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Shortcut to synchronization 
in classical and quantum systems
François Impens 1* & David Guéry‑Odelin 2*

Synchronization is a major concept in nonlinear physics. In a large number of systems, it is observed 
at long times for a sinusoidal excitation. In this paper, we design a transiently non‑sinusoidal driving 
to reach the synchronization regime more quickly. We exemplify an inverse engineering method to 
solve this issue on the classical Van der Pol oscillator. This approach cannot be directly transposed to 
the quantum case as the system is no longer point‑like in phase space. We explain how to adapt our 
method by an iterative procedure to account for the finite‑size quantum distribution in phase space. 
We show that the resulting driving yields a density matrix close to the synchronized one according to 
the trace distance. Our method provides an example of fast control of a nonlinear quantum system, 
and raises the question of the quantum speed limit concept in the presence of nonlinearities.

The synchronisation of dynamical systems is a broad, multidisciplinar field with important applications in basic 
science and technology, including among other areas biology, physics, chemistry, and  engineering1. Since the 
pioneering work by Van der Pol on self-sustained  oscillators2–6, the synchronization between coupled systems 
has been discussed extensively, in particular in the context of the Kuramoto  model7. In the last decades, syn-
chronization has been transposed to the quantum realm 8–35. Quantum synchronization in ion  traps15 has been 
implemented  experimentally34 thanks to controllable gain and losses. However, fundamental features of quantum 
mechanics, such as the quantum noise arising from Heisenberg’s uncertainty principle, can induce significant 
qualitative differences with respect to their classical counterpart.

The synchronization of a system driven by an external force is usually formulated as follows: a sinusoidal 
driving is suddenly applied and one investigates the asymptotic behavior of the driven system in the long-time 
limit. The driving frequency is detuned with respect to the natural frequency of the system. Synchronization is 
achieved when the driven system locks on the driving frequency. For a given detuning, the synchronization pro-
cess requires a sufficient large driving amplitude, a feature often pictured as Arnold’s  tongues1. Synchronization 
is therefore considered essentially an asymptotic phenomenon, and most studies have focused on determining 
the domain of parameters associated with the onset of synchronization without explicitly discussing the pace 
at which it takes place.

The issue of the synchronization time is relevant for several practical purposes. Indeed, an acceleration of 
quantum protocols increases their quantum fidelity by reducing the detrimental influence of decoherence. The 
acceleration of quantum state transformations is at the heart of the fields of optimal quantum  control36 and short-
cut to adiabaticity (STA)37. However, most STA techniques exploits the linearity of the Schrödinger equation, as 
illustrated by numerous applications to simple quantum systems 38,39. In linear systems, STAs can preserve the 
optimality of the quantum speed in a system which evolves at the quantum speed  limit40. The extension of STAs to 
nonlinear quantum systems is at the incipient  stage41–46 and raises the question of the influence of non linearities 
on the quantum speed  limit47. In this paper, we propose to accelerate classical and quantum synchronization, an 
inherently non-linear and non-perturbative  phenomenon1.

We point out a key difference between classical and quantum synchronization. Classical synchronization 
is obtained by driving the position of a point-like system to an arbitrary point of the limit cycle. In constrast, 
speeding-up quantum synchronization translates into the control of an extended quantum object under a non-
linear dynamics. Quantum synchronization requires that the full system density matrix matches the stationary 
solution of the corresponding Master equation. We consider below the classical van der Pol oscillator, and the 
the analogous quantum system, whose density matrix follows a Master equation with a pump and a gain repro-
ducing the van der Pol oscillator in the classical limit 15. Quantum synchronization is a nonlinear process that 
typically produces highly non-classical states. Thus, building a shortcut to a perfect quantum synchronization, 
i.e. designing time-dependent control parameters that bring the system’s density matrix to its target in a finite 
time is a very challenging (and possibly intractable) task. To circumvent this issue, we outline a simpler strategy 
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for approaching the target density matrix based on the mean position and lowest-order moments. We show that 
shortcuts based on this method provide a strong acceleration towards quantum synchronisation.

