
 

Quantum Control beyond the Adiabatic Regime in 2D Curved Matter-Wave Guides

François Impens,1 Romain Duboscq,2 and David Guéry-Odelin3
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The propagation of matter waves in curved geometry is relevant for ion transport, atomtronics and
electrons in nanowires. Curvature effects are usually addressed within the adiabatic limit and treated via an
effective potential acting on the manifold to which the particles are strongly confined. However, the
strength of the confinements that can be achieved experimentally are limited in practice, and the adiabatic
approximation often appears too restrictive for realistic guides. Here, we work out a design method for 2D
sharply bent waveguides beyond this approximation using an exact inverse-engineering technique. The
efficiency of the method is confirmed by the resolution of the 2D nonlinear Schrödinger equation in curved
geometry. In this way, we realize reflectionless and ultrarobust curved guides, even in the presence of
interactions. Here, the transverse stability is improved by several orders of magnitude when compared to
circular guides of similar size.
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Introduction.—The development of quantum technolo-
gies builds up on the increasing level of control of both
internal and external degrees of freedom of atoms. This has
motivated the design of quantum control protocols as key
ingredients for such technologies. Quantum control proto-
cols are mostly developed for quantum observables asso-
ciated to flat coordinate systems. However, the geometry
can drastically affect the quantum properties [1,2]: for
instance, any kind of bending produces a bound state [3].
This suggests that geometry provides a powerful tool for
controlling quantum systems. For instance, new forms of
wave localization have been proposed by combining
curved potentials and topological protection [4].
Since the pioneering works of Costa [1,2] and, Goldstone

andJaffe [3] toestablish the frameworkofquantummechanics
in curved geometry, the literature has focused on an effective
1D treatment relyingonanadiabatic approximation [5–11]. In
this approach, the effect of curvature is encapsulated in an
effective attractivepotential [3].However, as explainedbelow,
the validity of quantum control protocols based on such a
treatment is restricted to regimes of weak and slowly varying
curvatures. Furthermore, many experimental situations such
as electrons in quantum nanowires [12–17], propagation of
atomic waves in guides [18], or the transfer of ions between
different trap zones [19–23] often require going beyond this
1D approximation. In this Letter, we consider the real 2D
problem and set up a nonadiabatic quantum control strategy
valid in strongly curved geometry.
Such a study is relevant for the growing field of nano-

materials having complex geometries [12–14]. In the field of
atomtronics,many techniqueshavebeen investigated todesign
guides [24–29]. The control of the external degrees of freedom

has also undergone an extraordinary progress with the reali-
zation of atom lasers having a high quality factor [30–37].
Guideswithvarious shapes, including rings, have alreadybeen
demonstrated for the development of guided matter-wave
interferometry [24–29,38–44].Theapplicationsand theminia-
turization of matter-wave circuits require a perfect control of
matter-wave propagation in a bent guide. A sharp bending
favors compactness at the expense of a coupling between
longitudinal and transverse degrees of freedom which may
have deleterious consequences for the control of the matter
wave [45–47]. The necessity of a perfect control in curved
geometry is also an important prerequisite for setting up
quantum computer platforms based on ions [19,20].
In the following, we first work out an inverse engineering

strategy, inspired by shortcuts to adiabaticity (sta) protocols
[48–50], to shape a class of classical trajectories robust to a
variation in the initial conditions and free of residual
transverse excitations after a bend. Then, we validate those
solutions by a numerical resolution of the full 2D
Schrödinger equation in curved space [51]. Our findings
reveal how a proper guide design can dramatically reduce
the transverse excitations after the bend, when compared to
circular guides of identical radius and stiffness.
Schrödinger equation in curved geometry.—The coor-

