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1. Production of BECs

In our experiment, approximately 2 · 109 atoms from
a 3D magneto-optical trap are initially loaded into a
magnetic quadrupole. The quadrupole gradient is then
ramped up to 1.8 T/m to allow for microwave evapora-
tion. After evaporation over 10 s the temperature of the
atom cloud is decreased from 300µK to 30µK. Subse-
quently, while keeping a small magnetic gradient for grav-
ity compensation, the atoms are transferred to a crossed
dipole trap [1], made of two 1064 nm laser beams, with
waist 45µm and maximum power 4 W, crossing in the
horizontal plane with a 16◦ angle. The evaporation in
this final dipole trap yields a pure BEC of up to 5 · 105

atoms in the low-field-seeker state |F = 1,mF = −1〉.
The lattice beams are aligned on one of the dipole trap
beams, leading to an 8 o angle between the lattice axis
Ox and the principal axis Ox′ of the hybrid trap (crossed
dipole trap + magnetic quadrupole) in which the BEC
is obtained. The hybrid trap is characterized by the an-
gular frequencies (ωx′ , ωy′ , ωz) = 2π × (10.4, 66, 68) Hz,
where the horizontal axis Oy′ is orthogonal to Ox′, and
Oz is the vertical axis.

2. Tight-binding effective model

a. Model and instability

We model the resonant coupling between bands at q 6=
0 in the modulated lattice by an effective tight-binding
model with two coupled bands that reproduces the main
features of a typical Floquet spectrum, described by the
effective Hamiltonian :
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∑
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where â` (resp. b̂`) are the annihilation operators for
band 0 (resp. 1) on site ` of the one-dimensional lattice,
J0,1 are the tunneling amplitudes for the two bands (J0 >
0 and |J0| < |J1|), Eb is an energy offset for band 1, W
is a coupling amplitude, and U is an effective on-site
interaction energy (see SI Appendix 3).

The condensate is considered initially in the ground
mode of band 0 with 〈â`〉 =

√
n, and associated chemi-

cal potential µ = −2J0 + nU . We then study the sta-
bility of this initial condensate due to the interaction
term, through a perturbative Bogolubov treatment. The
coupled-band Hamiltonian Ĥ0 describes two hybridized
energy bands u and v with energies Eu,v(q), as a function
of quasi-momentum q:

Eu(q) =

[
E0(q) cos2

(
θ

2

)
+ E1(q) sin2

(
θ

2

)]
+W sin(θ),

Ev(q) =

[
E0(q) sin2

(
θ

2

)
+ E1(q) cos2

(
θ

2

)]
−W sin(θ).

where E0(q) = −2J0 cos(q) and E1(q) = −2J1 cos(q)+Eb
are the energies of the uncoupled bands, and θ(q) is the
mixing angle defined by:

tan(θ(q)) =
2W

(E0(q)− E1(q))
, 0 ≤ θ < π.

We write the fields orthogonal to the condensate mode
as :
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δψ̂⊥a,` =

∫ π

−π

eiq`√
2π

Λ̂0,q dq

δψ̂⊥b,` =

∫ π

−π

eiq`√
2π

Λ̂1,q dq

where we have introduced the number conserving oper-
ators Λ̂0,q (resp. Λ̂1,q) which describe the transfer of an
atom from the mode at momentum q of band 0 (resp.
band 1) to the condensate mode [2].

The quadratic part of the expansion of Ĥeff in the fields
Λ̂ yields a set of linearized evolution equations, which can
be summarized as

i~
d

dt


Λ̂0,q

Λ̂1,q

Λ̂†0,−q
Λ̂†1,−q

 = Lq


Λ̂0,q

Λ̂1,q

Λ̂†0,−q
Λ̂†1,−q

 (2)

where Lq is block matrix made of the 2-by-2 matrices Âq
and B̂q, with definitions:

Lq =

(
Âq B̂q
−B̂q −Âq

)
Âq =

(
E0(q)− µ+ 2nU W

W E1(q)− µ

)
B̂q =

(
nU 0
0 0

)

The modes at q are stable if the eigenvalues of the ma-
trix Lq are all real. In practice we may search for the
largest imaginary part among all eigenvalues to charac-
terize instability.