Results
Accelerated synchronization of a classical Van der Pol oscillator—First consider a Van der Pol  oscillator2–6 driven 
by an external sinusoidal force. In the weakly nonlinear regime, the system dynamics boils down to a nonlinear 
first-order differential equation for a complex-valued function α(t))1:

The system follows a 2D trajectory (x(t) = Re[α(t)] , y(t) = Im[α(t)]) in the complex plane. The driving only acts 
on the y coordinate, and in the usual formulation of the synchronization problem, one considers a sinusoidal driv-
ing ε0(t) = ε0 cos(ωt) . With such a driving, the Van der Pol oscillator converges to a limit cycle asymptotically. 
It therefore takes an arbritrarily long time to approach the limit cycle within an arbitrary close neighborhood. 
We propose to go beyond this approach and to study the behavior of the system for a more general class ε(t) of 
driving functions involving transiently a non-sinusoidal profile. We present below a procedure to speed up the 
synchronization for a given coupling strength ε0 and frequency ω (compatible with the onset of synchronisation) 
and for a given initial system position (x0, y0).

In the following, we build up a piece-wise driving with a sinusoidal form of given amplitude and frequency 
ε(t) = ε0 cos(ωt + ϕ) for t > τ , and explain how to design the driving εshort(t) , referred to as the shortcut driv-
ing, in the time interval 0 ≤ t ≤ τ , to reach the limit cycle. With our method, the convergence of the system 
trajectory to the limit cycle is no longer asymptotic - it occurs over a short and finite time scale, which can be 
significantly shorter than an oscillation cycle. With the properly designed εshort(t) and a suitable phase ϕ , the 
system evolves on the limit cycle for t > τ.

First, we consider the system trajectory (x0(t), y0(t)) under the sinusoidal drive ε0(t) = ε0"(t) cos(ωt) and 
identify a point of the limit cycle, where ! is the step Heaviside function. In practice, one can solve numerically 
Eq. (1) and choose a late time t∞ ≫ 2π/ω for which the system position (x0(t∞), y0(t∞)) = (x∞, y∞) is already 
extremely close to the limit cycle. This position defines a branching point for the shortcut trajectory. This choice 
is by no means unique - one could consider, in principle, any point of the limit cycle, and we shall see below that 
the ideal branching point depends indeed on the initial coordinates (x0 = x0(0), y0 = y0(0)) . The driving ε(t) 
provides a precise control of the y coordinate of the system. One can thus design an arbitrary trajectory yshort(t) 
between y0 and y∞ in the interval [0, τ ] , i.e. a trajectory that fulfills the boundary conditions yshort(0) = y0 and 
yshort(τ ) = y∞ . From Eq. (1), we deduce that a self-consistent solution requires to solve for x(t) a nonlinear dif-
ferential equation where the chosen path yshort(t) plays the role of a source term. By plugging in Eq. (1) the cor-
responding solution, αshort(t) = xshort(t)+ iyshort(t) , we determine self-consistently the required driving εshort(t) 
(See Supplementary). Finally, we set the phase ϕ = ω(t∞ −τ ) , so that ε(τ ) = ε0(t∞) . Then, the shortcut-driven 
system reaches at t = τ the position occupied by the sinusoidally driven system at t = t∞ , and is subject to an 
identical driving at later times. By uniqueness of the solution, the system driven by the designed driving εshort(t) 
subsequently evolves (for t ≥ τ ) in a neighborhood extremely close to the limit cycle.