dinate of a material point using curvilinear coordinates
ðs; yÞ associated to a path rcðsÞ are given by rðs; yÞ ¼
rcðsÞ þ ynðsÞ where n̂ðsÞ is the local normal to the path.
The variation with the curvilinear coordinate of the local
normal vectors reads: dt̂=ds ¼ κn̂ and dn=ds ¼ −κt̂
where t̂ðsÞ ¼ drc=ds is the local tangent and κðsÞ ¼
1=RðsÞ the local curvature.
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The quantum mechanical wave function in curvi-
linear coordinates ðs; yÞ can be written as ψðs; yÞ ¼
h−1=2ðs; yÞϕ̃ðs; yÞ. The complex-valued function ϕ̃ðs; yÞ
is given by a direct coordinate change in the cartesian
coordinates wave function ϕðX; YÞ: ϕ̃ðs; yÞ ¼
ϕ½Xðs; yÞ; Yðs; yÞ� where ½Xðs; yÞ; Yðs; yÞ� are the cartesian
coordinates associated to the classical point rðs; yÞ defined
above. The factor h−1=2ðs; yÞ arises from the Jacobian
associated to the passage from cartesian to curvilinear
coordinates. Indeed, the bending of the guide causes a local
variation of the metric, captured by the definition of a
function hðs; yÞ ¼ 1 − κðsÞy depending on the local path
curvature κðsÞ. Similar to general relativity, this inhomo-
geneous metric encodes the inertial forces. It is also
responsible for the coupling between longitudinal and
transverse degrees of freedom.
In its most general form, the curvilinear wave function

ψðs; yÞ satisfies the following time-dependent Schrödinger
equation in the presence of a transverse confining potential
V⊥ðyÞ [3]:
�
−
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1
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To recover the widely used adiabatic approximation,
three criteria shall be fulfilled

ðaÞ σjκj≪ 1; ðbÞ σ
����dκds
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����d

2κ

ds2

����≪ κ2; ð2Þ

where σ is the transverse size of the wave packet. In this
limit, the Schrödinger equation becomes separable and
yields independent longitudinal and transverse motions.
Within the adiabatic approximation, the effect of curvature
is encapsulated in an effective attractive 1D potential
VeffðsÞ ¼ −ℏ2κðsÞ2=ð8mÞ, valid for sufficiently strong
transverse confinement.
Our aim is to design the shape of a guide that connects

two guides. To fix ideas, we consider a relative angle
between the guides equal to α ¼ 90°, the same transverse
confinement for each guide, V⊥ðyÞ ¼ 1

2
mω2y2, and an

initial and final guide straight (see Fig. 1). The harmonic
potential V⊥ðyÞ is relevant for atomtronics and ion circuits,
but also for GaN or ZnO based nanowires [57–60]. The
generalization to initial and final wave guides having a
finite curvature radius and/or for another relative angle is
straightforward [61]. The simplest candidate is a quarter
circle of constant radius R connecting the two straight
guides. However, the abrupt change of curvature at the
entrance and exit of such a bend generates a sudden
centrifugal force that induces transverse excitations. To
circumvent this limitation, in the following, we show how

to tailor the curvature profile κðsÞ as a function of the
curvilinear coordinate s. At first sight, the direct solution of
this problem through Eq. (1) seems very challenging. We
overcome this difficulty by using a class of properly
tailored classical solutions.
Exact inverse engineering.—The Newton law expressed

in curvilinear coordinates yields

̈sð1 − κyÞ − _sð_κyþ 2κ _yÞ ¼ 0; ð3Þ

ÿþ ω2yþ _s2κð1 − κyÞ ¼ 0; ð4Þ

with κ≡ κ½sðtÞ�. Combining Eqs. (3) and (4), we recover
the conservation of energy

_y2 þ ω2y2 þ v2κ ¼ Cte ¼ 2E
m

; ð5Þ

where vκ ¼ _sð1 − κyÞ [ _vκ ¼ _sκ _y from Eq. (3)]. The quan-
tity Kκð_s; s; yÞ ¼ 1

2
mv2κ is nothing but the longitudinal

kinetic energy in a straight guide and, also, encapsulates
the potential induced by inertial forces in a curved guide.
An exact inverse engineering of the transverse motion is
worked out by imposing the desired smooth trajectory for
the transverse coordinates, yðtÞ. From Eq. (5), we then get
vκðtÞ from yðtÞ. This latter quantity gives access to both the
longitudinal velocity from _s ¼ vκ þ _sκy ¼ vκ þ _vκy=_y and
the time-dependent curvature at the particle position
κ½sðtÞ� ¼ _vκðtÞ=½_sðtÞ_yðtÞ� ¼ _vκ=½dðvκyÞ=dt�. The curvature
profile κðsÞ is eventually reconstructed by integration of the
longitudinal velocity [51].
For the connection between two orthogonal straight

guides (see Fig. 1), we proceed in two symmetrical steps
(dashed line at 45°). The connection is performed in a total
time 2T. To design the guide on the first segment of
duration T, we impose the following boundary conditions:

