

D

(

−2 e−1 +(1 + k) e−k +(1− k) ek
)

b =
k

D

(

−2 e+(1− k) e−k +(1 + k) ek
)

c =
k

D

(

(

1 +
1

k

)

e−1 +

(

1− 1

k

)

e−2 e−k

)

d =
k

D

(

(

1− 1

k

)

e−1 +

(

1 +
1

k

)

e−2 ek

)

with

D = detB = −(1−k)2 e−(1+k) −(1−k)2 e1+k +(1+k)2 e−(1−k) +(1+k)2 e1−k −8k.

The cost functional for k = 100 is C = 1.325271.

B The regular optimal solution

Pontryagin’s equations in the regular case is given by:

~̇X = Mλ
~X,
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where ~X = (y, z, py, pz)
T is the state of the system, and Mλ has the following

form:

Mλ =









−1 0 1/λ 1/λ
0 0 1/λ 1/λ
2 −1 1 0
−1 1 0 0









The analytic solution is:
~X = eMλt ~X(0),

where ~X(0) is the initial state of the system. The computation of the optimal
solution requires the determination of the matrix exponential and of the initial
adjoint state. We first compute the eigenvalues and eigenvectors of the matrix
Mλ:

Mλ
~X = µ ~X.

We obtain:

µ1 = −1, µ2 = 1, µ3 = − 1√
λ
, µ4 =

1√
λ

and

X1 = c1









1
0
−1
1









, X2 = c2









1
2

2λ− 1
1









X3 = c3











1

1−
√
λ

−
√
λ

λ











, X4 = c4











1

1 +
√
λ√

λ
λ











where the ci’s are normalization constants which can be set to 1. The eigenvector
matrix P can be written as:

P =











1 1 1 1

0 2 1−
√
λ 1 +

√
λ

−1 2λ− 1 −
√
λ

√
λ

1 1 λ λ











.

The matrix can be inverted if λ 6= 1: det(P ) = 4λ1/2(1 − λ)2. This is not a
problem since we are interested in values of λ close to 0. We have:

P−1 =



























1− 2λ

2(1− λ)
− 1

2(1− λ)

1

2(1− λ)

1

1− λ

− 1

2(1− λ)

1

2(1− λ)
− 1

2(1− λ)
0

1

2(1− λ)

√
λ

2(1− λ)
− 1

2
√
λ(1− λ)

1

2(λ−
√
λ)

1

2(1− λ)
−

√
λ

2(1− λ)

1

2
√
λ(1− λ)

1

2(λ+
√
λ)



























We obtain: MλP = PD, where D is the following diagonal matrix:

D =

















−1 0 0 0
0 1 0 0

0 0 − 1√
λ

0

0 0 0
1√
λ
.

















, (52)
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It is then straightforward to get N(t):

N(t) = eMλt =
(

N1(t) N2(t) N3(t) N4(t)
)

, (53)

where the vectors N1(t), N2(t), N3(t) and N4(t) are defined as:

N1(t) =
1

2(1− λ)































(1− 2λ) e−t − et +e
−

t
√

λ +e
t

√

λ

− e−t +et +
√
λ e

−
t

√

λ −
√
λ e

t
√

λ

e−t − et − 1√
λ
e
−

t
√

λ +
1√
λ
e

t
√

λ

2 e−t −
(

1 +
1√
λ

)

e
−

t
√

λ −
(

1− 1√
λ

)

e
t

√

λ































N2(t) =
1

2(1− λ)

































−2 et +
(

1−
√
λ
)

e
−

t
√

λ +
(

1 +
√
λ
)

e
t

√

λ

2 et +
(√

λ− λ
)

e
−

t
√

λ −
(√

λ+ λ
)

e
t

√

λ

−2 et +

(

1− 1√
λ

)

e
−

t
√

λ +

(

1 +
1√
λ

)

e
t

√

λ

(

1√
λ
−
√
λ

)

(

− e
−

t
√

λ +e
t

√

λ

)

































N3(t) =
1

2(1− λ)





























−(1− 2λ) e−t +(1− 2λ) et −
√
λ e

−
t

√

λ +
√
λ e

t
√

λ

e−t −(1− 2λ) et −λ e
−

t
√

λ −λ e
t

√

λ

− e−t +(1− 2λ) et +e
−

t
√

λ +e
t

√

λ

−2 e−t +
(

1 +
√
λ
)

e
−

t
√

λ +
(

1−
√
λ
)

e
t

√

λ





























N4(t) =
1

2(1− λ)





























(1− 2λ) e−t − et +λ e
−

t
√

λ +λ e
t

√

λ

− e−t +et +λ
√
λ e

−
t

√

λ −λ
√
λ e

t
√

λ

e−t − et −
√
λ e

−
t

√

λ +
√
λ e

t
√

λ

2 e−t −
(√

λ+ λ
)

e
−

t
√

λ +
(√

λ− λ
)

e
t

√

λ





























From Pontryagin’s equations, it is also easy to deduce that:

(

N13(t) N14(t)
N23(t) N24(t)

)(

py(0)
pz(0)

)

=

(

y(t)−N11(t)y(0)−N12(t)z(0)
z(t)−N21(t)y(0)−N22(t)z(0)

)
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where the Nijs are the matrix elements of N . Using the boundary conditions
y(0) = z(0) = 0, we arrive at:

(

y(t)
z(t)

)

=

(

N13(t) N14(t)
N23(t) N24(t)

)(

py(0)
pz(0)

)

.