There is, however, a significant difference between the coordinates paths xshort(t) (“slave” coordinate) and 
yshort(t) (“pilot” coordinate). While the path yshort(t) ends up by construction at the target y∞ at time t = τ , 
nothing guarantees that xshort(t) reaches the target x∞ at the same time. The position xshort(τ ) depends in a 
non-trivial way on the trajectory yshort(t) during the time interval [0, τ ] . A possible way to circumvent this 
problem is to consider a family of possible trajectories yshort,γ (t) depending on a continuous parameter γ , and 
to select a specific parameter value γ0 that gives xshort,γ0 (τ ) = x∞ . For a given duration τ , each initial conditions 
(x0, y0) admits a set of possible branching points (x∞, y∞) on the limit cycle that can be connected by the above 
procedure. This set of admissible branching points covers a narrower part of the limit cycle as the shortcut dura-
tion τ is reduced. In this regard, we note that the “pilot” coordinate yshort,γ (t) can move arbitrarily fast as long 
as we use a driving, εshort(t) , of sufficient magnitude. Moreover, the x coordinate is bounded by the duration 
τ : |xshort,γ (τ ) − x0 | ≤ |α|max(ω0 + κ1 + 2 κ2 |α|

2
max)τ with |α|max = max{|α(t)||t ∈ [0, τ ]} . If the y coordinate 

occurs on a finite scale, that is if |α|max ≃ 1 , then the maximum displacement along x is on the order O(τ ). Thus, 
as the shortcut time τ is reduced, the admissible branching points (x∞, y∞) are nearly at the “vertical” of the 
starting point (x0, y0).

A possible choice is to use a set of polynomial trajectories yshort,γ (t) = Pγ (t/τ ) . Beyond the bound-
ary conditions yshort,γ (0 ) = y0  and yshort,γ (τ ) = y∞, we additionally impose y′

short,γ (τ ) = y′
0 (t∞) 

to enforce the continuity of the driving ε(t) at time τ  . The following family of polynomials 
Pγ (u) = y∞ + y′

0(t∞)τ (u − 1)+ (y0 − y∞ + y′
0(t∞)τ )(u − 1)2 + γ u(u − 1)2 obeys those boundary condi-

tions independently of the γ parameter value. This latter parameter is fixed to the value γ0 which fulfills the 
condition xshort,γ0 (τ ) = x∞.

Figure 1 illustrates our method on a concrete example (see Supplementary). We use the time-scale T0 = 2π/ω0 
associated to the free-oscillator frequency ω0 to recast the equations in a dimensionless form. We consider 
κ1 = 1/T0 , κ2 = 0.5/T0 , a driving amplitude ε0 = 1.5/T0 and a driving frequency ω = 1.05 × ω0. In our numeri-
cal example, we have taken an arbitrary value for the distant time t∞ = 50.125 × T0 , which defines a possible 
branching point close to the (Oy) axis. A fine-tuning of the constant phase ϕ associated to the sinusoidal driving 
at times t ≥ τ then guarantees that the trajectory follows on the cycle. Figure  1a sketches the trajectory under a 
sinusoidal driving, showing that the limit cycle is approached gradually after a large number of cycles, and Fig. 1b 
plots the trajectory under the shortcut driving. By construction, the selected branching point (x∞, y∞) is reached 
at time τ = T0/4 , and the subsequent evolution occurs on the limit cycle. Figure  1c shows the associated driving 

(1)α̇ = −iω0α + α(κ1 − 2κ2|α|
2) − i

ε(t)

2
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profile ε(t) - the shortcut part has a significantly larger amplitude. Finally, Fig. 1d represents the phase difference 
!φ = φ(t) − (ωt + ϕ) between the van-der-Pol oscillator phase defined as φ(t) = Arctan

(

y(t)
x(t)

)

 , and the driving 
phase ωt + ϕ. It reveals that phase locking is achieved with the engineered driving as fast as t ≃ τ up to small 
residual oscillations of frequency 2ω . These residual oscillations also persist asymptotically when the usual sud-
den sinusoidal driving is applied, as synchronization occurs in the regime of slow phase dynamics 1.

