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Abstract: We discuss the emulation of non-Hermitian dynamics during a given time window using a
low-dimensional quantum system coupled to a finite set of equidistant discrete states acting as an
effective continuum. We first emulate the decay of an unstable state and map the quasi-continuum
parameters, enabling the precise approximation of non-Hermitian dynamics. The limitations of this
model, including in particular short- and long-time deviations, are extensively discussed. We then
consider a driven two-level system and establish criteria for non-Hermitian dynamics emulation
with a finite quasi-continuum. We quantitatively analyze the signatures of the finiteness of the
effective continuum, addressing the possible emergence of non-Markovian behavior during the time
interval considered. Finally, we investigate the emulation of dissipative dynamics using a finite
quasi-continuum with a tailored density of states. We show through the example of a two-level
system that such a continuum can reproduce non-Hermitian dynamics more efficiently than the usual
equidistant quasi-continuum model.

Keywords: open quantum system; quantum simulators; non-Hermitian systems; non-Markovian dynamics

1. Introduction

The decay of unstable states occurs in a wide range of areas of quantum mechanics,
including atomic physics, with the limited lifetime of excited electronic states in atoms;
condensed matter with various relaxation processes in quantum dot electronic states; in po-
laron and exciton physics; nuclear physics, with the exponential decay law in radioactivity;
and high-energy physics, with the short lifetime of particles such as the Higgs boson.
The basic phenomenon underlying these decays is fundamentally the same. It is the irre-
versible transition from an initial unstable state to a continuum of final states. Such a decay
can be derived from first principles. Within the perturbative limit, this problem often offers
a first introduction to open quantum systems with Fermi’s golden rule. Besides the pertur-
bative limit, the complete resolution of the model reveals three different successive regimes
characterized by different decay laws [1–3]: with very short time [4], the decay is quadratic,
it is subsequently governed by an exponential law at intermediate time, and eventually
exhibits a power law tail at long time scales [5,6]. In general, these studies reveal that a
decay can be sensitive to the structure of the environment.

Quantum simulations have become a very important research topic, with various
fundamental and technological applications [7]. As any realistic quantum process involves
a finite amount of dissipation, a quantum decay emulator appears as an interesting build-
ing block for such systems. The simplest model of quantum decay corresponds to the
inclusion of a non-Hermitian contribution to the Hamiltonian, which allows emulating
non-Hermitian systems. Non-Hermitian dynamics also have their own interest. Since
the realization of complex optical PT potentials [8,9], the community has unveiled a very
rich phenomenology and numerous applications for effective non-Hermitian systems.
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To name a few, we can mention the non-Hermitian skin effect [10,11], non-Hermitian
transport [8,12–14], and more generally the intriguing topology of effective non-Hermitian
systems [15–21]. Emulating non-Hermitian dynamics can provide access to the above
phenomena using different platforms.

Engineering truly non-Hermitian and irreversible quantum dynamics over an arbitrar-
ily long time requires the interaction of the system with an infinite set of states, as in the
usual paradigm of infinite discrete quasi-continuum [22,23]. Nevertheless, the emulation
of quantum dissipation during a finite time can be sufficient for experimental purposes; for
instance, when dissipation is used as an asset to prepare a given quantum state [24]. In this
context, simulating dissipative quantum dynamics thanks to coupling with a finite—and
ideally minimal—number of ancilla states seems a feasible task. This possibility may have
interesting applications in quantum computing, where a smaller number of ancilla states
usually corresponds to a simpler setup.

The purpose of this article is to investigate this avenue and provide an emulation
of non-Hermitian dynamics for a given time interval with a quasi-continuum made of a
finite set of ancilla states (see Figure 1). We use the trace distance to quantify the quality
of our model, and discuss in detail the minimum number of levels required to obtain
an accurate emulation. We also investigate separately the short- and long-term behavior
of the associated dynamics. At early times, we compare the quantum evolution of the
coupled system with the Zeno effect expected from a genuine continuum. At long times,
we observe and characterize quantitatively the emergence of revivals in the presence of the
finite continuum, enabling us to set an upper limit for the validity time of this emulation.
We connect the appearance of these revivals with adequate measures of non-Markovianity.

v

v

v

v

~δ
~δ|0〉

|N〉

| −N〉

|e〉

Figure 1. Schematic picture of a quantum system (consisting here of a single discrete state |e〉) coupled
to a finite set of equidistant discrete levels. This model mimics the coupling to a continuum.