Illustration. We illustrate the model with conditions
similar to those of Fig. 1at a frequency ν = 30 kHz. We
have represented the Floquet spectrum of the modulated
lattice (Fig. S1(a)), and the model spectrum (Fig. S1(b))

of Hamiltonian Ĥ0 (see equation 1), with parameters
adjusted so that the coupled bands best reproduce the
avoided crossings between the s and d bands in the Flo-
quet system (in units of EL, J0 = 0.0021, J1 = −0.2796,
Eb = 0.2593 and W = 0.051). In Fig. S1(c) we plot
the instability exponent defined as the absolute value of
the largest imaginary part among the four eigenvalues,
for a varying value of the interaction parameter nU (see
Section 3). Two narrow regions of q in the vicinity of
the avoided crossings lead to pure imaginary eigenvalues,
with maximally unstable modes.

b. Onset of correlations from the instability

Based on the previous mode decomposition, we can
write a general expression for the elements of the reduced
one-body density matrix :
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FIG. S1. Tight-binding model of the instability. (a)
Floquet spectrum of the modulated system for parameters
s0 = 3.4, ν = 30 kHz and ϕ0 = 20◦. Overlap with the states of
the static lattice bands is color-coded with blue, orange, green
and red corresponding respectively to the first 4 bands (s to
f ). (b) Spectrum of the model Hamiltonian H0 (see equation
1) with two coupled, tightly-bound bands. Adjusted parame-
ters (see text) are (in units of EL) J0 = 0.0021, J1 = −0.2796,
Eb = 0.2593 and W = 0.051 (a global offset is applied to
match the Floquet spectrum in (a)). (c,d) Maximum insta-
bility exponent of the Bogolubov matrix (2), as a function of
quasi-momentum and the interaction parameter nU . The po-
sition of the band crossing and the maximum exponent over
the Brillouin zone are plotted in dotted black and dashed red
lines respectively.

〈â†l (t)âl′(t)〉 = n+

∫ π

−π

eiq(l
′−l)

2π
〈Λ̂†0,q(t)Λ̂0,q(t)〉dq (3)
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Due to the symmetries of the Bogolubov matrix Lq,
and near the maximum of the instability exponent, its
eigenvalues come in pairs of opposite real and imaginary
values, which we denote {ωq,−ωq, iλq,−iλq} with the
convention ωq, λq > 0. Using the fact that none of the
modes with q 6= 0 is initially populated, the expression
of the average value in Equation (3) can be obtained and
is approximately equal to:

〈Λ̂†0,q(t)Λ̂0,q(t)〉 ' |uq|2(1 + |vq|2)e2λqt (4)

keeping the exponentially diverging terms only, where the
coefficients uq, vq are the coefficients of the eigenvector of
Lq for the eigenvalue iλq, which is generally of the form

(uq, vq, iu
∗
q , iv

∗
q )T .

Let us now consider the vicinity of a maximum of the
instability exponent λq, near some q = q∗ > 0. We have

λq ' λ∗ −
λ′′

2
(q − q∗)2 +O

(
(q − q∗)3

)
(5)

with λ∗ > 0. Due to the symmetry of the band structure,
the same behavior arises near q = −q∗,

λq ' λ∗ −
λ′′

2
(q + q∗)2 +O

(
(q + q∗)3

)
(6)

We can then evaluate Eq. (3) with the saddle-point
approximation. This yields the estimate

〈â†l (t)âl′(t)〉 ' n+2n∗(t)e−(l−l′)2/∆2(t) cos[(l− l′)q∗] (7)

with

∆(t) = 2
√
λ′′t , (8)

with the time-dependent population

n∗(t) =
|uq∗ |2(1 + |vq∗ |2)√

π∆(t)
e2λ∗t (9)

of excitations near the modes of momentum q∗. This im-
plicitly assumes that this population stays much smaller
than the remaining condensate population n at all times.

A very similar result is obtained for the density-density
correlation function. Defining the site population opera-

tor n̂l = â†l âl and the mean site occupancy n̄ = 〈n̂l〉 =
n + 2n∗, and using n∗(t) � n, we obtain, to first order
in n∗

g(2)(l − l′)− 1 =
〈n̂l(t)n̂l′(t)〉
〈n̂l(t)〉〈n̂l′(t)〉

− 1

' 4
nn∗(t)

n̄2
e−(l−l′)2/∆2(t) cos[(l − l′)q∗]− δll′

n̄
.

