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de Toulouse, CNRS, UPS, Toulouse, France
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Abstract. We analyse non-equilibrium Carnot-like cycles built with a colloidal
particle in a harmonic trap, which is immersed in a fluid that acts as a heat
bath. Our analysis is carried out in the overdamped regime. The cycle comprises
four branches: two isothermal processes and two locally adiabatic ones. In the
latter, both the temperature of the bath and the stiffness of the harmonic trap
vary in time, but in such a way that the average heat vanishes for all times. All
branches are swept at a finite rate and, therefore, the corresponding processes
are irreversible, not quasi-static. Specifically, we are interested in optimising the
heat engine to deliver the maximum power and characterising the corresponding
values of the physical parameters. The efficiency at maximum power is shown to
be very close to the Curzon–Ahlborn bound over the whole range of the ratio
of temperatures of the two thermal baths, pointing to the near optimality of the
proposed protocol.
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1. Introduction

The investigation of heat engines is a pillar of classical thermodynamics [1]. The practical
interest of the conversion of thermal energy into mechanical work led to unravel the laws
of thermodynamics. These laws have been well formulated since the 19th century for
macroscopic systems, for which fluctuations are negligible. In this context, the Carnot
heat engine has played a major role: the Carnot cycle comprises two isothermal and two
adiabatic branches, which are swept in a quasi-static, reversible, way. This reversible
Carnot heat engine maximises the efficiency but the infinite time operation entails that
the delivered power vanishes. In the adiabatic branches, the system is thermally isolated
from the bath and there is no heat exchange—moreover, reversibility implies that there
is no entropy variation either.

The extension of thermodynamic results to mesoscopic systems, where fluctuations
are of paramount importance, is not straightforward; stochastic thermodynamics has
been developed to this end [2–4], the focus of which lies on non-equilibrium dynamics. In
recent years, researchers have looked into the possibility of speeding up the relaxation of
physical systems between two given equilibrium states [5–11]. The emerging ‘engineered
swift equilibration’ (ESE) [5, 6, 8, 9] and ‘shortcuts to isothermality’ (STI) [7, 10, 11]
techniques, which are closely related but not equivalent in general, can be viewed as the
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counterpart in the classical realm of the quantum ‘shortcuts to adiabaticity’ (STA) [12].
Anyway, STA, STI, and ESE processes make it possible to connect given initial and
target states in a time that is much shorter than the natural characteristic relaxation
time of the system at hand. To avoid confusion, it is perhaps worthwhile pointing that
‘adiabaticity’ in STA refers to a slow variation and not to the absence of heat transfer,
at variance with terminology to be used below.

STA, STI, and ESE techniques make it possible to build heat engines that connect
equilibrium states in a finite time, i.e. in an irreversible way. Therefore, the irreversible
counterparts of the classical heat engines can be constructed at the mesoscopic level. In
fact, our main goal is building an irreversible version of the Carnot heat engine with a
colloidal particle in a harmonic trap of stiffness k, immersed in a fluid at equilibrium
with temperature T . This system is relevant from both the theoretical and experimental
standpoints. However, a difficulty arises: for mesoscopic systems, it is impossible to com-
pletely decouple the system from the heat bath to thermally isolate it—the interaction
between a Brownian particle and the fluid in which it is immersed cannot be switched
off. Moreover, zero heat and no entropy increment are not equivalent for finite time
processes.

The above discussion entails that the definition of adiabatic—in the thermodynam-
ical sense—process is far from trivial at the mesoscale. Notwithstanding, very recently,
finite-time adiabatic processes have been characterised for a wide class of mesoscopic
systems [13], in the overdamped description of the dynamics. In these processes, the
average heat vanishes for all times but there is entropy creation, as imposed by the
second principle. We employ these finite-time adiabatic processes to build the corre-
sponding adiabatic branches of the irreversible Carnot engine. Therefore, our approach
differs from other recent attempts to construct an irreversible Carnot engine [14–18], the
limitations of which are discussed in what follows. Specifically, we focus on the respec-
tive definitions of ‘adiabaticity’. In reference [14], working in the overdamped regime,
the term adiabatic has been employed for a process in which the bath temperature T
is instantaneously changed, while the configurational distribution is frozen. However,
as already noted by the authors of that work, neither heat nor the entropy increment
vanishes in such a process, which are thus non-adiabatic, because of the kinetic con-
tribution thereto. In references [15, 17, 18], the adiabatic branches are constructed by
changing both the temperature of the bath and the stiffness k of the trap but keeping the
ratio T 2/k constant, which is obtained in the underdamped description. Nevertheless,
the condition T 2/k = const. has been shown to correspond to isoentropic processes only
in the quasi-static limit [15, 19], so such a process is not adiabatic either for finite time
operation5. A completely different approach is proposed in reference [16]. Therein, the
oscillator follows a Hamiltonian dynamics and is completely decoupled from the heat
bath during the adiabatic branches, a procedure that cannot be implemented with a
Brownian particle immersed in a fluid.