FIG. 1. Problem statement: How to connect two straight guides
without inducing extra transverse oscillations in the output guide
(trajectory represented by a dotted red line)?
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ystað0Þ ¼ 0, ystaðTÞ ¼ Δy, _ystað0Þ ¼ _ystaðTÞ ¼ 0 and
ÿstað0Þ ¼ ÿstaðTÞ ¼ 0. The conditions at t ¼ 0 translate
the absence of transverse excitation at the entrance of
the bend. The conditions at t ¼ T are required for two
reasons: it ensures the continuity of the position and
velocity in the middle of the guide, and it enforces the
stability of the trajectory against the final time 2T. As such,
it improves the resilience against a small dispersion in the
longitudinal velocity [50]. This latter requirement is rel-
evant for the propagation of a matter wave since the wave
packet has finite size and, thus, a finite velocity dispersion.
To accommodate for the boundary conditions, we choose a
trajectory in the form of a polynomial ystaðtÞ ¼ Pðt=TÞ
with PðxÞ ¼ Δyð10x3 − 15x4 þ 6x5Þ. Many other choices
could be made for this interpolating function depending on
the relevant constraints as discussed in [61,62].
The free parameter Δy is fixed by the choice of the

maximum curvature, κm, reached at t ¼ T: Δy ¼
− 1

4
κ−1m ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8_sðTÞ2κ2m=ω2

p
− 1Þ. The time T is deter-

mined self-consistently by the choice of the rotation angle
α0 ¼ ht̂½sð0Þ�; t̂½sðTÞ�i ¼ R

T
0 dtκ½sðtÞ�_sðtÞ (α0 ¼ π=4 for our

example)

α0 ¼ −
Z

T

0

dt
ÿstaðtÞ þ ω2ystaðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E=m − _y2staðtÞ − ω2y2staðtÞ
p : ð6Þ

By symmetry, the solution for T ≤ t ≤ 2T
reads: ystaðtÞ ¼ Pð1 − t=TÞ.
To quantify the compactness of the tailored bend, we

define the effective radius of curvature Req as the radius of
the largest quarter circle enclosed within the engineered
bend. Figure 2(a) gives an example of an engineered
curvature profile with Req ¼ 10 μm for typical experimen-
tal parameters _s0 ¼ 20 mm=s and ω=2π ¼ 1705 Hz [55].
Figure 2(b) shows the engineered bend together with the
effective radius of curvature Req.

Robust cancellation of the transverse excitations.—For a
bend defined by a quarter circle, the curvature is a step
function that drives transverse oscillations that generally
persist beyond the bend. Their amplitude depends on the
particle parameters at the entrance of the guide and on the
phase of the transverse oscillation at the exit of the bend. As
a result, there exists a set of discrete radius values for which
there is an exact cancellation of the oscillations of the
outgoing particle [45,55].
Nevertheless, even in these most favorable circumstan-

ces, it turns out that the 2D inverse-engineered guide
outperforms the circular path when one considers the
average transverse stabilization achieved over a finite
velocity interval. As already explained above, a desirable
feature of a matter wave guide is, indeed, to suppress
transverse excitations over a finite range of longitudinal
velocities and not only for isolated values. To quantify the
robustness of the guide, we consider a uniform distribution
of initial velocities over the interval ½ð1 − ϵÞ_s0; ð1þ ϵÞ_s0�,
where _s0 is the incident longitudinal velocity used in the
inverse-engineering procedure and with ϵ ¼ 5%. Each
initial velocity v yields oscillations at the exit of the bend
of finite amplitude acðvÞ and astaðvÞ for the circular and the
inverse-engineered guide, respectively. We measure the
robustness by computing the dimensionless quantities
ᾱc;sta ¼ ð2ϵ_s0σÞ−1

R _s0þϵ
_s0−ϵ ac;staðvÞdv, corresponding to the

ratio between the averaged oscillation amplitudes and the
width σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mω
p

of the transverse ground state wave
function. For an oscillation amplitude a, the outgoing
particle has a transverse mechanical energy E which
compares to the energy quantum as E=ℏω ¼ 1

2
ða=σÞ2.