(10)

We therefore have a normalized coherence g(1)(l−l′) =

|〈â†l (t)âl′(t)〉|/n̄ and normalized correlation g(2)(l − l′)
that spatially oscillate with the period d∗ = 2π/q∗ (in

dimensionless lattice units). These oscillations are spa-
tially attenuated through the presence of a Gaussian en-
velope whose characteristic scale ∆(t), given by Eq. (8),

grows as ∼ t1/2 with time. A crystal-like order there-
fore first emerges locally in this driven lattice, between
adjacent lattice sites, and then spreads out over the en-
tire condensate wavefunction, in a diffusion-like process,
potentially up to the entire sample size, until the matter-
wave coherence is ultimately destroyed due to secondary
atom-atom collision processes.

This spreading is also found in the Truncated-Wigner
modelling (see section 4), and is illustrated in Fig. S2,
showing normalized correlations that are numerically
computed for the parameter set s0 = 3.4, ν = 30
kHz, ϕ0 = 20o, N = 105, ωx = 2π × 20 Hz, and
ωy = ωz = 2π × 30 Hz, at various evolution times. A
comparison with the corresponding momentum distribu-
tion as a function of time, Fig. S2(e), shows that this
diffusion process across the condensate wavefunction is
accomplished at the time scale when the side-peak sub-
structure in the time-of-flight images become fully visible.

A key parameter for a maximally rapid spreading of
these oscillations across the lattice is therefore the effec-
tive diffusion constant describing this spreading process,
which is proportional to the sharpness of the instability

peak described by the second derivative λ
′′
. It is thus

the existence of sharp features in the coupled-band sys-
tem that allows for an extended order to appear in the
system. Within the tight-binding model, these sharp fea-
tures are enhanced by the slope of the crossing band (J1),
and decrease for an increasing coupling elementW , which
broadens the avoided crossings in the spectrum. In the
parameter range considered here, an increasing interac-
tion parameter nU increases both the maximum insta-

bility exponent λ∗ and the second derivative λ
′′
. While

the decay scale ∆(t) ∝ t1/2 can, in principle, also be
enhanced by increasing the evolution time t, letting the
system evolve for too long a time leads to a breakdown of
the Bogolubov approximation, entailing secondary atom-
atom scattering processes and a global loss of coherence.

3. Estimation of the interaction parameter

The interaction parameter nU in the effective 1D
model has to take into account the fact that the real
system is a 1D lattice of pancakes of atoms. In order to
account for weakly populated sites, where the interaction
can be described perturbatively, and strongly populated
sites, with a transverse Thomas-Fermi profile, we use a
heuristic interpolation formula [3, 4] for the interaction
energy U on site `:

U` =
2~ω⊥as/(

√
2πa0)√

1 + 4n`as/(
√

2πa0)
, (11)
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FIG. S2. Diffusive spreading of correlations across the
lattice, calculated for s0 = 3.4, ν = 30 kHz, ϕ0 = 20o,
N = 105, with hybrid trap parameters ωx = 2π × 20 Hz
and ωy = ωz = 2π × 30 Hz. Simulation results are shown at
times (a1,a2) t = 5 ms, (b1,b2) t = 6 ms, (c1,c2) t = 7 ms,
(d1,d2) t = 8 ms. First column: density-density correlations

g(2)(l) between the lattice sites l and l′ = 0 in the lowest band,
The second column shows the corresponding mean lattice site
populations. While at t = 5 ms the oscillations in the density-
density correlations are decaying on a scale of about 20 lattice
sites, they cover the entire atomic sample with minimal de-
cay at t = 7 ms. (e) For the same parameter set, numerically
simulated momentum distribution of the atoms as a function
of the evolution time. Note that the appearance of the side
peaks in the momentum distribution coincides with the time
scale t ∼ 7 ms at which the correlations spread over the whole
condensate (c1,c2).

where n` is the number of atoms on site `, ω⊥ is the
geometrical average transverse frequency (ω⊥/(2π) =
67 Hz), as is the scattering length of 87Rb (as ' 5.3 nm),
and a0 is the characteristic size of the ground state of
the lattice potential well in the harmonic approximation:

a0 =

√
~2/(mEL

√
s) = ds−1/4/(π

√
2) ' 86 nm.

Within this approximation, we can estimate the max-
imum value of the interaction parameter nU . Taking an
initial Thomas-Fermi profile for the BEC in the dipole

trap with frequencies (ωx′ , ωy′ , ωz) = 2π × (10.4, 66, 68)

Hz, and a total number of atoms N = 5 × 105, we esti-
mate that the number of atoms loaded in the central site
of the lattice (` = 0) is n0 ' 4.4 × 103. We can then
compute the maximum value n0U0/EL:

n0U0

EL
' ~ω⊥

EL

√
as√
2πa0

√
n0 ' 0.086. (12)

This justifies our choice of the range of values for nU in
the tight-binding model (Section 2).