Accelerated synchronization of a quantum Van der Pol oscillator. The quantum Van der Pol oscillator was 
introduced by Lee et al. 15, and has become the paradigmatic model for studying synchronization in the quan-
tum  context16,17,19,23,24,28,29,48. The quantum Van der Pol oscillator, in its original formulation, has not yet been 
implemented experimentally, but an important step has been taken in this direction in trapped ion physics 33. 
Mathematically, the quantum Van der Pol oscillator is obtained by quantizing the classical Van der Pol equa-
tions. Physically, this model describes a single-mode harmonic oscillator subject to 1- and 2-photon dampings. 
The balance between these two dissipative processes and the external driving determines the steady state. The 
corresponding Hamiltonian reads H̃(t) = ω0a

†a+ 1
2
[(ε1(t)+ iε2(t))e

iωta+ h.c.] where a ( a† ) represents the 
usual annihilation (creation) operator in the considered mode and with a unit system such that ! = 1 . The 
natural frequency is detuned by ! = ω0 − ω from the driving. In the frame rotating at the driving frequency ω , 
the Hamiltonian takes the form H(t) = !a†a+ ε1(t)

2
(a+ a†)+ iε2(t)

2
(a − a†) . The dynamics in the presence 

of both dampings is accounted for by the Markovian Master equation 15,17:

with the Lindblad operator D [O]ρ = 2 OρO† − [OO†, ρ]+ where [, ]+ refers to the anticommutator. Equivalently, 
we can recast the evolution in phase space with the Wigner distribution W(α,α∗, t) equation in the coherent 
state  representation15,49

where LH = i!(∂αα − ∂α∗α∗)+ iε1
2
(∂α − ∂α∗)+ ε2

2
(∂α + ∂α∗) is the Liouvillian operator. Solving Eq. (3) 

directly allows an independent verification of our results, and provides an interesting illustration of the wave-
packet motion when the shortcut is applied (see below).

From Eqs. (2,3), the mean value ⟨α⟩t = Tr[ρ(t)a] follows an equation analogous to Eq. (1) written in the 
rotating frame

The mean values ⟨αmα∗n⟩t =
∫

dαdα∗αmα∗nW(α,α∗, t) are taken with the Wigner distribution W(α,α∗, t) in 
the coherent state representation, or equivalently ⟨αmα∗ n⟩t = Tr[ρ(t)S [ama† n]] where S holds for the sym-
metric ordering of the creation/annihilation  operators49. In the absence of driving and dissipative couplings, 
the system simply rotates at the frequency ! under the influence of the detuning. Here, synchronization means 
that the driving ε is strong enough to prevent the system from being driven by the detuning ! . In the following, 
we choose the detuning ! = 0.05 × ω0 , compatible with the onset of quantum synchronization. By solving 

(2)ρ̇ = − i[H , ρ] + κ1 D [a†]ρ + κ2 D [a2 ]ρ

(3)
∂tW ={LH + (∂αα + ∂α∗α∗)[− κ1 + 2κ2(|α|

2 − 1)] + ∂α∂α∗ [κ1 + 2κ2(|α|
2 − 1)]

+
κ2

2

(

∂2α∂α∗α + ∂α∂2α∗α∗
)

}W

(4)
d⟨α⟩

dt
= − i"⟨α⟩ + (κ1 + 2κ2)⟨α⟩ − 2κ2⟨|α|

2α⟩ −
1

2
(ε2 + iε1).