Figure 3 shows the oscillation amplitudes ᾱc;sta as a
function of the effective radius. The engineered guide
yields transverse excitations that are at least 1 order of
magnitude (and for some radii more than 2 orders of
magnitude) smaller than that of the circular guide.

(a) (b)

FIG. 2. (a) Inverse-engineered curvature profile κðsÞ
(solid blue line) and the corresponding effective circular bend
of radius Req ¼ 10 μm (red dashed line) as a function of the
longitudinal coordinate s. (b) View from above of the inverse-
engineered path (blue) shape and of the equivalent circular path
(red). Parameters: initial longitudinal velocity of _s0 ¼ 20 mm=s,
trapping frequencyω ¼ 2π × 1705 Hz, and amaximum curvature
κm ¼ 0.22 μm−1.Thetotal length issf ≃ 16.6 μmcorrespondingto
a total time 2T ≃ 0.88 ms.

FIG. 3. Averaged oscillation amplitudes ᾱsta for the engineered
guides (triangle) and ᾱc for the circular guides (square) after a
right turn as a function of the guide radius. Same initial
longitudinal velocity and trapping frequency as for Fig. 2.
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Comparison between 2D and 1D curvature designs.—To
facilitate the comparison between our 2D treatment and the
1D effective approach [5–11], we define in the following
manner the 1D-adiabatic design.
The adiabatic limit yields an independent longitudinal

motion driven by an attractive bending potential VeffðsÞ.
Thus, the longitudinal velocity is expected to increase with
the local curvature as _scl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_s20 − 2VeffðsclÞ=m

p
with _s0 the

longitudinal velocity of the atomic wave packet before
the bend. From the classical equation (4), we infer the
expression of the curvature κ1DðsÞ as a function of
the transverse trajectory ystaðtÞ defined previously with
T ¼ T1D whose value is determined by the desired rotation
angle π=4 ¼ R T1D

0 dt_sclðtÞκ1DðsclðtÞÞ. We use this determi-
nation of the curvature in 2D simulations performed either
with classical or Schrödinger equations.
The 2D-curvature design is obtained from the procedure

explained in the previous section. It relies on a similar
transverse trajectory ystaðtÞ but defined with the time T2D to
get the desired angle [see (6)].
Here, we work out a concrete example with the param-

eters: _s0 ¼ 20 mm=s and ω ¼ 2π × 1705 Hz. We find
T1D ¼ 0.334 ms for κ1DðsÞ and T2D ¼ 0.295 ms for
κ2DðsÞ, corresponding to the respective bend lengths
sf1D ¼ 13.36 μm and sf2D ¼ 10.37 μm, and to the effec-
tive radii of curvature Req 2D ¼ 8.37 μm and Req 2D ¼
6.47 μm. The initial wave function is a cigar-shaped
Gaussian wave function of widths σy ¼ σs=10 ¼
ðℏ=mωÞ1=2 initially centered on the axis y ¼ 0, at the
normalized longitudinal position s=sf ¼ −0.5 and with an
average velocity _s0 (see Fig. 4). With this initial position,
the wave packet is at t ¼ 0 entirely outside the bend.
The effectiveness of the two methods is analyzed

through both the classical 2D Newton equations and the
numerical resolution of the full 2D Schrödinger equation (1)
for both curvature profiles κ1DðsÞ and κ2DðsÞ [51]. The
results are summarized in Fig. 4 where the transverse
position and longitudinal velocities of the packet are plotted
as a function of the normalized longitudinal coordinate
s=sf for both curvature designs.
For our choice of parameters, the curvature κðsÞ varies

considerably on the width of the wave packet as σs=sf ∼
0.2 for both guides. This contributes to the clear difference
between the classical (dotted-dashed lines) and quantum
trajectories (solid lines). With the 1D adiabatic-design
bend, we observe strong transverse oscillations that persist
in the output straight guide (s=sf ≥ 1) [see Fig. 4(a)].
Therefore, this design fails to provide a reliable connection
between the two straight guides for both classical and
quantum simulations. A totally different behavior is
obtained with the 2D-curvature design: the transverse
oscillations in the output channel are almost completely
suppressed. As a figure of merit, for each guide, we
evaluate the exceeding transverse energy of the wave

packet once in the output straight guide with respect to
the ground state energy scaleΔEt: ¼ h1

