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The monochromatic driving of a quantum system is a successful technique in quantum simulations,
well captured by an effective Hamiltonian approach, and with applications in artificial gauge fields
and topological engineering. In this letter, we investigate the modeling of multichromatic Floquet
driving for the slow degrees of freedom. Within a well-defined range of parameters, we show that the
time coarse-grained dynamics of such a driven closed quantum system is encapsulated in an effective
Master equation for the time-averaged density matrix, that evolves under the action of an effective
Hamiltonian and tunable Lindblad-type dissipation/quantum gain terms. As an application, we
emulate the dissipation induced by phase noise and incoherent emission/absorption processes in the
bichromatic driving of a two-level system.

There is currently an intense research effort devoted to
the realization of quantum simulators able to reproduce
complex quantum dynamics in simpler and controlable
setups [1]. In many cases, the quantum systems to be
emulated are coupled to an environment, and thus be-
have as open quantum systems. Such an interaction is
usually considered as detrimental. However, a controlled
dissipation can be a unique asset for quantum state tar-
getting [2] such as ground state [3], pointer state [4, 5],
or even excited state [6], and opens many perspective for
many-body quantum simulation [7].
The emulation of quantum dissipation is therefore an

important step in the roadmap to accurate quantum sim-
ulators. Several mechanisms have been used to produce
dissipation in a quantum setup. It includes the driving
of two interacting quantum subsystems - one of them
acting as a bath on the other [8, 9], the use of atom
losses for studying loss cooling [10, 11], the Zeno effect
[12–16], the bi-stability of atom transport [17], the con-
trol of decoherence effects [18] and the investigation of
many-body phase transition with dissipative phenomena
[19] to name a few. In this letter, we detail an alterna-
tive strategy relying on multichromatic Floquet driving
to emulate quantum dissipation while keeping the system
conservative.
Periodic Floquet-driven quantum systems have be-

come instrumental to emulate novel interactions, quan-
tum states of matter or artificial gauge fields [20–31].
Multichromatic Floquet driving has also been applied re-
cently to manipulate topological quantum states [32, 33].
In the following, we discuss how an effective quantum dis-
sipation can emerge in a time coarse-grained (TCG) dy-
namics. For this purpose, we exploit a timescale separa-
tion formalism [20, 21] for a multichromatic driving, and
infer an effective Master equation for the TCG matrix
density with well-controlled approximations, and valid
over a long time interval.
Consider a quantum system driven by a time-

independent Hamiltonian Ĥ0 and a Floquet Hamiltonian
ĤF (t) =

∑

m V̂me
iωmt + h.c.. The corresponding evolu-

tion operator can be recast as the product of three uni-
tary transforms involving separately either slow or fast-
evolving operators [20, 21]:

Û(t, t0) = e−iK̂(t)Û eff(t)eiK̂(t0), (1)

where Û eff(t) = T
[

e
−i

∫
t

t0
dt′Ĥeff (t′)

]

accounts for the slow

dynamics under the effective Hamiltonian Ĥeff(t) (T is
the time ordering operator), while the terms involving

the kick operator, K̂(t), contain the fast sinusoidal time-
dependence. The Floquet frequencies ωm are assumed
to be much larger than the eigenfrequencies of Ĥ0 and
V̂m: ε = Ω/ω ≪ 1 with Ω = maxm{||Ĥ0||, ||V̂m||} and
ω = minm{ωm}. This frequency hierarchy is used to

expand Ĥeff(t) =
∑+∞

n=0 Ĥ
eff
n (t) and K̂(t) =

∑+∞
n=1 K̂n(t)

where ||K̂n(t)|| = O
(

Ωn

ωn

)

and ||Ĥeff
n (t)|| = O

(

Ωn+1

ωn

)

.

The instantaneous quantum state |ψ(t)〉 undergoes
a unitary evolution with a fast time-dependence.
However, the evolution of the TCG density matrix
ρ(t) = |ψ(t)〉〈ψ(t)| is in general non-unitary. The
considered TCG procedure works as a low-pass fil-
ter in frequency space involving a cutoff frequency

ωc: Ô(t) = 1√
2π

∫ ωc

−ωc
Ô(ω)e−iωtdω, where Ô(ω) =

1√
2π

∫ +∞
−∞ Ô(t)eiωtdt is the Fourier transform of the con-

sidered operator Ô(t). The cutoff frequency ωc is cho-
sen to leave invariant the slow Hamiltonian dynamics,

i.e. e±iĤ0t = e±iĤ0t, while filtering out the fast Floquet

frequencies ∀m e±iωmt = 0 (ĤF (t) = 0). Finally, we as-
sume that for the slow operators considered below (such

that Ôslow(t) = Ôslow(t)), one always has Ôslow(t)Ô(t) =

Ôslow(t)Ô(t) and Ô(t)Ôslow(t) = Ô(t)Ôslow(t). This

property is fulfilled if the Ôslow operator oscillates at fre-
quencies ωslow ≪ ωc and if the Ô(t) operator does not
have frequencies nearby the cutoff ωc. These assumptions
are realistic for a sufficient large separation between the
slow and fast timescales.
We now proceed to derive an effective Master equa-

tion for the TCG density matrix. From Eq. (1),

we obtain ρ(t) = e−iK̂(t)ρe(t)eiK̂(t) with ρe(t) =

Û eff(t)eiK̂(t0)|ψ(t0)〉〈ψ(t0)|e
−iK̂(t0)Û eff(t)† evolving un-

der the effective Hamiltonian Ĥeff(t). By construction
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of the effective Hamiltonian [20, 21], the density matrix

ρe(t) follows slow dynamics and fulfills ρe(t) = ρe(t). We

subsequently expand the fast unitary transforms e±iK̂(t)

in terms of the small parameter ε = Ω/ω. The TCG
density matrix then reads

ρ(t) = ρe(t) +

N
∑

n=1

δρ(m)(t) +O
(

εN+1
)

(2)

Each term δρ(m)(t) represents a correction of order
O(εm) and depends linearly on the density matrix ρe(t).
In order to derive these corrections, one needs explicit
expressions for the fast kick operators K̂m(t). These
are used to cancel the fast time-dependence in the ef-
fective Hamiltonian, and can be obtained at each or-
der through a systematic procedure [20, 38]. For in-

stance, K̂1(t) fulfills
˙̂
K1(t) = ĤF (t) and reads K̂1(t) =

∑

m
1

iωm
(V̂me

iωmt−h.c) [38]. The lowest-order correction

is of second-order as δρ(1)(t) = −i[K̂1(t), ρe(t)] = 0 and is

given by δρ(2)(t) = − 1
2{K̂1(t)2, ρe(t)}+ K̂1(t)ρe(t)K̂1(t).

