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Fig. S1. Determination of the populations in the left and right islands. a-d, Experimental 
absorption images taken after a 25 ms time-of-flight for different numbers of modulation period. 
e-h, Solid lines: profiles of the experimental images integrated along the vertical axis, giving 
access to the momentum distribution along the lattice axis (the dashed line separates the positive 
and negative momentum components). i, Time-evolution of the population of the right (red 
color) (resp. left (blue color)) regular island obtained from the integration of the momentum 
profiles (e.g. e-h) over negative (resp. positive) momenta. 
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Fig. S2. Determination of regular island(s) position(s). Phase space generated by the 
parameters ε = 0.268  and a γ = 0.188 , b 265γ = 0. , c 34γ = 0. 8 , showing the splitting of the 
central regular island into two and three islands. d-f, Experimental results associated to each 
phase space: the standard deviation of the atomic momentum distribution is plotted as a function 
of the in-trap initial position Δx of the atomic wave packet. Dotted lines: multi-Gaussian fits. 
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1. Bifurcation and rotation in phase space 

 
The bifurcation - To introduce the main features of the bifurcation, we linearize the classical 

equation of motion close to x=0 and introduce explicitly the period of modulation T. In this way, 
we get at third order of expansion the Mathieu-Duffing equation:  
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The standard linear Mathieu equation displays instabilities (unbounded solutions) for a 

discrete set of ratios between the forcing and the natural frequencies (proportional to γ ). The 
non-linearities of Eq. (S1) shifts those resonances and can even restore their stability. This latter 
effect is responsible for the bifurcation. 

 
According to the analytical approach developed in Refs. (40,69), the bifurcations occur at 

two critical values !! = (4 ± 2!)!!. For a fixed amplitude of modulation ε , the first bifurcation 
when the lattice depth ! is increased amounts to breaking the central stable island into two off-
centered symmetric stable islands whose phase space coordinates are given by 
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For our parameter (ε = 0.268 ), this bifurcation occurs at γ = 0.22 . In the range 

0.22 0.29γ< < , the (x,p)=(0,0) orbit becomes unstable. For 0.29γ > , the stability of this orbit is 
restored (see Fig. 2 of the main text). 
 

Rotation in phase space and 2T formalism - Equation (S2) actually describes the forced 
motion of a pair of stable points in the (x,p) plane. They rotate with a 2T period on an ellipse 
centered on (x,p)=(0,0) (see Fig. S3). This is the reason why (i) we probe the system 
stroboscopically every 2T and (ii) we wait for an extra T/2 period to transfer the information 
from the x-axis to the p-axis. 



 
 

 
 

 

Fig. S3. Rotation of the stable orbits in phase space. Stroboscopic phase spaces are plotted for 
different values of the modulation time showing the rotation of the two symmetric islands. 
Parameters: 5ε = 0.1 , 25γ = 0. . 
  



 
 

 
 

2. Additional experimental CAT resonances 
 
CAT resonances are a very generic feature of mixed systems. We report hereafter two other 

observations performed with different parameters showing three additional resonances (see Figs. 
S4 and S5). The experimental data are in very good agreement with the numerical simulations. 

 
 
 

 

Fig. S4. Second experimental CAT resonance. a-b, Examples of experimental tunneling 
oscillations. c, Experimentally measured tunneling frequencies (red dots) as a function of the 
inverse of the effective Planck constant compared to the theoretical/numerical predictions 
corresponding to 315 0.005γ = 0. ±  and 39ε = 0. . The vertical red line indicates a dataset right at 
resonance for which we couldn't extract a frequency. The blue shaded area corresponds to the 
experimental uncertainty on γ . The corresponding classical phase space is plotted in d. 

 



 
 

 
 

 

Fig. S5. Third and fourth experimental CAT resonances. a-b, Examples of experimental 
tunneling oscillations. c, Experimentally measured tunneling frequencies (red dots) as a function 
of the inverse of the effective Planck constant compared to the theoretical/numerical predictions 
corresponding to 229 0.001γ = 0. ±  and 0ε = 0.6 . The blue shaded area corresponds to the 
experimental uncertainty on γ . The corresponding classical phase space is plotted in d. 

 
  



 
 

 
 

 
3. Spectrum and eigenstates analysis of the experimental CAT resonances 

 
The theoretical description of chaos-assisted tunneling resonances involves an avoided 

crossing scenario between regular and chaotic states. This description rests on the semi-classical 
approximation (effective Planck constant small enough compared to the size of the classical 
structures of the phase space) that guarantees to be able to label chaotic and regular states. For 
the three experimental configurations we probed, the quasi-energy spectra show avoided 
crossings associated with the observed resonances (see Figs. S6a, S7a, S8a) and the states 
involved can be labelled in two classes: regular (see Figs. S6b-c, S7 b-c, S8 b-c) and chaotic (see 
Figs. S6d-e , S7d-e , S8d-e). 

 
 
 
 

 

Fig. S6. Eigenstates analysis of the first experimental CAT resonance (see Fig. 4 of main 
text). a, quasi-energy spectrum of the quantum states involved in the CAT resonance. To identify 
the relevant eigenstates, we compute their overlap with a Gaussian state placed at the center of 
one of the lateral islands. In blue: regular eigenstate having a given parity. In red: regular 
eigenstate with the opposite parity. In green: chaotic states. Red (regular state) to green (chaotic 
state) curves reveal the mixing between regular and chaotic states having the same parity 
(avoided crossing). b, c, d, e Husimi distribution of the relevant eigenstates superimposed to the 
classical phase space.  

 
  



 
 

 
 

 
 
 
 

 

Fig. S7. Eigenstates analysis of second experimental CAT resonance (see Fig. S4). Same 
convention as Fig. S6. 

 
 
 
 
 

 

Fig. S8. Eigenstates analysis of the third and fourth experimental CAT resonances (see Fig. 
S5). Same convention as Fig. S6. 

 
 

  



 
 

 
 

4. Oscillation damping 
 
As stated in the main article, the number of atoms in the condensate drastically affects the 

damping of the chaos-assisted tunneling oscillations (see Fig. S9). We attribute this effect to the 
dephasing of BECs in each lattice site due to interatomic interactions. As the strength of the 
interaction depends on the density, reducing the number of atoms decreases the damping rate.  

 
 
 

 

Fig. S9. Damping of oscillations with the number of atoms. Comparison of the chaos-assisted 
tunneling oscillations for two different atom numbers: a 51.2 0.2 10N = ± ×  and b 

44 0.2 10N = ± × . The phase space parameters are 225 0.005γ = 0. ±  and 59 0.01ε = 0. ± . 

 

 
More specifically, with 105 atoms spread over 30 lattice cells, it corresponds to about 3000 atoms 
per site. In a lattice well, the frequencies are equal to 40 Hz along the transverse axes and on the 
order of 30 kHz along the lattice direction. With such figures, the Thomas-Fermi radius is close 
to 20 nm along the lattice direction (well below the lattice spacing equal to 532 nm). The atomic 
density in a cell of the lattice is typically on the order of 4×1014 atoms per cm3 which set the 
dimensionless parameter !!!~5.2 ×10!!  ≪ 1, where n is the atomic density and a = 5.35 nm is 
the rubidium-87 scattering length associated to the internal state F=1,mF=-1. The BEC is 
therefore in the weakly interacting regime for which the mean field description is relevant. 
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