Figure 1.  Speed-up of classical synchronization. (a): System trajectory in the (x, y) plane under a sudden 
sinusoidal driving. (b) System trajectory under a shortcut+sinusoidal driving ε(t) . (c) Profile of the driving 
amplitude ε(t) . (d) Phase difference between the shortcut-driven system and the sinusoidal drive phase 
!φ = φ(t) − ωt − ϕ. ([π]). Parameters used: ω = 1.05 × ω0 , ε0 = 1.5/T0 , κ1 = 1 /T0 , κ2 = 0.5/T0 and times 
τ = T0/4 and t∞ = (50+ 1/8)T0 , where T0 is the free oscillator period.
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Eq. (2), the density matrix then converges to the steady solution centered on the position ⟨α⟩∞ = x∞ + iy∞ 
and with the third-order moments ⟨|α|2 x⟩∞, ⟨|α|2 y⟩∞ . The ratio between the dissipative couplings κ1,2 dictates 
the average phonon number in the steady state, ⟨|α|2⟩∞ = κ1/2κ2 + 1 . This enables a clear distinction between 
the weakly ( κ2 ≪ κ1 ) and strongly ( κ2 ≫ κ1 ) nonlinear regime. It is convenient to introduce the dimension-
less times t̃ = t/T0, τ̃ = τ/T0 , detuning !̃ = !T0 , couplings κ̃i = κiT0 and driving amplitudes ε̃i= εiT0 , with 
T0 = 2π/ω0 is the period of the considered harmonic oscillator mode. The results are then fully determined by 
these dimensionless parameters, independently of the specific value for the frequency ω0 . As in Ref.15, we take 
the coupling values as (κ̃1, κ̃2) = (1, 0.05) and (κ̃1, κ̃2) = (0.05, 1) when considering respectively the weakly and 
strongly nonlinear regimes.

The difference between classical/quantum synchronization is also evident in the structure of their respective 
equations: while for classical dynamics Eq. (1) is a closed differential equation, in the quantum case, Eq. (4) cou-
ples the mean position ⟨α⟩ to a hierarchy of moments ⟨αmα∗n⟩ by the presence of the term ⟨|α|2α⟩ . Thus, in order 
to achieve perfect quantum synchronization, one must in principle match all these moments simultaneously to 
their steady -synchronized- values, which is generally intractable. Fortunately, as shown below, a strong accelera-
tion can be obtained with shortcuts approaching simultaneously the target central position ⟨x⟩∞, ⟨y⟩∞ and the 
third-order moment ⟨|α|2 x⟩∞, ⟨|α|2 y⟩∞ , that emerge at the lowest order in Eq. (4). Interestingly, the third-order 
moment may set a lower bound for the shortcut duration, and therefore constrain the quantum speed limit.

The initial density matrix corresponds to a coherent state, i.e. ρ0 = |α0⟩⟨α0| . As before, we design the drivings 
ε̃i(t) ( i = 1, 2 ) on the time interval 0 ≤ t ≤ τ (“shortcut” part), and then we will fix their values ε̃1(t) = 1 and 
ε̃2(t) = 0 . Acceptable shortcuts should drive the quantum system to the mean position in the shortest possible 
time τ , while providing third-order moments close to their stationary values. Inspired by the previous approach, 
we first build a shortcut using an inverse-engineering of the mean trajectory. To this end, we use an iterative 
procedure combined with a semi-classical approximation (truncation of the moments chain) ⟨|α|2α⟩ → |⟨α⟩|2⟨α⟩ 
for the dynamical equation (4). Under this assumption, the mean position ⟨α⟩ follows Eq. (1) with the substitu-
tions:ω0 → " and κ1 → κ1 + 2κ2 . Repeating the classical treatment, we set up a speeding up of the dynamics 
from the initial position α0 = Tr[ρ0a] to the final position ⟨α⟩∞ in the required time interval 0 ≤ t ≤ τ.

The following step consists in using a straight trajectory for the mean position ⟨α⟩
(1)
t = (⟨α⟩∞ −α0)t/τ . 