The performance of a heat engine is characterised by its efficiency and power. The
maximum efficiency achievable operating between a hot bath at temperature T h and a

5Reference [13], although working in the overdamped description, incorporates the kinetic contribution to the energy balance.
Therein, the ratio T 2/k has been shown to be a non-decreasing function of time for finite-time adiabatic processes, being constant
only in the quasi-static limit.
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cold bath at temperature T c is the well-known Carnot efficiency ηC = 1− T c/T h. How-
ever, it is reached for infinite time operation, which makes the power vanish6. The cycle
must be swept in a finite time to yield a nonzero power output. This acceleration of
the process entails a non-equilibrium dynamics and reduces the reachable efficiency.
The study of efficiency at maximum power is a classical problem associated with the
field of finite-time thermodynamics [24–29]. Curzon and Ahlborn derived that the effi-
ciency at maximum power for a macroscopically endoreversible heat engine is given by
ηCA = 1−

√
Tc/Th [24].

There is no general proof ensuring that the efficiency of any arbitrary heat engine
at maximum power is bounded by the Curzon–Ahlborn value. Nevertheless, myriads
of different studies hint at the existence of some universal properties, connected to
the Curzon–Ahlborn bound, for the efficiency at maximum power. Specifically, it has
been proven that in the limit of small relative temperature difference, the two first
terms in the expansion of the efficiency at maximum power in the Carnot efficiency
are universal [30–32]. This finding is completely consistent with the results for the
efficiency at maximum power in different stochastic heat engines constructed either
with a Brownian particle [14], a Feynman ratchet [33], or a quantum dot [34].

Another main objective of our work is the optimisation of the irreversible Carnot
engine. Specifically, in connection with the discussion above, we are interested in looking
into the optimisation in a sense to be specified soon below, of the delivered power and
its associated efficiency. In this regard, the optimal protocols for isothermal and the
adiabatic branches, which have been explicitly worked out recently [13, 14, 35, 36], play
a crucial role. It appears that work should be minimised in the isothermal processes
[14, 35, 36], whereas the connection time is minimised in the adiabatic ones [13].

The rest of the paper is organised as follows. In section 2, we introduce the model
system with which we construct our heat engine: a Brownian particle moving in a har-
monic trap. Special attention is paid to its energetics. Section 3 is devoted to putting
forward the optimal protocols for both the isothermal and adiabatic branches. These
protocols allow us to build the Carnot-like cycle, which is analysed in section 4. The effi-
ciency at maximum power is thoroughly investigated in section 5. In section 6, the main
conclusions of our work are presented. Finally, we refer to the supplementary material
(http://stacks.iop.org/JSTAT/2020/093207/mmedia) for some further technical details,
which complement the main text.

2. The model system

2.1. Definition

We consider a one-dimensional (1D) overdamped harmonic oscillator of stiffness k in
contact with a thermal bath at temperature T . A Brownian particle, confined by optical
tweezers, provides an accurate realisation. The stochastic dynamics of the system may
be modelled at either the Langevin or the Fokker–Planck levels of description. Namely,

6 Recently, it has been suggested that the Carnot efficiency can also be achieved in the opposite ‘infinitely fast’ limit in certain
situations [20–23].
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the Langevin equation for the position x of the oscillator reads

λ
dx(t)

dt
= −k(t)x(t) + ζ(t), (1)

where λ is the friction coefficient and ζ is a Gaussian white noise force, such that

〈ζ(t)〉 = 0, 〈ζ(t)ζ(t′)〉 = 2λkBT (t)δ(t− t′), (2)

with kB and T being the Boltzmann constant and the temperature of the bath respec-
tively. Physically, we are considering that the harmonic oscillator is immersed in a
certain fluid that plays the role of the heat bath, which provides the values of the tem-
perature T and the friction coefficient λ. Throughout our work, we take λ as constant7,
time-independent, but we assume both the stiffness of the oscillator k and the bath
temperature T to be externally controlled. While the time control of trap stiffness is
now routinely achieved experimentally, we refer to references [4, 37] for the time control
of temperature.

The evolution equation for the average variance of the oscillator 〈x2〉 can be
straightforwardly derived from the Langevin equation (1), yielding

λ
d 〈x2〉
dt

= −2k
〈
x2
〉
+ 2kBT . (3)

At any time t, the state of the system is characterised by the state-point (k, 〈x2〉,T ).
Equilibrium states fulfil the equation of state 〈x2〉eq = kBT/k. The above relation, which
has been obtained by making the rhs of equation (3) vanish, defines the equilibrium
surface in the (k, 〈x2〉,T ) three-dimensional space. We want to describe the energetics
of this system at the average level. Thus we define the average energy

E =
1

2
k
〈
x2
〉
+

1

2
kBT , (4)

where we have taken into account that the velocity variable is always at equilibrium in
the overdamped limit. The equilibrium value of the energy is then Eeq = kBT .

Let us now consider a process starting from a certain state A and ending in another
state B. Work and heat are defined by the relations [2]

WAB =
1

2

∫ B

A

〈
x2
〉
dk, (5)

QAB =
1

2

∫ B

A

(
k d

〈
x2
〉
+ kB dT

)
=

1

2

∫ B

A

k d
〈
x2
〉
+

kB
2

(TB − TA) , (6)

where TA and TB are the temperature values for the initial and final states, A and
B, respectively. Thus, the first law of thermodynamics reads ΔE ≡ EB −EA = WAB +
QAB. We have used the following sign convention: for W ,Q > 0 energy is transferred
from the environment to the system, whereas for W ,Q < 0 energy is transferred from
the system to the environment, irrespective of the ‘kind’ of energy involved. Therefore,

7 Indeed, when considering a colloidal particle in an optical trap, λ is rooted in the solvent viscosity and is essentially constant.

https://doi.org/10.1088/1742-5468/abb0e1 5

https://doi.org/10.1088/1742-5468/abb0e1


J.S
tat.