An effective equation for the time-averaged density ma-
trix is obtained by taking the time derivative of Eq. (2).
Special care is, however, needed in order to gather con-
sistently corrections to the same order. For instance,

the contribution δρ(2)(t) involves a product of fast-

evolving (K̂1(t)) and slow-evolving (the density matrix
ρe(t)) functions. When applied to the latter, the time
derivative yields terms which are smaller by one or-
der in the small parameter ε. This leads us to dis-
tinguish the slow and fast time dependence by set-
ting τ and t for the corresponding time variables, with
∂τ = O(Ω) and ∂t = O(ω), similarly to the two-

timing technique [35, 36]. We note δρ(m)(t, τ) the cor-
responding corrections to the density matrix, so that

δρ(2)(t, τ) = − 1
2{K̂1(t)2, ρe(τ)} + K̂1(t)ρe(τ)K̂1(t). Fur-

thermore, we assume that the Floquet frequencies ωm are
grouped in a narrow bandwidth, i.e. ∀(m,n) |ωm−ωn| <

ωc ≪ ω. The third-order correction δρ(3)(t) involves only
contributions from the two lowest-order fast operators
{K̂1(t), K̂2(t)} as the time-averaging eliminates the iso-

lated contribution of the fast operator K̂3(t). Cubic

terms K̂1(t)
3ρe(t), K̂1(t)

2ρe(t)K̂1(t), ... do not contain
low-frequency harmonics and thus disappear upon time-

averaging. One obtains δρ3(t, τ) = K̂1(t)ρe(τ)K̂2(t) +

K̂2(t)ρe(τ)K̂1(t) −
1
2{{K̂1(t), K̂2(t)}, ρe(τ)}. The com-

plete effective Master equation can be written to second

order as ∂
∂t
ρ = −i[Ĥeff , ρe]+∂tδρ(2)(t, τ)+∂τδρ(2)(t, τ)+

∂tδρ(3)(t, τ) + O(Ωε3). At the second order expansion,

ρe(t) = ρ(t)− δρ(2)(t) +O(ε3) in the unitary term of the
r.h.s., but ρe(t) ≃ ρ(t) is sufficient in the Lindblad terms.

We eventually obtain the effective Master equation for
the TCG density matrix which constitute the central re-

sult of this article [38]:

∂ρ

∂t
= −i[Ĥeff , ρ] + LFF

2 [ρ] + LFSF
2 [ρ] +O(Ωε3) (3)

with

LFF
2 [ρ]=

∑

m<n

4 sin(∆ωnmt)

ωmn−
D[V̂ †

m, V̂n][ρ], (4)

LFSF
2 [ρ] = i

∑

m,n

[

1

ω2
n

D[V̂m, [V̂
†
n , Ĥ0]][ρ]

+
1

ω2
m

D[V̂ †
n , [V̂m, Ĥ0]][ρ]

]

ei(ωm−ωn)t, (5)

with ∆ωnm = ωn − ωm, 1/ωmn− = 1
2 (1/ωm − 1/ωn) and

D[V̂ , V̂ ′][ρ] = 1
2{{V̂ , V̂

′}, ρ} − V̂ ρV̂ ′−V̂ ′ρV̂ .
This effective Master equation contains two non-

unitary contributions encapsulated in the Linblad-like
terms LFF

2 [ρ] and LFSF
2 [ρ] provided that the Floquet

Hamiltonian contains at least two different frequen-

cies {ωm, ωn} close enough to ensure e±i(ωm−ωn)t =
e±i(ωm−ωn)t. Under this assumption, the beat notes
between these Floquet modes generate tunable non-
Hermitian contributions to the time-averaged dynamics
when the inequalities |ωm − ωn| < ωc ≪ ω are satisfied.
The non-unitary operator LFF

2 [ρ] is bilinear in the Flo-
quet operators and scales as 1/ωmn− ≃ |∆ωmn|/ω

2. For
usual situations where |∆ωmn| ≤ Ω, which corresponds
to dissipation terms oscillating at a comparable pace (or
slower) as the effective Hamiltonian dynamics, the non-
unitary operators of Eq. (3) are of second-order. The ex-

tra contribution (5) arises when [V̂m, Ĥ0] 6= 0, and akes
into account the interaction between slow and fast quan-
tum dynamics in the resulting time-averaged evolution.
The effective Master equation derived in the present

framework is valid over an arbitrary long time interval.
This is an essential benefit from our approach based
on the exact expression (1) followed by an expan-
sion in terms of the Floquet frequencies. We obtain
(see [20, 21] and the SM [38]) Ĥeff

0 = Ĥ0, Ĥ
eff
1 =

1
2

∑

m,n

(

1
ωm

+ 1
ωn

)

[V̂m, V̂
†
n ]e

i(ωm−ωn)t and Ĥeff
2 =

1
2

∑

m,n

(

1
ω2

m

[[V̂m, Ĥ0], V̂
†
n ] +

1
ω2

n

[[V̂ †
n , Ĥ0], V̂m]

)

ei(ωm−ωn)t.

At the considered second-order and for Floquet frequen-
cies taken in a narrow bandwidth, kick operators must
be grouped pairwise in order to generate low-frequency
harmonics that survive the time-averaging. This is why
the bichromatic case considered below, contains the
phenomenology of the non-unitary effects that arise in
any multichromatic Floquet driving.
As a first example, we consider a two-level system with

Ĥ0 = ω0σz, and the Floquet operators V̂m = Ωmσx
for m = 1, 2 (σx,y,z are the Pauli matrices, and we
set here Ω1,2 = Ω > 0). This choice yields LFF

2 [ρ] =
8Ω2 (sin(∆ω21t)/ω12−) (ρ − σxρσx) and LFSF [ρ] =

−8ω0Ω
2
(

1
ω2

1
+ 1

ω2
2

)

cos2(12∆ω21t)(σxρσy + σyρσx). The
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FIG. 1: Quantum dynamics in the interaction picture with
Ĥ0 ∝ σz and V̂m ∝ σx: Instantaneous density matrix pro-
file Re[ρ̃eg(t)] as a function of time (solid gray line) with
ρ̃(t) = Ueff(t)†ρ(t)Ueff(t). Coarse-grained density matrix
coherence Re[ρ̃eg(t)] as a function of time obtained from a
time-averaging of the instantaneous solution ρ̃(t) (solid black
line), or from a resolution of the full effective Master equa-
tion (dashed black line), of an effective Master equation
without the contribution LFSF [ρ̃] (see text) to the quan-
tum dissipation term (dotted line). Results obtained for

the constant/Floquet Hamiltonians Ĥ0 = ω0σz, ĤF (t) =
Ω1σxe

iω1t +Ω2σxe
iω2t + h.c., and with an initial density ma-

trix ρ0 = |ψ+〉〈ψ+| where |ψ+〉 = 1√
2
(|e〉 + |g〉). Parame-

ters used: ω0 = 0.1 × (2π)/T0 and Ω1 = Ω2 = 2/T0. Flo-
quet frequencies: ω1 = 4 × (2π)/T0, ω2 = ω1 + ∆ω21 with
∆ω21 = 0.025 × (2π)/T0, and small parameter ǫ = 0.1. TCG
realized with the cut-off frequency ωc = 2× (2π)/T0.