Similarly, we get:

(

py(t)
pz(t)

)

=

(

N33(t) N34(t)
N43(t) N44(t)

)(

py(0)
pz(0)

)

.

We have established all the intermediate results to find the initial adjoint state.
From y(T ) = 0, and z(T ) = 1, we have:

(

py(0)
pz(0)

)

= A−1

(

0
1

)

,

where

A =

(

N13(T ) N14(T )
N23(T ) N24(T )

)

,

It can be shown that:

A−1 = α













(

1√
λ
−
√
λ

)

(

− e
−

T
√

λ +e
T
√

λ

)

−2 e−T +(1 +
1√
λ
) e

−
T
√

λ +(1− 1√
λ
) e

T
√

λ

2 eT −
(

1− 1√
λ

)

e
−

T
√

λ −
(

1 +
1√
λ

)

e
T
√

λ e−T − eT − 1√
λ
e
−

T
√

λ +
1√
λ
e

T
√

λ













,

with α =
1

2(1− λ) det(A)
and

det(A) =
1

4(1− λ)2
√
λ

[

(

1−
√
λ
)2

e
−

(

1+ 1
√

λ

)

T −
(

1 +
√
λ
)2

e
−

(

1− 1
√

λ

)

T

−
(

1 +
√
λ
)2

e

(

1− 1
√

λ

)

T
+
(

1−
√
λ
)2

e

(

1+ 1
√

λ

)

T
+8

√
λ

]

.

We finally obtain the initial adjoint state:

(

py(0)
pz(0)

)

=
1

2(1− λ)det(A)













−2 e−T +

(

1 +
1√
λ

)

e
−

T
√

λ +

(

1− 1√
λ

)

e
T
√

λ

e−T − eT − 1√
λ
e
−

T
√

λ +
1√
λ
e

T
√

λ













.

It is then straightforward to derive the dynamics of the system:

















y
z
x
py
pz
vR

















= a

















y1 y2 y3 y4
z1 z2 z3 z4
x1 x2 x3 x4

py1
py2

py3
py4

pz1 pz2 pz3 pz4
v1 v2 v3 v4



























e−t

et

e
−

t
√

λ

e
t

√

λ











(54)
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where

a =
1

4(1− λ)2det(A)
. (55)

It is also worth to recall that:

x = z − y

vR =
py + pz

λ

The y1, y2, y3, y4 coefficients can be expressed as follows:

y1 = −2 eT +

(

1− 1√
λ

)

e
−

T
√

λ +

(

1 +
1√
λ

)

e
T
√

λ

y2 = 2 e−T −
(

1 +
1√
λ

)

e
−

T
√

λ −
(

1− 1√
λ

)

e
T
√

λ

y3 = −
(

1− 1√
λ

)

e−T +

(

1 +
1√
λ

)

eT − 2√
λ
e

T
√

λ

y4 = −
(

1 +
1√
λ

)

e−T +

(

1− 1√
λ

)

eT +
2√
λ
e
−

T
√

λ

All the other coefficients z1, z2, . . . , v4 can be expressed in terms of y1, y2, y3
and y4:













z1 z2 z3 z4
x1 x2 x3 x4

py1 py2 py3 py4
pz1 pz2 pz3 pz4
v1 v2 v3 v4













=





















0 2y2

(

1−
√
λ
)

y3

(

1 +
√
λ
)

y4

−y1 y2 −
√
λy3

√
λy4

−y1 − (1− 2λ) y2 −
√
λy3

√
λy4

y1 y2 λy3 λy4

0 2y2

(

1− 1√
λ

)

y3

(

1 +
1√
λ

)

y4





















The regularized cost functional

Having established the optimal regular solution, the next step is to compute the
corresponding cost functional. We have:

CR =

T
∫

0

Gdt =

T
∫

0

[

(z − y)2 + y2 + λv2R

]

dt (56)

The different terms can be expressed analytically:

λv2R = a
2

(

w2
2 e

2t +w2
3 e

−
2t
√

λ +w2
4 e

2t
√

λ +2

[

w2w3 e

(

1− 1
√

λ

)

t
+w2w4 e

(

1+ 1
√

λ

)

t
+w3w4

]

)