M
ech.

(2020)
093207

Building an irreversible Carnot-like heat engine with an overdamped harmonic oscillator

in order to consider a heat engine, we are interested in cycles with a negative total
work.

2.2. Non-dimensional variables

First of all, we introduce dimensionless variables as follows: we divide the stiffness and
the temperature by their respective initial values, κ = k/k0, θ = T/T 0, and the variance
by its equilibrium value at the initial temperature, y = 〈x2〉 /〈x2〉eq,0 = k0 〈x2〉 /(kBT0).
Then, we have that y(t = 0) = 1 if the system starts from an equilibrium state. Second,
a dimensionless time is defined as s = k0t/λ. With the above definitions, the evolution
of the system in non-dimensional variables is governed by

dy

ds
= −2κy + 2θ, (7)

where the equilibrium surface (or equation of state) reads,

κyeq = θ. (8)

Regarding the energetics, we introduce the dimensionless energy by dividing E by
the equilibrium value at the initial time, kBT 0. Consistently, non-dimensional work and
heat are defined with the same energy unit, that is,

E =
1

2
κy +

1

2
θ, (9)

WAB =
1

2

∫ B

A

y dκ, QAB =
1

2

∫ B

A

κ dy +
1

2
(θB − θA) . (10)

The first law reads ΔE ≡ EB − EA = WAB +QAB, and the equilibrium value of the energy
is Eeq = θ.

In dimensionless variables, the state of the system is characterised by the state-point
(κ, y, θ) at any time s. For our purposes, it is useful to consider the movement of the
projection of the state-point onto the (κ, y) plane. In particular, the work W, as given
by equation (10), is proportional to the area below the curve (κ(s), y(s)) swept by the
system as time increases.

3. Building blocks of the cycle: isothermal and adiabatic processes

Herein, we aim at building an irreversible heat engine with the above described over-
damped harmonic oscillator. Our heat engine operates cyclically between a ‘hot’ source,
at dimensionless temperature θh, and a ‘cold’ source, at temperature θc < θh. Specif-
ically, the non-equilibrium cycle comprises four different processes: two isothermal
ones, at temperatures θh and θc, and two locally adiabatic ones that connect the
isotherms. No heat is exchanged in average during these locally adiabatic processes at
all times, as described below. This is the usual use of the term adiabatic in equilibrium
thermodynamics, in which adiabatic is employed for a process in which the system is
thermally insulated from the environment.

https://doi.org/10.1088/1742-5468/abb0e1 6

https://doi.org/10.1088/1742-5468/abb0e1


J.S
tat.

M
ech.

(2020)
093207

Building an irreversible Carnot-like heat engine with an overdamped harmonic oscillator

In each cycle, the engine takes energy from the hot reservoir as heat, Qh > 0, and
performs work, that is,W < 0. Therefore, the projection of the state-point onto the (κ, y)
plane sweeps a certain closed curve (κ(s), y(s)), which characterises the considered cycle,
in the counterclockwise direction. In the light of the above, isothermal and adiabatic
processes can be considered as the building blocks for our irreversible heat engine. In
the following, we summarise some results obtained in previous studies for isothermal
[14, 36] and adiabatic processes [13].

3.1. Isothermal processes

We consider two kinds of isothermal processes at temperature θ: quasi-static and opti-
mal. In both of them, the initial and final states characterised by (κA, yB) and (κA, yB),
respectively, correspond to equilibrium situations. Therefore, κAyA = κByB = θ.

First, we deal with the quasi-static case. Therein, κ is slowly tuned in such a way that
the system sweeps the equilibrium curve y(s) = θ/κ(s) in the (κ, y) plane. Therefrom,

W =
θ

2
ln

κB

κA
, Q = −W, ΔE = 0, EB = EA = θ. (11)

Of course, this quasi-static process takes an infinite time.
Second, we look into the optimal process for a given finite time sf . Therein, we are

interested in the process for which the work performed by an external agent on the
system is minimum, or in other words, we look for the maximum work produced by the
system. The evolution of the variance in the optimal process is [14, 36].

ỹ(s) =

[
√
yA + (

√
yB −√

yA)
s

sf

]2
. (12)

From now, tilde denotes optimality in some sense: either for the profiles or for the
values of the physical quantities or parameters. Note that ỹ(s) is continuous in the
whole interval [0, sf ].