effective Hamiltonian contributions are Ĥeff
1 = 0 and

Ĥeff
2 = −8ω0Ω

2
(

1
ω2

1
+ 1

ω2
2

)

cos2(12∆ω21t)σz . To empha-

size the role of the dissipative dynamics, we provide here-
after the quantum evolution within the interaction pic-
ture with respect to the second-order effective Hamil-
tonian Ĥeff = Ĥ0 + Ĥeff

2 . Figure 1 pictures the time
evolution of the instantaneous density matrix coherence
ρ̃eg(t) with ρ̃(t) = Û eff(t)†ρ(t)Û eff(t). We express all
time-related quantities using an arbitrary time unit T0.
We also provide the TCG evolution using a convolution
with the sinus cardinal function f(t) = sin(ωct)/(πt).
We subsequently compare this time-averaged density ma-
trix ρ̃(t) =

∫

dt′f(t′ − t)ρ̃(t) with the predictions of
the effective Master equation with the initial condition

ρ̃0 = eiK̂1(t0)
(

∫ +∞
−∞ dtf(−t)ρ̃(t)

)

e−iK̂1(t0). We have also

added the prediction from the Master equation in the ab-
sence of the LFSF [ρ̃] term, i.e. as derived in [34]. This
latter approach, based on a Dyson perturbative expan-
sion, yields an effective Master equation whose validity
is restricted by construction to a very short time inter-
val, and to moderate dissipation strengths. As a matter
of fact, these assumptions can be overly restrictive, as a
long duration is needed for moderate dissipation to alter
significantly the dynamics of a given quantum system.
Our second example illustrates the emulation of phase

noise in the time-averaged quantum dynamics. In NMR,
such a dissipative physical mechanism results from fluctu-
ations of the magnetic field. The phenomenological equa-
tion for the average spin dynamics, Ṁ = γM×B+(M0−

Mz)/T1ẑ − M⊥/T2, accounts for the dissipative effects
through two times T1 and T2, associated respectively to
the longitudinal (Mz) and transverse (M⊥) relaxations.
In terms of the density matrix, the former corresponds
to the population difference ρee − ρgg while the latter in-
volves the density matrix coherences ρeg, ρge. The phase
noise is accounted for with decay times T1 = +∞ and
T2 = 1/γ [39]. The Master equation that models the

phase noise reads ∂tρ = −i[Ĥ0, ρ] +
γ
2Lphase[ρ] with the

Liouvillian Lphase[ρ] = σzρσz −
1
2{σzσz , ρ}.

To emulate such a dissipative dynamics, we consider a
bichromatic driving with Ĥ0 = ω0σz and V̂m = Ωmσz
for m = 1, 2. In this particular case, the contribu-
tion of the LFSF [ρ] term vanishes and the resulting
Master equation coincides with the desired form with
γ(t) = −16Re[Ω∗

1Ω2] sin(ω2 − ω1)t/ω12− (the contribu-

tion of the D[V̂ †
m, V̂n][ρ] term is proportional to a Lin-

bladian operator Lphase[ρ]). Here, the coefficient γ has a
time-dependent value and alternates between regimes of
gain (γ < 0) and damping (γ > 0). Setting very close
and non-commensurate frequencies ω1 and ω2 enables to
accumulate decoherence (or gain) over a significant time
interval.

As previously, we validate numerically our findings by
resolving the full unitary quantum dynamics driven by
the Hamiltonian Ĥ(t) = Ĥ0 + ĤF (t). In Fig. 2, we il-
lustrate our results. The seemingly erratic oscillations of
the instantaneous density matrix coherence depicted in
Fig. 2 [38] generate a TCG dynamics that follows very
accurately the effective Master equation, i.e. the one of a
damped Rabi oscillation. This averaging effect on the
Floquet-induced peaks is reminiscent of the averaging
on individual stochastic trajectories involving quantum
jumps in the Monte Carlo wave function formalism [37].
Floquet-induced peaks accumulate periodically at a pace
determined by the beat frequency ∆ω21 between the two
involved Floquet modes. This periodic increase/decrease
of sharp peaks provokes an oscillation of the effective
damping rate γ(t) at the same frequency ∆ω21. An ini-
tial loss (gain) phase can be obtained by setting a specific
phase difference φ between the two Floquet modes. By
convention we use Ω1 ∈ R

+ and Ω2 = |Ω2|e
iφ, with the

Floquet frequencies ordered with their labels ωn > ωm

if n > m. The choice Ω2 = −Ω1 gives the decoherence
pictured in Fig. 2.

Our framework provides a very accurate approxima-
tion of the full time-averaged dynamics in this second
example. This is not obvious, as Eq. (3) is a mere second-
order approximation, and discards several contributions
associated to the higher-order kick operators K̂m(t). Ac-

tually, the operators K̂m(t) vanish here for m ≥ 2 as a
result of the commutation between the Floquet and time-
independent Hamiltonians. Thus, the expansion of the

unitary operators e±iK̂(t) boils down to a simple power
expansion in the operator K̂1(t). Furthermore, odd pow-

ers of K̂1(t) do not generate any low-frequency harmon-
ics, and the effective Master equation only receive con-
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FIG. 2: Emulation of Phase Noise: Results of the effective
Master equation vs full quantum evolution: Instantaneous
density matrix coherence Re[ρeg(t)] as a function of time
(solid gray line), time coarse-grained coherence Re[ρeg(t)]
(solid black line) and the density matrix coherence Re[ρeg(t)]
(dashed black line) obtained from the effective Master equa-
tion (Eq. 3). Parameters used: constant and Floquet Hamil-

tonians corresponding to Ĥ0 = ω0σz and ĤF (t) = Ω1σze
iω1t+

Ω2σze
iω2t + h.c. with ω0 = 0.5 × (2π)/T0 and Floquet terms

in opposite phase Ω1 = −Ω2 = 7/T0. We have used non-
comensurate Floquet frequencies ω1 =

√
10 × (2π)/T0, ω2 =

ω1+∆ω21 with ∆ω21 = 0.025×(2π)/T0, yielding the small pa-
rameter ε = 0.35. The initial density matrix (ρ0) and cut-off
(ωc) frequencies are identical to Fig.1.

tributions from even-order terms. Incidentally, the 4th-
order contribution also cancels [38]. In the special case of
commuting operators, Eq. (3) is thus accurate up to the
5th-order, which explains the remarkable agreement be-
tween the approximate effective Master equation (3) and
the full quantum dynamics, which still holds for moder-
ate values of the parameter ε (ε=0.35 in Fig. 2).
In our third example, we propose to emulate a

quantum dynamics reminiscent of incoherent emis-
sion/absorption processes in the TCG evolution of a
two-level system. These processes are described respec-
tively by the Liouvillians Lem[ρ] = σ−ρσ+ − 1