4. Numerical simulations : truncated Wigner

Numerical simulations were performed using the Trun-
cated Wigner method [5–7] which allows one to account
for the effect of quantum fluctuations. This method was
implemented on the basis of a multiband description of
the lattice problem at hand, using the Wannier orbitals
χn,`(x) = χn,0(x−`d) that are obtained from the inverse
Fourier transform of the Bloch eigenstates of the homo-
geneous one-dimensional lattice described by the Hamil-
tonian:

H0 =
p̂2

2m
− s0

2
EL cos(kLx) (13)

with p̂ = −i~∂/∂x. Here, ` ∈ Z is the lattice site in-
dex and n represents the band index ranging between 0,
corresponding to the ground band, and a maximum ex-
citation number M chosen such that all relevant driving-
induced intrawell coupling processes are accounted for in
this representation. The Wannier orbitals are mutually
orthogonal and normalized,∫ ∞

−∞
χ∗n,`(x)χn′,`′(x)dx = δnn′δ``′ , (14)

and fulfill the parity property

χn,0(−x) = (−1)nχn,0(x) (15)

owing to the symmetry of the lattice wells. On-site en-
ergies En and nearest-neighbor hoppings Jn associated
with the nth excited band are calculated from the rela-
tions ∫ ∞

−∞
χ∗n,`(x)H0χn′,`(x)dx = Enδnn′ , (16)∫ ∞

−∞
χ∗n,`(x)H0χn′,`±1(x)dx = −Jnδnn′ , (17)

respectively, while tunneling matrix elements beyond the
nearest neighbors are neglected in the description.

We also neglect interaction effects involving Wannier
orbitals on different sites, thus only accounting for on-site
interaction matrix elements obtained from the integrals

un1n2n′1n
′
2

=

∫ ∞
−∞

χ∗n1,`(x)χ∗n2,`(x)χn′1,`(x)χn′2,`(x)dx

(18)
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which, owing to the property (15), vanish if n1 + n2 +
n′1+n′2 is an odd number. Lattice shaking is incorporated
through the gauge transformation

ψ 7→ ψ̃ = exp

[
− iϕ0

~kL
cos(2πνt)p̂

]
ψ (19)

of the wavefunction, which effectively yields a periodi-
cally modulated synthetic gauge field. The associated
matrix elements in the Wannier basis are given by

p
(`−`′)
nn′ =

∫ ∞
−∞

χ∗n,`(x)p̂χn′,`′(x) (20)

and vanish for ` = `′ if n+ n′ is an even number.
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FIG. S3. (a) Eigenvalues of the reduced one-body density ma-
trix, normalized with respect to the total population of the
atomic gas. Three eigenvalues are distinctly large with respect
to the others, indicating the presence of Bose-Einstein conden-
sates. (b-d) Ground-band components of the corresponding
three associated condensate wavefunctions (obtained via the
eigenvectors of the reduced one-body density matrix multi-
plied by the square roots of the associated eigenvalues) plotted
in momentum space (solid line: real part; dashed line: imag-
inary part of the ground-mode wavefunction), in matching
colors. Besides the primary condensate centered about p = 0,
two secondary condensates, corresponding to linear combi-

nations of left- and right-moving states e±iq∗x, are populated
through four-wave mixing. Parameters: s0 = 3.4, ν = 30 kHz,
ϕ0 = 20o, N = 105, t = 5 ms.

Neglecting driving-induced couplings beyond nearest
neighbors, we obtain the time evolution equations for the
calculations of trajectories in the framework of the quasi-

classical Truncated Wigner method as

i~
∂

∂t
ψn,`(t) = (En + V`)ψn,`(t)− Jn[ψn,`+1(t) + ψn,`−1(t)]

−ϕ0
2πν

kL
sin(2πνt)

M∑
n′=0

`+1∑
`′=`−1

p
(`−`′)
nn′ ψn′,`′(t)

+g`

M∑
n′,n2,n′2=0

unn2n′n′2
ψ∗n2,`(t)ψn′2,`(t)ψn′,`(t)