The optimal evolution for the stiffness is obtained from the evolution equation (7)
in the open interval (0, sf),

κ̃(s) =
θ

ỹ(s)
− 1

2

d

ds
ln ỹ(s), 0 < s < sf. (13)

We recall that the stiffness is discontinuous at both the initial and final times,
κ̃(s = 0) = κA, κ̃(s = sf) = κB. In this problem, the elastic constant κ(s) plays the role
of the ‘control’ function in optimal control theory [38, 39]. Similar discontinuities in the
‘control’ function have been repeatedly found in stochastic thermodynamics [6, 14, 35,
36, 40–42].8

The optimal values of work and heat can also be readily calculated. The results are

W̃ =
θ

2
ln

κB

κA
+

θ

sf

(
1

√
κB

− 1
√
κA

)2

, Q̃ = −W̃ , (14)

8This is a consequence of the corresponding ‘Lagrangian’ being linear in the ‘velocities’ [43], which is sometimes called the Miele
problem [44].
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Of course, in this isothermal process there is no energy change between the initial and
final states ΔE = 0, EB = EA = θ. Note, however, that the energy of the system does
change in the intermediate times, E(s) �= θ for 0 < s < sf because we are dealing with a
non-equilibrium process and y(s) �= θ/κ(s), as expressed by equation (13).

3.2. Adiabatic processes

Now we turn our attention to adiabatic processes, there is no heat transfer at any point
of the system trajectory. Therefore, bearing in mind equation (10) we have that the
infinitesimal heat vanishes, i.e.

dQ ≡ κ dy + dθ = 0, (15)

Note that temperature becomes a function of time that goes from θA to θB in adia-
batic processes. Similarly to the case of isothermal processes, we only consider adiabatic
processes connecting two equilibrium states and then κAyA = θA, κByB = θB.

The energetics of adiabatic processes is quite simple. The energy change is given by
the change in temperature, EA = θA, EB = θB, ΔE = θB − θA. Since there is no heat
exchange, Q = 0, work coincides with the energy change, W = θB − θA. The above
expressions for energy, heat and work apply for any adiabatic process, regardless of its
duration, and therefore are valid for both quasi-static and non-equilibrium processes.
Nevertheless, the equivalence between adiabatic and isoentropic processes occurs only
in the quasi-static limit. It is in the non-equilibrium case that we deviate from the
proposals in references [15, 17].

Again we consider two kinds of processes: quasi-static and optimal. First, in the
quasi-static case, κ and θ are tuned in an infinitely slow way to allow the system sweep
the equilibrium curve (8). Combining equations (8) and (15), one gets

y(s) =
yAθA
θ(s)

= yA

√
κA

κ(s)
. (16)

Second, we investigate optimal adiabatic processes. Here, optimal means something
different from the sense we used in the previous section. As already said above, the work
value is fixed by the initial and target states and thus cannot be optimised. However,
two arbitrary states cannot be connected by an adiabatic transformation, the following
inequality

θ(s)

θA
�

(
y(s)

yA

)−1

, (17)

holds for all times [13]. Therefore, for the initial and final times,

θB
θA

�
(
yB
yA

)−1

or, equivalenty,

(
θB
θA

)2

� κB

κA
(18)

must be fulfilled. The equality in equations (17) and (18) corresponds to the quasi-static
case (16).
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There exists a minimum time to carry out an adiabatic process [13], namely

s̃f =
(yB − yA)

2

2 (yBθB − yAθA)
. (19)

This minimum time is reached for a protocol in which the variance and the temperature
evolve according to

ỹ(s) = yA + (yB − yA)
s

s̃f
, θ̃(s) =

yAθA + (yBθB − yAθA)
s
s̃f

yA + (yB − yA)
s
s̃f

, (20)

which are valid in the whole interval [0, s̃f]. Therefore, both ỹ(s) and θ̃(s) are continuous
functions of time, including the initial and final times. The stiffness is given by

κ̃(s) = −
(
dỹ(s)

ds

)−1
dθ̃(s)

ds
, 0 < s < s̃f. (21)

and κ̃(s = 0) = κA, κ̃(s = s̃f) = κB.
The discontinuity at the boundaries of κ(s) does not break the adiabatic character

of the process: there is no instantaneous heat transfer at the initial and/or final times.
Since both the variance y and the temperature θ are continuous at the boundaries, the
integration of the differential of heat, as defined in equation (15), between s = 0 and
s = 0+ (or between s = s̃−f and s = s̃f) vanishes. On the contrary, there is an instanta-
neous contribution to the work at both boundaries.

4. Irreversible Carnot-like heat engine

The aim of this work is to study a (stochastic) thermodynamic cycle comprising the
following processes: (i) isothermal expansion starting from (κA, yA, θA) up to (κB, yB,
θB = θA) in contact with a hot bath at temperature θA, (ii) adiabatic expansion starting
from (κB, yB, θB = θA) up to (κC , yC , θC), (iii) isothermal compression starting from
(κC , yC , θC) up to (κD, yD, θD = θC) in contact with a cold bath at temperature θC ,
and (iv) adiabatic compression going from (κD, yD, θD = θC) to (κA, yA, θA). We always
choose the normalisation constants (units) such that (κA, yA, θA) = (1, 1, 1).

As a consequence of the above processes being isothermal/adiabatic, we have
the following general identities, WAB = −QAB , WBC = EC − EB = θC − θA, QBC = 0,
WCD = −QCD, WDA = EA − ED = θA − θC = −WBC , QDA = 0. We focus on a heat
engine, that is, a device that extracts heat from the hot bath and performs work, i.e.