2{σ−σ+, ρ}

and Lab[ρ] = σ+ρσ− − 1
2{σ+σ−, ρ}, where σ+ = |e〉〈g|

and σ− = σ†
+. By symmetry of the dissipative term

D[V̂ , V̂ ′][ρ] in the effective Master equation, if the TCG
dynamics contains the Liouvillian Lem[ρ], it also contains
the Liouvillian Lab[ρ] associated to the reverse process.
This regime illustrates, for example, the dynamics of a
two-level atom illuminated by an intense light field, so
that stimulated emission predominates over spontaneous
emission [40]. In this case, the emission/absorption rates
are approximately equal γem ≃ γab ≃ γ.
To produce an analog of this dissipation, we take the

time-independent Ĥ0 = ω0σx and Floquet Hamiltonians
with V̂m = Ωmσ+ for m = 1, 2 (Ω1,2 = Ω > 0).
With this choice, the bilinear term LFF

2 [ρ] accounts
for these two incoherent processes as LFF

2 [ρ] =
γ(t)(Lem[ρ] + Lab[ρ]) with the time-dependent effective
emission/absorption rate γ(t) = −4Ω2 sin(∆ω21t)/ω12−.
The remaining contribution reads LFSF

2 [ρ] =

−ω0Ω
2
(

1
ω2

1
+ 1

ω2
2

)

cos2(12∆ω21t)(σyρσz + σzρσy) +

ΩO(ε3). One finds the effective Hamiltonian cor-
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FIG. 3: Incoherent absorption/emission in the time-averaged
dynamics: Instantaneous density matrix coherence Re[ρeg(t)]
as a function of time (solid gray line), time-averaged coher-
ence Re[ρeg(t)] (solid black line) vs density matrix coher-
ence Re[ρeg(t)] (dashed black line) obtained from the effec-
tive Master equation. Parameters: initial density matrix
ρ0 = |e〉〈e|, constant and Floquet Hamiltonians Ĥ0 = ω0σx,

ĤF (t) = Ω1σ+e
iω1t + Ω2σ+e

iω2t + h.c. with the frequency
ω0 = 0.25 × (2π)/T0 and in-phase Floquet terms s.t. Ω1,2 =
2/T0. Small parameter ǫ = 0.1. Floquet (ω1,2) and cutoff
(ωc) frequencies are identical to those of Fig. 2.

rections Ĥeff
1 = 2Ω2

(

1
ω1

+ 1
ω2

)

cos2(12∆ω21t)σz and

Ĥeff
2 = −2ω0Ω

2
(

1
ω2

1
+ 1

ω2
2

)

cos2(12∆ω21t)σx + ΩO(ε3).

In Fig. 3, we plot as a function of time the exact instan-
taneous density matrix coherence and its corresponding
TCG evolution. We observe an excellent agreement with
the prediction of the effective Master equation (the two
curves are almost perfectly superposed).

More generally, our approach enables one to emulate
a Lindblad Master equation of the form ρ̇ = −i[Ĥ, ρ̂] +
∑N

m=1 γm

[

L̂mρL̂
†
m + L̂†

mρL̂m − 1
2{{L̂m, L̂

†
m}, ρ}

]

, i.e.

involving, for each quantum jump operator L̂m, the
reverse jump L̂†

m at the same rate γm [41]. It is
approximately generated by the Floquet Hamiltonian

ĤF (t) =
∑N

m=1 ΩmL̂m

(

eiωmt + ei(ωm+∆ωm)t+iϕm

)

+ h.c.
with well-separated pairs of close frequencies
{ωm, ωm + ∆ωm}, such that ∆ωm ≪ ωc and
|ωm − ωn| > ωc for m 6= n in order to avoid crossed
terms involving different pairs of jump operators. With
these assumptions, the operator LFF

2 [ρ] (4) takes the
desired form. Interestingly, the effective time-dependent
rates γm(t) ≃ −4

(

|Ωm|2∆ωm/ω
2
m

)

sin(∆ωmt+ ϕm)
can be shaped independently by a suitable choice of
the Rabi pulsations (Ωm), frequency (∆ωm) and phase
(ϕm) differences. Regarding the LFSF

2 [ρ] term, its
contribution can be attenuated by an appropriate choice
of Ĥ0, e.g. the third example detailed above.

In summary, we have used the formalism of kick op-
erators and effective Hamiltonians to derive an effective
Master equation for the TCG dynamics in a multichro-
matic Floquet system. Our treatment, based on a per-
turbative expansion in terms of powers of kick operators,
holds in the long-time limit. The beat modes between
pairs of Floquet frequencies generate effective quantum
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dissipation that results from a blurring of the fast in-
stantaneous motion. Different Floquet Hamiltonians and
time-averaging procedures can be considered to emulate
a wide range of dynamics involving gains or losses. Our
approach paves the way for quantum simulations based
on Floquet-engineered non-unitary dynamics.
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SUPPLEMENTAL MATERIAL

In Sec. I, we provide the derivation of the kick operators and effective Hamiltonians to the second order. In Sec. II,
we establish the effective Master Equation that governs the time-coarsed grained density matrix to the second order.
In Sec. III, we exemplify the calculations of the higher order corrections to the effective Master equation for the
applications detailed in the main text.

I. THE KICK OPERATORS AND EFFECTIVE HAMILTONIANS TO SECOND ORDER

The exact Hamiltonian under consideration reads Ĥ(t) = Ĥ0+ĤF (t) with ĤF (t) =
∑

m V̂me
iωmt+h.c.. We assume

that all Floquet frequencies ωm belong to a narrow bandwidth, i.e. fulfill ∀m , ∀n, |ωm − ωn| ≪ ωc ≪ ω. Following

the procedure of Refs.[20, 21], we search for a unitary operator eiK̂(t) such that the state expressed in the new gauge
|φ(t)〉 = eiK(t)|ψ(t)〉 follows a slow dynamics. The Hamiltonian in the new gauge frame is given by

Ĥeff(t) = eiK̂(t)Ĥ(t)e−iK̂(t) + i
∂eiK̂(t)

∂t
e−iK̂(t), (6)

and must be such that Heff(t) = Heff(t) at any time t. For the considered Floquet frequencies, one has ei±(ωm−ωn)t =

ei±(ωm−ωn)t and e±iωmt = e±i(ωm+ωn)t = 0. Thus, only terms rotating at a difference between two Floquet frequencies
(or constant terms) will contribute to the effective Hamiltonian Heff(t). In this section, we determine iteratively the

first contributions to the expansion Ĥeff(t) =
∑+∞

n=0 Ĥ
eff
n (t) and K̂(t) =

∑+∞
n=1 K̂n(t) using the identities provided by

the from the Baker-Campbell-Hausdorff formula:

eiK̂(t)Ĥ(t)e−iK̂(t) = Ĥ(t) + i[K̂(t), Ĥ(t)]−
1

2
[K̂(t), [K̂(t), Ĥ(t)]]

−
i

6
[K̂(t), [K̂(t), [K̂(t), Ĥ(t)]]] + ... (7)

(

∂eiK̂(t)

∂t

)

e−iK̂(t) = i
∂K̂

∂t
−

1

2

[

K̂(t),
∂K

∂t

]

−
i

6

[

K̂(t),

[

K̂(t),
∂K

∂t

]]

+ ... (8)

In the following, we explicitly use the fact that Ĥeff
n (t), K̂n(t) and

∂
∂t
K̂n+1 are of the same order O(εn) where ε = Ω/ω.