Such a solution introduced in Eq. (4) under the semi-classical approximation, provides the driving functions 
ε
(1)
1,2 (t) . These functions are then used in the full quantum equation (2). As a result, we find a final mean position 

slightly shifted from the target, i.e. ⟨α⟩τ = α∞ + #α(1 ). This offset can be corrected by iterating the procedure 
with a slightly modified target α(2)

τ = ⟨α⟩∞ −#α(1) and a reference trajectory α(2)
t = (α(2)

τ − α0)t/τ . After a few 
iterations, this approach leads to an improved shortcut trajectory for the full quantum problem with a driving 
of the mean position to a very close neighborhood of the target ⟨α⟩∞ at the final time τ . To bring also the third 
moments close to their target values {⟨|α|2 x⟩∞, ⟨|α|2 y⟩∞} , we use the freedom in the choice of the trajectories 
connecting the initial/final points. In practice, we adjust both the shape and duration of the considered trajec-
tory to get closer to these targets. Figure 2a,b show the influence of the trajectory shape on the final third-order 
moments for a few chosen shortcut durations in the weak and strongly nonlinear regimes. Specifically, we use 
as reference trajectory two straight lines connecting the initial point (x0, y0) to the target (x∞, y∞) through an 
intermediate point (xm, ym + !y) , with (xm, ym) = ( 1

2
(x0 + x∞), 1

2
(y0 + y∞)) are the middle-point coordinates 

Figure 2.  Distance of the 3rd-order moments to their target in a shortcut to quantum synchronization. (a,b): 
Mismatch !3 (!y, τ ) [Eq. (5)] of the final 3rd-order moments with respect to their targets as a function of the 
offset !y of the intermediate point (xm, ym + !y) for (a) the weakly and (b) the strongly nonlinear regime. 
We have taken the shortcut durations τ̃ = 2 (solid blue line, (a)), τ̃ = 1 (red dash-dotted line, (a,b)), τ̃ = 0.5 
(purple dotted line (a,b)) and τ̃ = 0.25 (green dash-double-dotted line, (b)). (c,d): Third-order moments 
⟨|α|2x⟩τ (red dash-dotted) and ⟨|α|2y⟩τ (blue dotted) as a function of the shortcut duration τ̃ for the (c) weakly 
and (d) strongly nonlinear regimes. In (c,d) we have taken shortcuts corresponding to !y = 0 . Horizontal lines 
represent their respective stationary values ⟨|α|2x⟩∞ (red dashed) ⟨|α|2y⟩∞ (blue dashed) under a constant drive 
ε̃1 = 1, ε̃2 = 0. See Supplementary for details on the shortcut design.
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and !y is an offset. Each segment is followed at a constant speed for half the total shortcut time. To evaluate the 
effectiveness of our protocol, we introduce the distance

that depends on the chosen shortcut path and duration. The driving amplitudes ε1,2(t) are obtained from the 
previous procedure based on Eq. (4) and a semi-classical approximation (See Supplementary). In Fig. 2c,d, we 
plot the third-order moments ⟨|α|2 x⟩τ , ⟨|α|2 y⟩τ and their stationary values as a function of the total duration τ 
for a given trajectory.

In the weak linear regime, the final third-order moments are much more sensitive to the shortcut duration 
than to the trajectory shape. Indeed, the system behaves in this case as a driven harmonic oscillator, for which 
the shape of the trajectory has no direct influence on the final wave-packet width. A minimum expansion time 
is required to approach the correct third-order moments, which sets a lower bound on acceptable shortcut dura-
tions, and thus constrain the quantum speed limit in this regime.

In contrast, in the strongly nonlinear regime, the path shape has a more drastic influence than the shortcut 
duration. Moreover, the final third-order moments can be approached in a time τ̃ = 0.25 that is an order of mag-
nitude faster than the time scale τ̃ ≃ 2 of the weakly nonlinear regime. This faster convergence originates from 
the fact that the distribution of the stationary density matrix has a width closer to that of the initial coherent state 
( !α = 0.5 ), as the wave function experiences a sharper confinement to the circle of radius |α∞| . In general, for a 
given trajectory, there is no duration τ that gives a perfect simultaneous match of the two third-order moments 
⟨|α|2 x⟩τ , ⟨|α|2 y⟩τ with their respective targets. However, this can occur in specific trajectories, such as the one 
associated to !y = −0.1 with the duration τ̃ ≃ 0.5 . These specific trajectories are excellent candidates to build 
an efficient shortcut to quantum synchronization. Nevertheless, even when such trajectories are unavailable, a 
small mismatch in the third-order moments is actually not critical for the success of the protocol. The system 
dynamics turns out to be mainly driven by the fifth (and higher)-order moments once the mean position and 
third-order moments are below a certain distance from their targets.