,

where
w2 = 2

√
λy2, w3 = −

(

1−
√
λ
)

y3, w4 =
(

1 +
√
λ
)

y4

We also have:

y2 = a
2(y21 e

−2t +y22 e
2t +y23 e

−
2t
√

λ +y24 e
2t
√

λ +2(y1y2 + y1y3 e
−(1+ 1

√

λ
)t

+y1y4 e
−(1− 1

√

λ
)t
+y2y3 e

(1− 1
√

λ
)t
+y2y4 e

(1+ 1
√

λ
)t
+y3y4))
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(z − y)2 = a
2(x2

1 e
−2t +x2

2 e
2t +x2

3 e
−

2t
√

λ +x2
4 e

2t
√

λ +2(x1x2 + x1x3 e
−(1+ 1

√

λ
)t

+x1x4 e
−(1− 1

√

λ
)t
+x2x3 e

(1− 1
√

λ
)t
+x2x4 e

(1+ 1
√

λ
)t
+x3x4))

Simple manipulations yield to:

G = a
2(G1 e

−2t +G2 e
2t +G3 e

−
2t
√

λ +G4 e
2t
√

λ +2(G13 e
−(1+ 1

√

λ
)t

+G14 e
−(1− 1

√

λ
)t
+G23 e

(1− 1
√

λ
)t
+G24 e

(1+ 1
√

λ
)t
)),

where

G1 = 2y21 , G2 = 2 (1 + 2λ) y22 , G3 = 2
(

1−
√
λ+ λ

)

y23 , G4 = 2
(

1 +
√
λ+ λ

)

y24

G13 =
(

1 +
√
λ
)

y1y3, G14 =
(

1−
√
λ
)

y1y4

G23 =
(

1−
√
λ
)(

1− 2
√
λ
)

y2y3, G24 =
(

1 +
√
λ
)(

1 + 2
√
λ
)

y2y4.

A simple integration leads to:

CR = a
2

{

1

2

[

−
(

e−2T −1
)

G1 +
(

e2T −1
)

G2

]

−
√
λ

2

[

(

e
−

2T
√

λ −1
)

G3 −
(

e
2T
√

λ −1
)

G4

]

−

−2

√
λ

1 +
√
λ

[

(

e
−

(

1+ 1
√

λ

)

T −1

)

G13 −
(

e

(

1+ 1
√

λ

)

T −1

)

G24

]

+

+2

√
λ

1−
√
λ

[

(

e
−

(

1− 1
√

λ

)

T −1

)

G14 −
(

e

(

1− 1
√

λ

)

T −1

)

G23

]







C Comparison between the STA exponential and

the optimal regular solutions

We study in this paragraph the correspondence between the STA exponential
and the optimal regular solutions. For the regular optimal trajectory, we have:

xR(t) = a

(

x1 e
−t +x2 e

t +x3 e
−

t
√

λ +x4 e
t

√

λ

)

(57)

where the coefficients x1, x2, x3, x4 and a are given by:

x1 = −y1 = 2 e−
(

1− 1√
λ

)

e
−

1
√

λ −
(

1 +
1√
λ

)

e
1

√

λ

x2 = y2 = 2 e−1 −
(

1 +
1√
λ

)

e
−

1
√

λ −
(

1− 1√
λ

)

e
1

√

λ

x3 = −
√
λy3 = −

(

1−
√
λ
)

e−1 −
(

1 +
√
λ
)

e+2 e
1

√

λ

x4 =
√
λy4 = −

(

1 +
√
λ
)

e−1 −
(

1−
√
λ
)

e+2 e
−

1
√

λ

a =

√
λ

(

1−
√
λ
)2

e
−

(

1+ 1
√

λ

)

−
(

1 +
√
λ
)2

e
−

(

1− 1
√

λ

)

−
(

1 +
√
λ
)2

e
1− 1

√

λ +
(

1−
√
λ
)2

e
1+ 1

√

λ +8
√
λ
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When k ≡ 1
√

λ
, a relation can be established between detB and a:

detB = − 1

λ

[

(1−
√
λ)2 e

−

(

1+ 1
√

λ

)

−(1 +
√
λ)2 e

−

(

1− 1
√

λ

)

−

−(1 +
√
λ)2 e

(

1− 1
√

λ

)

+(1−
√
λ)2 e

(

1+ 1
√

λ

)

+8
√
λ

]

,

or
1

detB
= −

√
λa

the a, b, c and d coefficients can be expressed as:























































b = − 1

detB

1√
λ
x1 = ax1

a = − 1

detB

1√
λ
x2 = ax2

d = − 1

detB

1√
λ
x3 = ax3

c = − 1

detB

1√
λ
x4 = ax4

Consequently the STA exponential solution reduces to:

x(t) = a

(

x1 e
−t+x2 e

t +x3 e
−

t
√

λ +x4 e
t

√

λ

)

(58)

From Eq. (57) and Eq. (58), we deduce that the regular and exponential solu-
tions coincide.
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