The zero-order contribution is obtained by taking eiK̂(t)Ĥ(t)e−iK̂(t) = H(t) +O(ε). Using Eqs. (6) and (8), we find

Ĥeff
0 (t) = Ĥ0 + ĤF −

∂K̂1

∂t
.

From now on, we remove the explicit time-dependence of the operators on the r.h.s. to alleviate notations when

needed. As Ĥ0 = Ĥ0 and ĤF (t) = 0, we set Ĥeff
0 (t) = Ĥ0 and

∂K̂1

∂t
= ĤF . (9)

The kick operator K̂1(t) removes all the fast time-dependence from the effective Hamiltonian, and can be chosen as

K̂1(t) =
∑

m

1

iωm

(

V̂me
iωmt − V̂ †

me
−iωmt

)

, (10)

up to an arbitrary constant operator.
To obtain the result to next-order, we introduce the two lowest-order kick operators K̂1,2(t) into Eqs. (6,7,8). We

find

Heff
1 (t) = i[K̂1, Ĥ ]−

i

2

[

K̂1,
∂K̂1

∂t

]

−
∂K̂2

∂t
,

which can be recast thanks to Eq. (9) as

Ĥeff
1 (t) = i[K̂1, Ĥ0] +

i

2
[K̂1, ĤF ]−

∂K̂2

∂t
.
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We infer

Ĥeff
1 (t) = i[K̂1, Ĥ0] +

i

2
[K̂1, ĤF ] and

∂K̂2

∂t
= i[K̂1, Ĥ0] +

i

2
[K̂1, ĤF ]− Ĥeff

1 . (11)

As a product of a kick operator with a slow Hamiltonian yields a null average, we have [K̂1(t), Ĥ0] = 0 and get the
first order expression to the effective Hamiltonian

Ĥeff
1 (t) =

∑

m,n

1

2

(

1

ωm

+
1

ωn

)

[

V̂m, V̂
†
n

]

ei(ωm−ωn)t, (12)

and the second order expression for the kick operator

K̂2(t) =
∑

m

1

iω2
m

(

[V̂m, Ĥ0]e
iωmt − h.c.

)

+
∑

m,n

1

2iωm(ωm + ωn)

([

V̂m, V̂n

]

ei(ωm+ωn)t − h.c.
)

, (13)

up to an arbitrary constant operator.
To find Ĥeff

2 (t), we iterate the very same procedure. Using Eqs. (7,8), we find

Ĥeff
2 (t) = i[K̂2, Ĥ ]−

1

2
[K̂1, [K̂1, Ĥ ]]−

i

2
[K̂2,

∂K̂1

∂t
]−

i

2
[K̂1,

∂K̂2

∂t
] +

1

6
[K̂1, [K̂1,

∂K̂1

∂t
]]−

∂K̂3

∂t
(14)

This equation can be recast using Eqs. (9,11) to express the derivatives of the kick operators K(1,2)(t) in terms of
commutators:

Ĥeff
2 (t) = i[K̂2, Ĥ0] +

i

2
[K̂2, ĤF ] +

i

2
[K̂1, Ĥ

eff
1 ]−

1

12
[K̂1, [K̂1, ĤF ]]−

∂K̂3

∂t
(15)

We find [K̂2, Ĥ0] = [K̂1, Ĥeff
1 ] = 0. As the product of three fast operators with similar Floquet frequencies does not

generate any slow harmonics, we have [K̂1, [K̂1, ĤF ]] = 0. The second-order effective Hamiltonian contribution is then
given by

Ĥeff
2 (t) =

i

2
[K̂2, ĤF ] =

∑

m,n

1

2ω2
m

[

[V̂m, Ĥ0], V̂
†
n

]

ei(ωm−ωn)t + h.c., (16)

K̂3(t) can be obtained by an integration of Eq. (15) using the expression (16) for Ĥeff
2 (t). The 3rd-order contribution

to the kick operator is derived in Section III in the specific case Ĥ0 = ω0σz and V̂m = Ωσx.

II. DERIVATION OF THE 2ND-ORDER EFFECTIVE MASTER EQUATION

We provide here a detailed derivation the effective Master equation, starting from the following expression obtained
in the main text

∂ρ

∂t
= −i[Ĥeff(t), ρe] + ∂tδρ(2)(t, τ) + ∂τδρ(2)(t, τ) + ∂tδρ(3)(t, τ) +O(Ωε3). (17)

Using the evolution of the instantaneous state [Eq.(1) of the main text], the following expansion of the fast unitary
transform in terms of the kick operators

eiK̂(t) = 1− iK̂1(t)−
1

2
K̂1(t)

2 − iK̂2(t)−
1

2
{K̂1(t), K̂2(t)} +

i

6
K̂1(t)

3 − iK̂3(t) +O

(

Ω4

ω4

)

and the properties K̂m(t) = 0 for m ≥ 1 and K̂1(t)2n+1 = 0 for n ≥ 0 mentioned in the main text, we obtain the
following expressions for δρ(2)(t, τ), δρ(3)(t, τ):

δρ(2)(t, τ) = −
1

2
{K̂1(t)2, ρe(τ)} + K̂1(t)ρe(τ)K̂1(t) (18)

δρ(3)(t, τ) = K̂1(t)ρe(τ)K̂2(t) + K̂2(t)ρe(τ)K̂1(t)−
1

2
{{K̂1(t), K̂2(t)}, ρe(τ)}



8

Let us first derive the term ∂tδρ(2)(t, τ). Using Eq. (9) and the substitution ρe(τ) = ρ+O(ε2), we find

∂tδρ(2)(t, τ) = −
1

2
{{ĤF (t), K̂1(t)}, ρ}+ ĤF (t)ρK̂1(t) + K̂1(t)ρĤF (t) +O(Ωε3) (19)