We proceed as follows: In Section 2, we provide a brief reminder of the decay for a
single discrete level coupled to an infinite continuum. Section 3 presents the considered
quasi-continuum model, composed of equidistant energy levels equally coupled to a given
state, and discuss its main features. In Section 4, we investigate the same issues for a
two-level system whose excited state is coupled to a continuum. We identify a method for
defining the minimum size of the discrete continuum using Fourier analysis. In Section 5,
we discuss the emergence of non-Makovian evolution at long times and build on the
previous sections to design a discrete quasi-continuum with the minimum number of states
to reproduce the expected behavior in the strong coupling limit.

2. Decay of a Single Level Coupled to an Effective Continuum

We illustrate our method by first considering a system consisting of a single eigenstate
|e〉 coupled to a large set of independent states {|ϕ f 〉}. This system is the usual paradigm
explaining the irreversible exponential decay and Lamb shift undergone by a quantum
state coupled to a continuum [23]. We briefly recall below the corresponding derivation in
the standard case of an infinite and broad effective continuum consisting of the set of states
{|ϕ f 〉}. The quantum system under consideration follows a Hamiltonian given by the sum
H = H0 + V with H0 = Ee|e〉〈e|+ ∑ f E f |ϕ f 〉〈ϕ f | the free-system Hamiltonian diagonal
in the basis {|e〉, |ϕ f 〉}, and with the off-diagonal contribution V = ∑ f Vf e|ϕ f 〉〈e| + h.c.
accounting for the coupling between the discrete state and the effective environment.
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We search for a solution to a time-dependent Schrödinger of the form:

|ψ(t)〉 = ce(t)e−iEet/h̄|e〉+ ∑
f

c f (t)e
−iE f t/h̄|ϕ f 〉. (1)

and subsequently obtain by projection on the eigenstates of H0 the following integro-
differential obeying the coefficient ce:

ċe(t) = −
∫ t

0
dt′K(t− t′)ce(t′), (2)

where the kernel is defined by

K(τ) =
1
h̄2 ∑

f
|Ve f |2eiωe f τ , (3)

with ωe f = (Ee − E f )/h̄. Equations (2) and (3) capture the exact quantum dynamics of this
system and so far involve no assumptions about the set of final states {|ϕ f 〉}. The function
K(τ) accounts for the memory of the effective environment, resulting in a possibly non-
Markovian evolution for the amplitude ce(t).

We now assume that the effective continuum {|ϕ f 〉} covers a wide range of frequencies.
As a result, the K(τ) function is expected to peak sharply around τ = 0 when compared to
the time-scale of the amplitude evolution; for a genuine continuum with a flat coupling,
the sum over all possible final states in Equation (3) would actually yield a Dirac-like
distribution. This large timescale separation enables one to pull out the amplitude ce(t)
from the integration of the memory kernel in Equation (2) and to extend the boundary of
this integral to infinity. We then obtain a simple closed differential equation for ce:

ċe(t) = −
(∫ ∞

0
dτK(τ)

)
ce(t). (4)

The pre-factor is readily derived within the framework of complex analysis:∫ ∞

0
dτK(τ) = i∆ωe +

Γ
2

, (5)

with

Γ
2
=

2π

h̄ ∑
f
|Ve f |2δ(Ee − E f ), and ∆ωe =

1
h̄
P
(

∑
f

|Ve f |2
Ee − E f

)
, (6)

where P denotes the principal value. For the considered coupling to a large set of states,
the main effects on the discrete state are therefore an exponential decay of the population
at a rate Γ witnessing an irreversible evolution as well as a frequency shift ∆ωe, commonly
referred to as the Lamb shift. Equation (6) simply expresses Fermi’s golden rule for the
effective continuum with the density of states ρ(E) = ∑ f δ(E− E f ). Remarkably, Fermi’s
golden rule holds, not only for a genuine continuum, but also for a countable set {|ϕ f 〉}
involving only discrete states [23]. Finally, unlike Equation (2), the amplitude ce(t) at a
given time no longer depends on its history; the effective continuum {|ϕ f 〉} behaves as a
Markovian environment. Equations (4) and (5) implicitly define an effective non-Hermitian
Hamiltonian Heff = ∆ωe − i Γ