−g`
M∑

n′,n2=0

unn2n′n2ψn′,`(t) (21)

with

V` =
1

2
mω2

xd
2`2 (22)

the shift of the on-site energies due to the longitudinal
confinement of the hybrid trap and

g` = (
√

2π/a0)U` =
2~ω⊥as√

1 + 4n`as/(
√

2π/a0)
(23)

the effective on-site interaction parameter modified by
the presence of the transverse confinement, as described
in Sec. 3. The lattice site populations n` are numerically
obtained from imaginary-time propagation yielding the
initial condensate wavefunction in the un-driven lattice,
and we assume here that they vary only marginally in the
course of time evolution (which is not always the case, as
seen in Fig. 4). Note that the last term in Eq. (21) arises
from the proper derivation of the classical counterpart of
the quantum interaction term via Weyl ordering.

The Truncated Wigner method allows one to com-
pute quasi-classical expressions for the mean populations
〈n̂n,`〉 of the lattice sites as well as for the population
correlations 〈n̂n,`n̂n′,`′〉, where Weyl ordering has to be
respected in order to correctly obtain the quantum ex-
pectation values from the classically calculated densities
|ψn,l(t)|2. It can also give access to the entire reduced
one-body density matrix constituted by the expectation

values of the coherence matrix elements 〈â†n,`ân′,`′〉 (see

Ref. [8] for a similar study). Diagonalization of this ma-
trix yields the proper definition of the condensate frac-
tion, via the eigenvector that is associated with its largest
eigenvalue [9]. We can thereby monitor the time evo-
lution of the shape and population of the condensate,
and the appearance and ultimate destruction of the non-
commensurate crystal-like order.

Within the time window where the emerging periodic
order is realized, the formation of two secondary Bose-
Einstein condensates can be identified in the eigenspec-
trum of the reduced one-body density matrix, namely
via the presence of two further eigenvalues that are dis-
tinctly large as compared to the rest of the spectrum.
As displayed in Fig. S3, those two secondary conden-
sate wavefunctions correspond to linear combinations of



6

the two traveling waves e±iq
∗x that are populated via

four-wave-mixing. The superposition of those secondary
condensates with the primary condensate centered about
p = 0 in momentum space gives rise to the coherence os-
cillations displayed in Fig. 4.

5. Experimental method : band-mapping

To more accurately identify the onset of the emerging
periodic order, we use the band-mapping technique [10]
that consists in decreasing adiabatically the lattice be-
fore the time-of-flight (see Fig. S4). The band-mapping
reveals the hybrid nature of the unstable modes induced
by resonant coupling. The clear growth of the popula-
tion fraction in the higher coupled band is subsequently
plotted as a function of time to characterize the kinetics
of the crystal-like state formation and its persistence over
time (see Fig. S5).
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FIG. S4. Band-mapping process. (a) Depth of the lattice along time: adiabatical loading at s0, held constant during the
experiment, adiabatical unloading to band map (see text) and switch off for time-of-flight imaging. (b) Phase of the lattice
along time, sine-modulated with amplitude ϕ0 for an integer number n of periods T . (c) Stack of experimental absorption
images for increasing n, with s0 = 3.70 ± 0.10, ϕ0 = 15o, ν = 1/T = 25.5 kHz and tTOF = 35 ms. (d) Corresponding quasi-
energy spectrum (colored lines) where the overlaps between the Floquet eigenstates and the eigenstates of the static lattice
have been color-coded, with blue, orange, green and red corresponding respectively to the first 4 bands (s to f ). BEC (disk in
q = 0) and instability (disks in q 6= 0) modes. (e-f) Band structures of the lattices of depth s0 = 3.7 for (e) and s0 = 0 for (f)
(solid colored lines) and follow-up of the modes (see text) with the same color code. (f-g) BZ borders (black dotted lines). (g)
Absorption image after n = 80 periods of data (c).
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FIG. S5. Timescales measurements. (a) Example of mea-
sured data series after band-mapping, for s0 = 3.70±0.20, ν =
25.5 kHz and ϕ0 = 15◦. The population from higher bands
in the horizontal grey shaded stripes is measured over time
to extract a nucleation time. (b) Growth curves extracted as
in (a) for the points of Fig. 4(b) corresponding to coupling
bands s and d, with the purple, red, blue, orange, and green
data corresponding to ϕ0 = {10 o, 12.5 o, 15 o, 17.5 o, 20 o} re-
spectively. The sigmoid fitting curves are shown and the ex-
tracted nucleation times are represented by vertical lines, with
shaded areas denoting the uncertainty from the fit.
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