QAB = −WAB > 0, WAB +WBC +WCD +WDA = WAB +WCD < 0. (22)

The efficiency of such a device is defined by

η ≡ − (WAB +WCD)

QAB

= 1− WCD

QAB

< 1, (23)
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Table 1. Operating points of the Carnot engines. Panels (a) and (b) correspond to
the reversible and irreversible versions, respectively.

whereas the power that delivers is given by

P ≡ − (WAB +WCD)

sAB + sBC + sCD + sDA
, (24)

where sAB is the time employed for going from A to B, and so on.

4.1. Quasi-static case

First, we concentrate on the quasi-static limit, that is, we consider a Carnot cycle in
which the harmonic oscillator is always at equilibrium. In principle, we must give 12
numbers to characterise the four operating points of the cycle (A,B,C,D), but we have
the following constraints: (i) due to normalisation, state A is given, (κA, yA, θA) = (1, 1, 1)
(3 constraints), (ii) points (B,C,D) are equilibrium states (3 constraints), (iii) two
isothermal relations A–B and C–D (2 constraints), and (iv) two adiabatic relations
B–C and D–A (2 constraints). So, we need only 12− 3− 3− 2− 2 = 2 variables to
univocally define the quasi-static cycle.

The cycle is thus completely characterised by the temperature ratio ν and the com-
pression ratio along the first isotherm χ. The values of the state variables (κ, y, θ) at the
operating points of the cycle are collected in panel (a) of table 1. Note that the isotherm
condition implies that yB/yA = κA/κB = χ−1, so the parameter χ certainly gives the
compression ratio along the first isotherm. Hereafter, to keep our wording simpler, we
call χ the compression ratio.

The efficiency of a Carnot cycle

ηC = 1− θC
θA

= 1− ν, (25)

is well known and can be derived for any system without the knowledge of its state
equation through entropic considerations [1]. Here, it can also be explicitly checked by
calculating work and heat over the branches of the cycle. The power delivered by this
engine is zero, because the processes are quasi-static and thus involve an infinite time.

4.2. Irreversible Carnot-like cycle at finite speed

Now we consider a similar cycle, being the only difference that the processes are carried
out in a finite time and are thus irreversible. The adiabaticity of the second and third
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Figure 1. (a) Projection of the movement of the state-point onto the (κ, y) plane for
a reversible Carnot engine. (b) Projection of the movement of the state-point onto
the (κ, y) plane for an irreversible Carnot-like engine. Specifically, we have used
the parameter values ν = 0.6, χ = 0.6, c = 0.96, d = 1.03 and the corresponding
optimal protocols discussed in the text. In both plots, red lines correspond to the
isothermal processes and green lines to the adiabatic ones. The dashed segments
mark the jumps in the stiffness at the initial and final points of each of the four
branches of the cycle.

process impose two inequalities, as expressed by equation (18). Therefore, we have that

θ2C
θ2B

� κC

κB
,

θ2A
θ2D

� κA

κD
, (26)

which become equalities only for reversible processes, as those in the previous section.
Thus, we need two additional parameters to define the cycle unambiguously, specifically
we choose to introduce

c = κCν
−2χ−1 � 1, d = κDν

−2 � 1, (27)

which assure that equation (26) is fulfilled. In panel (b) of table 1, we summarise the
values of the state variables (κ, y, θ) at the operating points of this non-equilibrium
cycle. A comparative plot of the reversible and irreversible Carnot engines is shown in
figure 1.

In the following, we focus our attention on the maximisation of the power delivered
by the engine. Therefore, we build the heat engine that operates at maximum power for
fixed operating points (A,B,C,D) or, equivalently, for given values of (ν,χ, c, d). We
approach the problem of the maximisation of the power defined in equation (24) in a
stepwise manner. As discussed in detail below, the main idea is that the global maximum
of P can be obtained as the maximum of maximums, that is, we start by maximising with
respect to some parameters keeping the remainder fixed. Afterwards, this maximum can
be in turn be maximised with respect to the previously fixed parameters. For instance,
maximisation can be performed for a given set (ν,χ, c and d), or in a more global fashion,
specifying ν only.
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Maximising equation (24) implies to take the shortest possible adiabatic protocols
and the minimal work for the isothermal processes. This is readily understood as follows.
The only dependence on the adiabatic protocols comes from sBC and sDA, so they have to
be minimum in order to give the maximum value for P. With respect to the isothermal
processes, for fixed values of sAB and sCD, we have to maximise the respective work
values −WAB and −WCD, that is, minimise WAB and WCD. Therefore, we end up with
the optimal processes, either isothermal or adiabatic, discussed in section 3. Making use
of equations (12) and (13) for the isothermal processes and equations (19)–(21) for the
adiabatic ones, we get

WAB =
1

2
ln χ+

1

sAB

(
1
√
χ
− 1

)2

, QAB = −WAB, (28)

WCD = −ν

2
ln

cχ

d
+

1

νsCD

(
1

√
cχ

− 1√
d

)2

, QCD = −WCD, (29)

s̃BC =
(1− cν)2

2cχν2(1− c)
, s̃DA =

(dν − 1)2

2dν2(d− 1)
(30)

It is worth commenting some points before proceeding further. On the one hand,
WCD is always positive and thus QCD is negative; isothermal compression work has to
be done on the system and heat is always transferred from the device to the cold bath.
On the other hand, in the isothermal expansion, WAB is negative for large enough sAB,
but WAB becomes positive if we intend to compress the system too fast: we have to
exert work on the system in that case and moreover QAB becomes negative and heat is
transferred from the system to the hot bath. Therefore, we are not interested here in
these too fast isothermal expansions because we would not be building a heat engine in
that case. Below we show that this poses no problem because (i) the optimal value s̃AB

yields a negative value of WAB and (ii) the optimal value s̃CD makes that WCD < −WAB ,
that is, WCD +WAB < 0. Thus, the heat engine conditions are met.