Using Eq. (10), we compute the second contribution of the r.h.s. as

ĤF (t)ρK̂1(t) =
∑

m,n

−1

iωn

V̂mρV̂
†
n e

i(ωm−ωn)t +
∑

m,n

1

iωn

V̂ †
mρV̂ne

i(ωn−ωm)t

=
∑

m,n

1

i

(

V̂ †
n ρV̂m
ωm

−
V̂mρV̂

†
n

ωn

)

ei(ωm−ωn)t,

where we have exchanged the indices m and n in the second term. Similarly, we have

K̂1(t)ρĤF (t) =
∑

m,n

1

i

(

V̂mρV̂
†
n

ωm

−
V̂ †
n ρV̂m
ωn

)

ei(ωm−ωn)t

Summing up both contributions , we finally obtain

ĤF (t)ρK̂1(t) + K̂1(t)ρĤF (t) =
∑

m,n

1

i

(

1

ωm

−
1

ωn

)

ei(ωm−ωn)t
(

V̂mρV̂
†
n + V̂ †

nρV̂m

)

=
∑

m<n

4 sin(∆ωmnt)

ωmn−

(

V̂mρV̂
†
n + V̂ †

n ρV̂m

)

(20)

with ∆ωnm = ωn − ωm and 1/ωmn− = 1
2 (1/ωm − 1/ωn). The term {{ĤF (t), K̂1(t)}, ρ} can be obtained along similar

lines. Finally, from Eqs.(17,19,20), the contribution LFF [ρ] can be expressed as LFF [ρ] = ∂tδρ(2)(t, τ) and

LFF (ρ) =
∑

m<n

4 sin(∆ωmnt)

ωmn−

(

1

2
{{V̂ †

m, V̂n}, ρ} − V̂mρV̂
†
n − V̂ †

n ρV̂m

)

+O(Ωε3),

which yields Eq.(4) of the main text.

In the following, we assume that e±i(ωm−ωn)t = e±i(ωm−ωn)t, and derive the term LFSF
2 [ρ] ≡ ∂τ δρ(2)(t, τ) +

∂tδρ(3)(t, τ) - the replacement of ρe(t) by ρ(t) is valid up to 3rd order corrections. We begin by deriving explicitly

∂τ δρ(2)(t, τ). Special care is needed with respect to the operator ordering. As an example, we find

∂

∂τ

[

{K̂1(t)2, ρ(τ)}
]

= −i{K̂1(t)2, [Ĥ
eff(t), ρ(τ)]}

= −i[Ĥeff(t), {K̂1(t)2, ρ(τ)}]− i{[K̂1(t)2, Ĥ
eff(t)], ρ(τ)},

where we have used the generic identity Â[B̂, Ĉ] = [Â, B̂]Ĉ + [B̂, Â]Ĉ. The other terms can be evaluated in a similar
manner:

∂δρ(2)(t, τ)

∂τ
= −i[Ĥeff, δρ(2)(t)]− i{[

1

2
K̂1(t)2, Ĥ0], ρ(τ)} − i[K̂1(t), Ĥ0]ρ(τ)K̂1(t)

− iK̂1(t)ρ(τ)[K̂1(t), Ĥ0]. (21)

We have taken Ĥeff = Ĥ0 in the dissipative terms, which is valid to the considered order.

We now derive the contribution ∂tδρ(3)(t, τ). Let’s compute the term ∂tK̂1(t)ρe(τ)K̂2(t):

∂

∂t
K̂1(t)ρe(τ)K̂2(t) = ĤF (t)ρe(τ)K̂2(t) + iK̂1(t)ρe(τ)[K̂1(t), Ĥ0] +

i

2
K̂1(t)ρe(τ)[K̂1(t), ĤF (t)]

− K̂1(t)ρe(τ)Ĥeff
1 (t),

where we have used Eqs. (9,11). We find that the two last contributions of the r.h.s. vanish upon averaging, i.e.

K̂1ρĤeff
1 = K̂1ρ[K̂1, ĤF ] = 0. Note that the second contribution of the r.h.s. cancels a term from ∂δρ(2)(t,τ)

∂τ
.
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Other contributions to ∂tδρ(3)(t, τ) are obtained along similar lines, and one obtains a one by one cancellation of the

dissipative terms in ∂τ δρ(2)(t, τ). Using Eqs. (17) and Eq.(21), we find

∂ρ

∂t
= −i[Ĥeff , ρe + δρ(2)] + LFF (ρ) + LFSF (ρ) +O(Ωε3).

By writing ρ = ρe + δρ(2) + O(Ωε3), the equation above becomes a close equation in ρ at the considered order. The
contribution coupling the fast and slow quantum dynamics is expressed as

LFSF [ρ] = ĤF (t)ρ(τ)K̂2(t) + K̂2(t)ρ(τ)ĤF (t)−
1

2
{{ĤF (t), K̂2(t)}, ρ(τ)}.

Let us evaluate one of these terms, for instance ĤF (t)ρ(τ)K̂2(t). From Eq. (13), the kick operator K̂2(t) contains
contributions oscillating approximately at the Floquet frequency and at twice the Floquet frequency respectively. The
latter does not contribute as it vanishes upon time-averaging. The considered contribution eventually boils down to

ĤF (t)ρ(τ)K̂2(t) =
∑

m,n

(

1

iω2
n

V̂mρ[V̂
†
n , Ĥ0] +

1

iω2
m

V̂ †
nρ[V̂m, Ĥ0]

)

ei(ωm−ωn)t.

Other terms are derived in a similar manner. Gathering all the contributions, we have

LFSF [ρ] =
i

2

∑

m,n

(

{
1

ω2
n

{V̂m, [V̂
†
n , Ĥ0]}+

1

ω2
m

{V̂ †
n , [V̂m, Ĥ0]}, ρ}

)

ei(ωm−ωn)t

− i
∑

m,n

(

1

ω2
n

(

V̂mρ[V̂
†
n , Ĥ0] + [V̂ †

n , Ĥ0]ρV̂m

)

+
1

ω2
m

(

V̂ †
nρ[V̂m, Ĥ0] + [V̂m, Ĥ0]ρV̂

†
n

)

)

ei(ωm−ωn)t.

which can be written more concisely as Eq.(5) of the main text.