2
p2
y=mþ 1

2
mω2y2i−

1
2
ℏω ¼ n̄ℏω. We obtain the respective average number

of transverse excitations quanta n̄1D ¼ 1.4 and n̄2D ¼
5.1 × 10−3 for the 1D-adiabatic and 2D designs, respec-
tively. With our 2D protocol, we reach a fidelity up to
99.6%. These results validate our strategy.
Figure 4(b) shows the evolution of the longitudinal

velocity along the bend for both guides. For the 1D guide,
the final longitudinal velocity obtained from quantum
simulations is noticeably below its initial value, which
witnesses the transfer of energy between the longitudinal
and transverse degrees of freedom. A common feature of
both bent guides is that the longitudinal velocity signifi-
cantly decreases when the wave packet is expelled from the
bend center. This is a fingerprint of angular momentum
conservation, even though with the considered position-
dependent curvature profile angular momentum is not
rigorously conserved. This correlation is a signature that
the propagation occurs beyond the adiabatic regime, for
which the longitudinal and transverse motion are expected
to be independent [3,5–11]. It is remarkable that the
longitudinal velocity obtained from the 2D Schrödinger
equation is, indeed, minimal in the region of strong
curvature, where it should be maximal according to the

(a) (b)

(c) (d)

FIG. 4. (a) and (b): Transverse position, hyðs=sfÞi, and longi-
tudinal velocity, h_siðs=sfÞ, of the wave packet as a function of the
normalized longitudinal coordinate, s=sf. The curves are ob-
tained from 2D classical simulations using either the 1D-
adiabatic design (red dotted-dashed line) or the 2D-optimized
protocol (black dotted-dashed line), or from the 2D Schrödinger
equation (1) using either the 1D-adiabatic design (red solid line)
or the 2D-optimized protocol (black solid line). Color plot of the
modulus square of the 2D wave function jϕðs; yÞj2 (in μm−2) after
propagation at the position s ¼ 1.5sf for the 1D-adiabatic design
(c) and 2D-nonadiabatic design (d). Parameters: initial Gaussian
wave function of widths σy ¼ σs=10 ¼ ðℏ=mωÞ1=2 centered on
axis (y ¼ 0) at s ¼ −0.5sf and with a velocity _s0 ¼ 20 mm=s.
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1D adiabatic approach. This suggests that the convergence
of the longitudinal velocity profile towards the adiabatic
limit is slow. Indeed, the considered 2D curvature profile
κ2DðsÞ presents rapid variations which violate the adiabatic
criteria (2)(b) and (2)(c), as σjdκ2D=dsj ≃ 0.6κ and
σjd2κ2D=ds2j ≃ 5κ2 in the vicinity of the strongly curved
region of the bend. In this regime, our procedure clearly
outperforms previous methods based on an effective 1D
potential. Our method only breaks down when the con-
dition (2)(a) is violated. Indeed, in this extreme limit, the
classical-quantum correspondence fails down since the
inertial force strongly varies over the wave packet size.
Interestingly, our design protocol remains valid in the

presence of interactions (see [51]). Over a wide range of
nonlinear couplings g2D well beyond the perturbative regime
(−0.95 < g2D=g0 < 0.75 with g0=m ¼ 1 μm4ms−2), the
quantum fidelity remains larger than 99% when we compare
the propagation in the curved guide [same parameter as for
Fig. 4(d)] with that in a straight guide for the same
propagation time. We have propagated matter-wave solitons
[56,63] and found a regime of interactions (−0.5 <
g2D=g0 < 0) with a fidelity almost equal to the interac-
tion-free value. This extra robustness is attributed to the
quasiparticle behavior of solitons.
To conclude, we have presented a systematic procedure

to design reflectionless strongly curved 2D matter wave
guides with unprecedented quantum fidelity. Our study has
also revealed the pitfalls of 1D effective potential, and the
very slow convergence of a real system towards this type of
adiabatic limit. Our approach provides a new strategy for
quantum control in curved geometry beyond the adiabatic
regime and is a step forward towards the realization of
highly stable complex matter wave circuits and of a
portable guided matter-wave interferometer [18,24–29,
39–44,55,64] including solitons [65].
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Odelin, Phys. Rev. Lett. 107, 254104 (2011).

[47] G. L. Gattobigio, A. Couvert, G. Reinaudi, B. Georgeot, and
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