Let us build on the ideas above. We must impose the inequalities (22) to have a heat
engine. In particular, these inequalities should hold when sAB and sCD go to infinity
(reversible isotherms). It is useful to introduce the definitions

W1 ≡ lim
sAB→∞

WAB =
1

2
ln χ < 0, W2 ≡ lim

sCD→∞
WCD = −ν

2
ln

cχ

d
> 0, (31)

where we have taken into account that χ < 1, c � 1, d � 1, and

W∞ ≡ W1 +W2 =
1

2
ln χ− ν

2
ln

cχ

d
< 0. (32)

Although W1 coincides with the value of the work over the first isotherm in the fully
reversible engine, neither W2 nor W∞ does because they depend on c and d. The
negativeness of W∞ leads to the constraint

c

d
> χ

1−ν
ν . (33)
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Strictly speaking, this constraint has been shown to hold only in the limit as
sAB, sCD →∞, but below we prove that it also holds for finite-time operation.

Therefore, we just have to maximise the power

P =

ν−1
2

ln χ+ ν
2
ln c

d
− 1

sAB

(
1√
χ
− 1

)2

− 1
νsCD

(
1√
d
− 1√

cχ

)2

sAB + s̃BC + sCD + s̃DA

, (34)

with respect to sAB and sCD, by imposing that the partial derivatives of P with respect
to sAB and sCD vanish for the optimal durations of the isothermal processes9. In order
to write the expressions for s̃AB and s̃CD, it is convenient to introduce the parameters

Δ1 =
√
yB −√

yA =
1
√
χ
− 1 > 0, (35)

Δ2 =
√
yD −√

yC =
1√
ν

(
1√
d
− 1

√
cχ

)
< 0, (36)

which measure the expansion and compression of the system in the first and second
isotherms, respectively, and

σ =

√
1 +

(s̃BC + s̃DA) (−W∞)

(Δ1 −Δ2)
2 > 1. (37)

As a function of these parameters, we can write now that

s̃AB =
Δ1(Δ1 −Δ2)(1 + σ)

−W∞
, s̃CD =

−Δ2(Δ1 −Δ2)(1 + σ)

−W∞
. (38)

The condition W∞ < 0 ensures the positivity of the optimal times.
Using the above definitions, we can write the work values for the optimal durations

of the isothermal processes as

W̃AB = W1 +
Δ2

1

s̃AB

=
−W1Δ2 −W2Δ1 +W1σ(Δ1 −Δ2)

(Δ1 −Δ2)(1 + σ)
< 0, (39)

W̃CD = W2 +
Δ2

2

s̃CD

=
W1Δ2 +W2Δ1 +W2σ(Δ1 −Δ2)

(Δ1 −Δ2)(1 + σ)
> 0. (40)

By combining the expressions above, the total work in the cycle with the optimal
durations is found to be

W̃AB + W̃CD =
σ

1 + σ
W∞ < 0. (41)

The signs of W̃AB and W̃AB + W̃CD show that we have, in fact, a ‘good’ engine. More-
over, we get a physical interpretation for the parameter σ: it measures the deviation of
the total irreversible work from the value for infinitely slow isothermal processes W∞.

In the limit as σ →∞, we have that W̃AB + W̃CD →W∞.

9 Note that, since they do not depend on sAB and sCD, we have not substituted explicitly the values of s̃BC and s̃DA, given by
equation (30), so as not to clutter the expression.
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We have found the optimal values of the times for the isothermal and adiabatic pro-
tocols, for given values of the parameters (ν,χ, c, d) that univocally define the operating
points of our irreversible Carnot-like heat engine. As a function of these parameters, the
optimal power is thus given by

P̃ =
−W∞ − Δ2

1

s̃AB
− Δ2

2

s̃CD

s̃AB + s̃BC + s̃CD + s̃DA
=

−W∞
σ

1+σ

s̃AB + s̃BC + s̃CD + s̃DA
, (42)

Later, we address the issue of optimising the cycle further, by looking for the maximum
of the P̃ as a function of c, d and χ for a fixed value of the temperature ratio ν.

5. Efficiency at maximum power and the Curzon–Ahlborn bound

5.1. Maximal power at fixed temperature and compression ratios

Let us look into the the efficiency of the maximum power cycle,

η̃ = −W̃AB + W̃CD

Q̃AB

= 1 +
W̃CD

W̃AB

, (43)

which depends on (ν,χ, c, d). To keep our notation simple, either for P̃ in equation (42)
or η̃ in equation (43), we do not write explicitly the parameters which they depend on.
This choice also applies to the remainder of the paper.