III. HIGHER-ORDER CONTRIBUTIONS TO THE EFFECTIVE MASTER EQUATION

In this section, we work our the method to get the next-order terms to improve the accuracy of the effective
quantum Master equation for larger values of the parameters ε (and larger dissipation strengths), and we provide a
few applications related to the examples developed in the main text.
At higher orders, one can no longer substitute ρe by ρ in the second-order quantum dissipative terms - this would

be equivalent to ignoring terms of similar magnitude as the corrections that we seek to obtain. Consequently, we rely

on the relation ρe = ρ− δρ(2)(t, τ) +O(ε3) within the second-order dissipative contributions.
Then, the effective Master equation can be written as

∂ρ

∂t
= −i[Ĥeff , ρe] + ∂tδρ(2)(t, τ) + ∂τ δρ(2)(t, τ) + ∂tδρ(3)(t, τ)

+ ∂τ δρ(3)(t, τ) + ∂tδρ(4)(t, τ) +O(Ωε4). (22)

where

∂tδρ(2)(t, τ) = Ė2[ρ− E2[ρ]] +O(Ωε5),

∂τδρ(2)(t, τ) = −iE2[[Ĥ
eff , ρ− E2[ρ]]] +O(Ωε5),

∂tδρ(3)(t, τ) = Ė3[ρ− E2[ρ]] +O(Ωε5). (23)

The linear maps Em[ρ] are defined in a similar way as in Ref. [34]: Em[ρ] is associated to the mth-order correction,

i.e. these maps are defined by the relation Em[ρe] = δρ(m). From Eqs. (18), we have

E2[ρ] = −
1

2
{K̂1(t)2, ρ}+ K̂1(t)ρK̂1(t) (24)

E3[ρ] = K̂1(t)ρK̂2(t) + K̂2(t)ρK̂1(t)−
1

2
{{K̂1(t), K̂2(t)}, ρ} (25)

The time dependence of the linear maps Em comes from the operators K̂m(t) - ρ is used as a simple variable on which

the map is applied. We have also used the fact that the term Ė2[ρ] ≡ L(c)[ρ] is already of second-order in ε.
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A. 3rd and 4th-order contributions in the Phase Noise configuration (Ĥ0 ∝ σz and ĤF ∝ σz)

In the specific case of phase noise, one can easily obtain the effective equation up to the 5th order. Indeed, one
has K̂m = 0 for m ≥ 2, so the total kick operator is simply K̂(t) = K̂1(t). Then, the different non-unitary terms

arise from an expansion of the unitary operators e±iK̂1(t). Odd-power of the kick operator K̂1 disappear upon time
averaging, so that E1 = E3 = E5 = 0, and the 4th-order equation is given by

ρ̇ = −i[Ĥeff , ρ] + Ė2[ρ] + Ė4[ρ]− Ė2[E2[ρ]] +O(Ωε5) (26)

As E5 = 0, the next-order terms correspond to Ė6[ρ] and are thus of 5th-order. We have used the fact that for the

present case for which the operators K̂1 and Ĥeff are both proportional to σz , one has [Ĥ
eff , E2[ρ]] = 0. By expanding

eiK̂1(t) in the expression of the evolved quantum state (Eq.(1) of the main text), one finds the 4th-order expansion

(we note E4[ρ] ≡ E
(c)
4 [ρ] this “commutative” contribution associated to the kick operators K̂1(t) alone)

E
(c)
4 [ρ] =

1

24
{K̂4

1 , ρ} −
1

6
K̂3

1ρK̂1 −
1

6
K̂1ρK̂3

1 +
1

4
K̂2

1ρK̂
2
1 (27)

We then express the corresponding time derivatives

Ė
(c)
4 [ρ] =

1

6
{ĤF K̂3

1 , ρ} −
1

2
ĤF K̂2

1ρK̂1 −
1

6
K̂3

1ρĤF −
1

2
K̂1ρĤF K̂2

1 −
1

6
ĤF ρK̂3

1

+
1

2
K̂2

1ρK̂1ĤF +
1

2
ĤF K̂1ρK̂2

1 ,

Ė2[E2[ρ]] = −{ĤF K̂1,−
1

2
{K̂2

1 , ρ}+ K̂1ρK̂1 }+ ĤF

(

−
1

2
{K̂2

1 , ρ}+ K̂1ρK̂1

)

K̂1

+ K̂1

(

−
1

2
{K̂2

1 , ρ}+ K̂1ρK̂1

)

ĤF ,

where we have used the commutation relation [K̂1, ĤF ] = 0. One can drastically simplify these expressions by writing

K̂1(t) = F (t)σz , ĤF (t) = f(t)σz , and using the identity σ2
z = 12×2:

Ė
(c)
4 [ρ] =

4

3
f(t)F (t)3 (ρ− σzρσz) , (28)

Ė2[E2[ρ]] = 2 f(t)F (t) F (t)2 (ρ− σzρσz) . (29)

We take as in the main text V̂m = Ωσz. The functions respectively associated to the Floquet Hamiltonian and kick
operator (10) are given by f(t) = Ω

∑

m,εm
eiεmωmt and F (t) = Ω

∑

m,εm
εm
iωm

eiεmωmt, where for each label m the sum

is extended over all the Floquet frequencies, and the label εm takes the two values {−1, 1}.
From previous results, the second-order time-averaged functions read

f(t)F (t) = Ω2
∑

m,n

(

ei(ωn−ωm)t − ei(ωm−ωn)t

iωn

)

and F (t)2 = 2Ω2
∑

m,n

1

ωmωn

ei(ωm−ωn)t.

Let us evaluate the fourth-order time-averaged function

f(t)F (t)3 = Ω4
∑

m,εm

∑

n,εm

∑

p,εp

∑

q,εq

eiεmωmt εne
iεnωnt

iωn

εpe
iεpωpt

iωp

εqe
iεqωqt

iωq

δεm+εn+εp+εq,0

The Kronecker symbol δεm+εn+εp+εq,0 accounts for the time-averaging and retains only the slow-rotating contributions

such that εm + εn + εp + εq = 0. For a given εm = ±1, there are only 3 sets {εm, εp, εq} in {−1, 1}3 that yield
εm + εn + εp + εq = 0, so that

f(t)F (t)3 = 3 Ω4
∑

m,n,p,q

(

eiωmt e
iωnt

iωn

e−iωpt

iωp

e−iωqt

iωq

− e−iωmt e
iωnt

iωn

e−iωpt

iωp

eiωqt

iωq

)
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which can be rewritten as

f(t)F (t)3 = 3 Ω4
∑

n,p

(

eiωnt

iωn

e−iωpt

iωp

)

∑

m,q

(

eiωmt e
−iωqt

iωq

− e−iωmt e
iωqt

iωq

)

= 3
F (t)2

2
f(t)F (t)

From Eqs.(28,29), one finds Ė
(c)
4 [ρ]− Ė2[E2[ρ]] = 0, i.e. the two 3rd-order terms of the equation cancel each other. As

there are no 4th-order terms, the equation presented in the main text is accurate to the 5th order.

B. 3rd order contribution to the effective Equation in the configuration Ĥ0 ∝ σz and ĤF ∝ σx

From Eq.(1) of the main text and expansion of the exponential of kick operators, one obtains the 4th-order contri-

bution to the density matrix δρ(4) = E
(c)
4 [ρ] + E

(nc)
4 [ρ] where

E
(nc)
4 [ρ] = −

1

2
{{K̂1, K̂3}, ρ}+ K̂1ρK̂3 + K̂3ρK̂1 + K̂2ρK̂2.