Ideally, the density matrix after the shortcut to quantum synchronization should coincide with the stationary 
solution. To estimate quantitatively the shortcut performance, we use the trace distance 50 between the instan-
taneous density matrix of the system and the stationary solution for a sudden and constant driving. This metric 
is defined as T(ρ1, ρ2) = 1

2

∑N
i=1 |!i| with {!1, ..., !N } the eigenvalues of the matrix ρ1 − ρ2 . A faster decay of the 

trace distance is indicative of an accelerated quantum synchronization. Figures 3a,b compare the evolution of 
the trace distance for a shortcut protocol and for a sudden and constant driving. These figures show that for a 
constant driving, synchronization occurs at a faster rate in the strongly nonlinear regime where quantum noise 
has a greater influence. This observation corroborates the role played by quantum noise in the building up and 
acceleration of quantum synchronization discussed in Ref.32. Figure 3 reveal that in both weakly and strongly 
nonlinear regimes, the shortcut accelerates the decay of the trace distance. However, significant differences are 
observed between both regimes regarding the overall shortcut performance. First, a more drastic speed-up is 
obtained from the shortcut in the weakly nonlinear regime. Moreover, the resulting acceleration is then noticeably 
larger for the shortcut of duration τ̃ = 2 - while the shortcut performance is significantly reduced when smaller 
durations ( ̃τ = 0.5 , τ̃ = 1 ) are used. Indeed, the trace distance falls below the 1% threshold at time t̃ ≃ 11.9 for 
the shortcut of duration τ̃ = 2 , against t̃ = 24.6 , t̃ = 31.0 , t̃ = 40.4 respectively for the shorcuts of durations 
( ̃τ = 1 , τ̃ = 0.5 ) and for the constant drive. This contrasts with the observation that the density matrices cor-
responding to these shortcuts have a similar trace distance to the target in the time interval 0 ≤ t̃ ≤ 2 . Thus, 
the trace-distance alone is not sufficient to predict the pace of the subsequent quantum synchronization. In 
comparison, for the strongly non-linear regime, the shortcut duration has almost no influence on the decay of 
the trace distance - showing that all shortcuts have similar performance regardless of the chosen duration. This 

(5)!3 (!y, τ ) =

⎡

⎣

∑

j=x,y

(

⟨|α|2 j⟩τ − ⟨|α|2 j⟩∞
)2

⎤

⎦

1 /2

Figure 3.  Performance of the shortcut to quantum synchronization: (a,b): Trace distance T(ρ(t), ρ∞) of the 
density matrix ρ(t) to the stationary solution ρ∞ as a function of time for the weak (a) and strong (b) nonlinear 
regimes with the respective shortcuts of Fig.2a and Fig.2b with !y = 0 . We have taken the durations τ̃ = 2 
(solid blue line, (a)), τ̃ = 1 (red dash-dotted line, (a,b)), τ̃ = 0.5 (dotted purple line, (a,b)) τ̃ = 0.25 (green 
dash-double dotted line, (b)) and τ̃ = 0.125 (brown dotted line, (b)). The black-dashed line stands for a constant 
drive of amplitude ε̃1 = 1 and ε̃2 = 0 . The insets represent the Wigner distribution |W(x, y, τ )| ( x = Re[α] and 
y = Im[α] ) for (a) the shortcut designed with τ̃ = 2 in the weakly nonlinear regime and for (b) the shortcut 
designed with τ̃ = 0.5 in the strongly nonlinear regime for the considered times t̃ = 0, 0.5, 1, 2, 5, 10.