Making use of equation (39), we can rewrite η̃ as

η̃ = 1− ν︸ ︷︷ ︸
ηC

+
(ν − 1) (W1Δ2 +W2Δ1)− (W2 +W1ν)σ (Δ1 −Δ2)

W1Δ2 +W2Δ1 −W1σ (Δ1 −Δ2)
(44)

All the terms in the denominator are clearly positive, whereas all the terms in the
numerator are negative by taking into account that W2 +W1ν = −(ν/2) ln(c/d) > 0.
Therefore, η̃ < ηC: the efficiency is always below the Carnot bound, as expected.

On the other hand, the comparison with the Curzon–Ahlborn bound [14, 24, 45, 46]

ηCA = 1−
√
ν (45)

requires a more detailed analysis. Let us investigate two different cases. First, we con-

sider values of the ratio c/d such that χ−1+ν−1
< c/d < χ−1+ν−1/2

, which entails that
W2 +

√
νW1 > 0 and(√

ν − 1
)︸ ︷︷ ︸

<0

(W1Δ2︸ ︷︷ ︸
>0

+W2Δ1︸ ︷︷ ︸
>0

)− (W2 +W1

√
ν)︸ ︷︷ ︸

>0

σ(Δ1 −Δ2)︸ ︷︷ ︸
>0

< 0. (46)

In this region, a manipulation similar to the one done for showing that η < ηC gives

η̃ = 1−
√
ν +

(
√
ν − 1) (W1Δ2 +W2Δ1)− (W2 +W1

√
ν)σ (Δ1 −Δ2)

W1Δ2 +W2Δ1 −W1σ (Δ1 −Δ2)
. (47)
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Figure 2. Density plots of the optimal power (left) and its corresponding efficiency
(right) in the (c, d) plane. The curves where η̃ = ηCA (dashed line), with its initial
and final points (open squares) over the axes d = 1 and c = 1, respectively, and the
point at which the maximum power (circle) is reached, are displayed in both panels.
We have taken ν = 0.75 and χ = 0.5.

Again, the denominator and the numerator are positive and negative respectively, which

leads to the inequality η̃ < ηCA. Nevertheless, for the complementary case, χ−1+ν−1/2

< c/d < 1, we can no longer assure that the Curzon–Ahlborn is an upper bound. Indeed,
in the double limit as (c, d)→ (1, 1), we have that s̃BC and s̃DA diverge for fixed ν < 1.
In that limit, not only do the adiabatic processes become quasi-static but also the
isothermal ones, recovering the quasi-static Carnot engine introduced in section 4.1,
with optimal efficiency lim(c,d)→(1,1)η̃ = ηC. Because of continuity, we can always find
values of c and d, given a value of χ, such that the efficiency of our optimal heat engine
is arbitrarily close to the Carnot value and thus greater than the Curzon–Ahlborn
bound. However, it has to be taken into account that the optimal power for this case
is very small, because the denominator in equation (42) diverges. In section 1 of the

supplementary material, we consider the leading order of η̃ and P̃.
To illustrate the above results, we present in figure 2 a density plot of the optimal

power, equation (42), and the corresponding efficiency, equation (43), as a function of
c and d. Specifically, we consider given values of the temperature ratio ν = 0.75 and
the compression ratio χ = 0.5. The constraint (33) entails that the meaningful region in

the plane (c, d) is a right triangle of vertices (cmin = χ
1−ν
ν , 1), (1, 1) and (1, dmax = c−1

min).
Within this region, we can define another right triangle with the right angle in the

same vertex and the hypotenuse given by the line d = χ
√
ν−1√
ν c, above which we know that

η̃ < ηCA. Below the aforementioned line, we cannot assure that η̃ < ηCA and in the limit
as (c, d)→ (1, 1) we know that η̃ → ηC. The curve over which η̃ = ηCA, which departs
from the hypotenuse vertices (open squares) of this second triangle and is fully contained
within it, has been evaluated numerically and plotted (dashed line) along with the point
of delivery of maximum power (circle).
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There are several implications that can be drawn from this analysis. First, along
all the sides of the delimiting triangle, the maximum power is zero because some of
the optimal times diverge. Second, as a consequence of the previous point and the
positiveness of P̃ , there always appears a maximum of the optimal power as a function
of (c, d) (for fixed ν and χ), at a certain point c̃, d̃. Third, the numerical estimate for
this maximum is very close to the dotted line, at which η̃ = ηCA. This last observation
is especially robust for either small χ or large ν, as can be seen in section 2 of the
supplementary material, in which analogous plots for different couples of values (ν,χ)
are presented.

5.2. Maximal power for fixed temperature ratio ν

The numerical analysis shown in figure 2 suggests that studying further the maximum
power that can be achieved for fixed values of ν and χ, that is, as a function of c and d,
may be illuminating. This is a meaningful physical question: recall that the reversible
Carnot engine is completely determined by these two parameters. Moreover, its efficiency
ηC does not depend on the compression ratio χ, which makes interesting even a further
maximisation in the compression ratio χ.