This contribution arises from the non-commutation of the Floquet and constant Hamiltonians. As seen previously,

the “commutating” contribution Ė
(c)
4 [ρ] to the equation of motion is canceled by the term −Ė2[E2[ρ]] (the calculation

performed above relies on [ĤF , K̂1] = 0 and thus still holds here).
Using Eq. (17), the additional 3rd-order terms to the effective Master equation correspond to:

L(3)[ρ] = i[Ĥeff , δρ(3)] + ∂τ δρ3(t, τ) + Ė
(nc)
4 [ρ].

The first term arises from the identity ρe = ρ− δρ(2) − δρ(3) +O(ε4) in the commutator [Ĥeff , ρe] of Eq. (26).
Before evaluating the 3rd-order contributions, we give the expression for the kick operators in this case. With

Ĥ0 = ω0σz and V̂m = Ωσx, the two leading kick operators read K̂1(t) = Ω
∑

m
eiωmt

iωm
σx + h.c. and K̂2(t) =

−2ω0Ω
∑

m
eiωmt

ω2
m

σy + h.c.. From Eqs. (15,16), one obtains the 3rd-order kick operator:

K̂3(t) =
∑

m

4ω2
0Ω

iω3
m

(

eiωmt − h.c.
)

σx − 2
∑

mn

ω0Ω
2

iω2
m(ωm + ωn)

(

ei(ωm+ωn)t − h.c.
)

σz. (30)

The 3rd-order correction derived in the main text reads

δρ3(t, τ) = K̂1(t)ρe(τ)K̂2(t) + K̂2(t)ρe(τ)K̂1(t)

as {K̂1(t), K̂2(t)} = 0 in this specific case.
Let us first evaluate

∂τ δρ(3)(t, τ) = −i[Ĥeff , δρ(3)]− i[K̂1, Ĥ0]ρK̂2 − iK̂2ρ[K̂1, Ĥ0]− iK̂1ρ[K̂2, Ĥ0]− i[K̂2, Ĥ0]ρK̂1 (31)

where at this order it is valid to use the equality ρe = ρ and Ĥeff ≡ Ĥ0 in the dissipative terms. The first term of the
r.h.s yields the correct unitary dynamics. We now focus on non-unitary terms:

Ė
(nc)
4 [ρ] = −

1

2
{{K̂1,

dK̂3

dt
}, ρ} −

1

2
{{
dK̂1

dt
, K̂3}, ρ}+

dK̂1

dt
ρK̂3 + K̂1ρ

dK̂3

dt
+
dK̂3

dt
ρK̂1 + K̂3ρ

dK̂1

dt

+
dK̂2

dt
ρK̂2 + K̂2ρ

dK̂2

dt
(32)

From Eq. (11), we infer dK̂2

dt
= i[K̂1, Ĥ0] as [K̂1, ĤF ] = 0 for the considered Floquet Hamiltonian. Hence, the terms

K̂2ρ
dK̂2

dt
and dK̂2

dt
ρK̂2 simply cancel part of the non-unitary contributions of Eq.(31). Thanks to the relation

dK̂3

dt
= i[K̂2, Ĥ0] +

i

2
[K̂2, ĤF ]− Ĥ

(2)
eff ,
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one can express the contributions of Eq. (32) as

dK̂3

dt
ρK̂1 = i[K̂2, Ĥ0]ρK̂1 +

i

2
[K̂2, ĤF ]ρK̂1 − Ĥ

(2)
eff ρK̂1.

The first member of the r.h.s. cancels non-unitary contributions of Eq.(31). The second and third terms of the r.h.s.
yield a null time average. We eventually get the simple relation

L(3)[ρ] = −
1

2
{{ĤF , K̂3}, ρ}+ ĤF ρK̂3 + K̂3ρĤF ,

where we have used Eq.(9). These contributions can be evaluated thanks to Eq.(30). Only the terms rotating at a
single Floquet frequency contribute to the time-averaging. One obtains L(3)[ρ] = h(t) (ρ− σxρσx) with

h(t) = 8ω2
0Ω

2
∑

m,εm,n,εn

εme
i(εmωm+εnωn)t

iω3
m

δεm+εn,0.

In the bichromatic case, we find the additional 3rd-order non-unitary contribution

L(3)[ρ] = 16ω2
0Ω

2

(

1

ω3
1

−
1

ω3
2

)

sin(ω2 − ω1)t (ρ− σxρσx) . (33)

This “third-order” correction is actually of 4th-order in ε. A complete treatment of the 4th-order corrections should

also include the following contributions in the r.h.s of the effective equation: iE2[ [Ĥ0, E2[ρ]] ]−Ė3[E2[ρ]]+∂τ δρ(4)(t, τ)+

∂tδρ(5)(t, τ) . The derivation of these 4th-order terms is a long but straightforward calculation, beyond the scope of
this article.
Figure 4 represents the instantaneous (solid gray line) and time-convoluted density matrix population (solid black

line) as a function of time, confronted to the predictions of the second (black dotted line) and third-order (dashed
black line) effective Master equations.The latter corresponds to the addition of the contribution L3[ρ] (33) to the r.h.s
of the 2nd-order effective Master equation [Eq.(3) of the main text].
We have used an initial density matrix ρ0 = |e〉〈e| corresponding to a pure eigenstate of the constant Hamiltonian

Ĥ0. This initial state is also. an eigenstate of the effective Hamiltonian Ĥeff(t) in the presence of the Floquet driving.
Hence, the unitary part of the quantum dynamics leaves the initial density matrix invariant, and the observed time-
dependence in the population comes exclusively from the non-unitary contributions. As in Figs.1,2,3 of the main
text, the initial condition for the considered effective equations is obtained from a convolution with the instantaneous

solution ρ(t) as ρ0 =
∫ +∞
−∞ dtf(−t)ρ(t). Figure 4 reveals that the higher-order correction L(3)[ρ] to the effective Master

equation considerably enhances its accuracy in the prediction of the time-coarse grained dynamics.
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FIG. 4: Higher-order effective Master equation vs full quantum evolution: Instantaneous density matrix population ρee(t) (solid
gray line) as a function of time (in arbitrary unit T0). Time-convoluted population ρex(t) (solid black line) obtained from the
exact unitary evolution. The time-coarse grained density matrix population ρee(t) obtained from the second-order (dotted black
line) and third-order (dashed black line) effective Master equation. Parameters: initial density matrix ρ0 = |e〉〈e|, constant and
Floquet Hamiltonians Ĥ0 = ω0σz, ĤF (t) = Ω (cos(ω1t) + cos(ω2t))σx. Results obtained for the frequencies ω0 = 0.5× (2π)/T0,
Ω = 3.5/T0, and ε ≃ 0.18. Same frequencies ω1,ω2,ωc as in Figs.2-3 of the main text.