6

Vol:.(1234567890)

Scientific Reports |          (2023) 13:453  |  https://doi.org/10.1038/s41598-022-27130-w

www.nature.com/scientificreports/

finding is consistent with the third-order moments sketched in Fig. 2a,b: in the weakly non-linear regime the 
shortcut τ̃ = 2 is the only one that yields final third-order moments in a neighborhood of their target, while in 
the strongly non-linear regime the final third-order moments are barely affected by the shortcut duration. This 
strongly suggests that a successful shortcut to quantum synchronization should deliver a density matrix with first 
and third-order moments close to their target values—achieving this correspondence is indeed more critical than 
reaching the target density matrix within a given trace distance. In the quasi-linear regime, this sets a lower bound 
on quantum synchronization time. In contrast, in the strongly non-linear regime, the shortcut durations can be 
chosen arbitrarily small. Naturally, the resources employed (amplitude of the time-dependent drives ε1(t), ε2(t) ) 
increase as the duration τ is reduced, and the maximum accessible driving amplitude will eventually impose a 
minimum duration τ . These considerations can be connected to a more general discussion on quantum speed 
limits in both linear and nonlinear quantum systems: they suggest that the presence of nonlinearities can provide 
acceleration of quantum protocols by acting on the shape of propagating quantum wave-packets.

We illustrate our results by sketching the Wigner distribution at different stages of the shortcut protocol as 
insets of Fig. 3a,b. These pictures provide qualitative insights on the convergence towards the quantum-synchro-
nized Wigner distribution. In both the weakly/nonlinear regimes, the initial distribution is Gaussian-shaped 
centered on α0 = −1+ i . The insets show that the Wigner distributions delivered by the shortcut share several 
features with the target density matrix (insets of Fig. 3a,b, t̃ = 10 ) - such as a squeezing in the amplitude |α|, 
and a phase locking corresponding to a preferred phase φ ( α = |α|eiφ ) associated to the center of the Wigner 
distribution. In the weakly non-linear regime, the Wigner distribution profile evolves rapidly towards a ring 
shape. The strong similarity between the Wigner distribution immediately after the shortcut (inset of Fig.3a, 
t̃ = 2 ) and the target explains the rapid convergence witnessed by the trace distance. In the strongly non-linear 
regime, similar features between the instantaneous distribution and the target—such as the presence of a “hole” 
associated to a low-probability zone—also appear progressivly after termination of the shortcut. The Wigner 
distributions were obtained from a numerical resolution of Eq. (3) based on a Crank-Nicholson scheme 51 on 
a 28 × 28 grid with a time step δt̃ = 5.10−4 . Both numerical methods, the partial differential equation (3) and 
the Master equation (2), agrees for the mean positions ⟨x⟩t , ⟨y⟩t across the whole considered time interval with 
an accuracy better than 0.1 %. The Wigner phase-space simulation thus provides an additional independent 
confirmation of the effectiveness of the proposed shortcut drivings.

Discussion
We have detailed a systematic procedure, inspired by shortcut-to-adiabaticity techniques, allowing synchroniza-
tion acceleration in both classical and quantum systems. Classical synchronization has been discussed in the 
context of the Van der Pol oscillator. By using an appropriate time-dependent driving amplitude instead of the 
usual constant profile, one can accelerate the oscillator motion from a given initial point to the limit cycle. In a 
driven quantum Van der Pol oscillator, reaching an exact quantum synchronization requires to make coincide 
the system density matrix and the stationary solution associated to quantum synchronization. We have devel-
oped a shortcut strategy to ensure a “quasi”-synchronized state based on the simultaneous control of the mean 
position and of the third-order moments of the quantum oscillator. Our results show a different behavior in the 
weakly and strongly nonlinear regimes: in the latter, the third-order moments depend on the trajectory shape, 
and shortcuts of faster durations can be employed to reach the approximately synchronized state when compared 
to the quasi-linear regime. The method presented here could be adapted to other non-linear quantum systems 
for which the control of the wave-function shape is critical.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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