It is possible to address this problem by maximising again the optimal power in
equation (42) with respect to c and d, and finally with respect to χ. Doing so analytically
is not feasible since it involves transcendental equations. Nevertheless, a systematic
asymptotic analysis can be carried out for ν → 1. In this regime, the main idea is to
expand all the physical quantities in powers of ηC = 1− ν. In order to avoid cluttering
the information flow with the technicalities of the asymptotic analysis, we present the
detailed calculation in sections 3 and 4 of the supplementary material. Therein, it is

shown that the expansions of P̃ and η̃ in the Carnot efficiency up to order η4C and η3C,
respectively, are

P̃ =
η2C
16

− η
5/2
C

8
+

5

48
η3C − 11

144
η
7/2
C +

937

17 280
η4C +O(η

9/2
C ), (48)

η̃ =
ηC
2

+
η2C
8

+
η3C
32

+O(η
7/2
C ). (49)

We recall that the expansion of the Curzon–Ahlborn efficiency is

ηCA =
ηC
2

+
η2C
8

+
η3C
16

+O(η4C), (50)

Similarly to the situation reported in references [14, 34] the first two terms in the
expansion of η̃ in powers of ηC coincide with those in ηCA and the deviation occurs in
the third term, of the order of O(η3C). The obtained efficiency at maximum power is
smaller than the Curzon–Ahlborn bound, similarly to the situation found in reference
[14].10

In figure 3, we plot the efficiency at maximum power as a function of ν. Power
has been numerically maximised over c, d and χ. The obtained efficiency η̃ is compared

10 See equations (24) and (25) in that paper. However, the reverse situation has also been found, see for instance equation (20) in
reference [34].
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Figure 3. Efficiency at maximum power as a function of the temperature ratio
ν. The value obtained for the efficiency, once that the optimisation of the power
is numerically performed for the rest of parameters, is almost indistinguishable
from the Curzon–Ahlborn bound ηCA. Our construction develops a better efficiency
compared with those shown in references [14, 18].

with (i) the Curzon–Ahlborn bound, (ii) the efficiency for the engine with instanta-

neous ‘adiabatic’ branches developed in [14], η
(I)
ref = 2ηC/(4− ηC), and (iii) the efficiency

obtained for large dissipation in the recent proposal, using a fast forward approach

[18], to build a Carnot-like engine, η
(II)
ref = (1− ν)(1 +

√
ν)/ [2 +

√
ν(1 + ν)] � η

(I)
ref . It is

clearly observed that η̃ � η
(I)
ref for all ν, with the difference between them increasing

as ν decreases. Moreover, the closeness between the efficiency of our engine at maxi-
mum power and the Curzon–Ahlborn bound goes beyond our expectations based on
the asymptotic analysis, holding not only within the limit ν → 1 but also for the whole
range of ν. Specifically, the relative deviation between our numerical values for efficiency
at maximum power and the Curzon–Ahlborn bound always remains under 2%. There-
fore, our novel irreversible Carnot-like heat engine is certainly a very efficient one at
maximum power.

6. Conclusions

In this work, we have put forward an irreversible Carnot-like heat engine that can be
experimentally implemented with a colloidal particle immersed in a fluid. Our model sys-
tem is a Brownian particle trapped in a harmonic potential, in the overdamped regime.
The adiabatic branches of the proposed cycle are truly adiabatic in the classical ther-
modynamic sense: at every point thereof, there is no heat exchange with the thermal
bath. Of course, the heat exchange vanishes in average: it is impossible to completely
decouple the colloidal particle from the surrounding fluid. Therefore, our locally adia-
batic branches contrast with the approach followed in other works, in which the system
has a non-vanishing heat exchange in the ‘adiabatic’ parts of the cycle [4, 14, 17, 19].
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The cycle of the reversible Carnot heat engine is completely characterised by the
temperature ratio ν and the compression ratio χ. For our irreversible counterpart of the
Carnot heat engine, we need two more parameters in order to fully characterise the four
operating points of the cycle: the adiabatic condition imposes restrictions on—but does
not univocally define—the operating points.

We have thoroughly studied the performance of the Carnot-like heat engine at
maximum power. We have adopted a step-by-step optimisation approach. First, the
maximum power is shown to be obtained for the optimal protocols for both isother-
mal—maximum work [14, 35, 36]—and adiabatic—minimum duration [13]—branches.
In a second step, we have optimised the power over the duration of the isothermal pro-
cesses. These two stages of the optimisation have been carried out for fixed operation
points in the state space (κ, y,T )—(stiffness, variance of position, temperature). Finally,
we have maximised the power over the operation points by just fixing the temperature
ratio ν.

The efficiency at maximum power for our heat engine is very close to the Cur-
zon–Ahlborn bound. This behaviour is predicted by an asymptotic analysis for ν → 1.
Nevertheless, we have numerically shown that this result remarkably holds for the whole
range of temperature ratios, well beyond the asymptotic prediction. This implies that
our cycle is a close to optimal choice for building an efficient mesoscopic heat engine, as
compared with the theoretical predictions for other constructions [14, 18].

Possible venue for future work are discussed in the following. First, it is worth study-
ing fluctuations, thus going beyond the mean scenario reported here [47–51]. Second,
a universal trade-off relation between power and efficiency has recently been shown to
hold for Markovian heat engines [52]. In this regard, it seems especially relevant to inves-
tigate the optimisation of the so-called ‘figures of merit’, which involve combinations of
power and efficiency [53–56].
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