2 for this one-level system.
A closer look at Equation (6) reveals the central role played by the density of states ρ(E)

of the effective continuum [3,25–27]. Indeed, its properties are responsible for deviations
to the exponential law both at short and long times; the existence of an energy threshold
(ρ(E < E0) = 0) generates long-time deviations, while the finiteness of the mean energy
(
∫

ρ(E)EdE < ∞) explains the short time deviations.



Entropy 2023, 25, 1256 4 of 17

In the same spirit, we examine below how the two characteristics of the quantum
evolution discussed above—exponential decay and non-Markovianity—are affected by the
use of a finite set as an effective continuum. We restrict our attention to a finite time-interval,
as only infinite sets can reproduce these characteristics during arbitrary long times.

3. Coupling of a Single State to a Finite Discretized Continuum

Description of the FQC model. To quantitatively characterize such an irreversible process,
we introduce a finite quasi-continuum (FQC) model consisting of a finite set of equidistant
energy levels, which are equally coupled to a given state |e〉 (See Figure 1). This system
mimics the decay of an unstable discrete state |e〉 in a finite time window. In what follows,
unless otherwise stated, we always consider FQCs composed of NFQC = 2N + 1 equidistant
energy levels symmetrically distributed around the unstable state energy, set by convention
to E = 0. Here, the total Hilbert space is of dimension Ntot = Nsys + NFQC = 2N + 2. We
denote with h̄δ the energy gap between two successive FQC states and with v = |Vf e| the
flat coupling strength between the FQC and the discrete state |e〉. The expected decay Γ
in the limit N → +∞ is given by Equation (6), which captures the dynamics of an infinite
discrete continuum, namely

Γ =
2π

h̄2
v2

δ
. (7)

which corresponds to Fermi’s golden rule. In the following, we consider FQCs associated
with a fixed common decay rate Γ. We therefore impose v2/δ = Cte. In our numerical
resolution, we implicitly normalize the energies using h̄Γ and the time using Γ−1, which
amounts to taking h̄ = 1 and Γ = 1. Our results are valid for arbitrary values of the
dissipation rate Γ as long as the dimensionless parameters v = v/(h̄Γ), t f = Γt f ,... remain
identical. The considered FQCs are therefore entirely determined by their size (2N + 1) and
the coupling strength, v.

The model Hamiltonian in matrix form reads

H =



0 v ... v v v v
v −Nh̄δ 0 ... 0 0 0
v 0 −(N − 1)h̄δ 0 ... 0 0
v 0 ... 0 ... 0 0
v 0 . . 0 (N − 1)h̄δ 0
v 0 0 0 ... 0 Nh̄δ

. (8)

Examples of FQCs and connection with the Zeno effect. In Figure 2, we compare the
evolution of the excited state population for an example of FQC (solid black line) with
the exponential decay expected from Fermi’s golden rule (dotted line). As expected, we
observe a very good agreement, with minor discrepancies at short times (see the inset of
Figure 2) and at long times when the population is extremely small. We used a FQC with
N = 15 and a coupling strength v = 0.3 h̄Γ. In this case, the emulation of quantum decay
does not require a very large Hilbert space.

The disagreement at short times corresponds to a quadratic decay of the excited state
coupled to a FQC. The initial quadratic profile is directly related to the Zeno effect. This
is found by expanding the evolution operator for a short amount of time δt, by writing
|ψ(δt)〉 = e−iHδt/h̄|e〉 ' |e〉+ |δψ〉 with

|δψ〉 =
(
− iH

h̄
δt− H2

2h̄2 (δt)2
)
|e〉. (9)

We infer the initial state population πe(t) = |〈e|ψ(t)〉|2 at early times

πe(δt) ' 1− (δt)2

T2
Z

, (10)
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where T−2
Z = 1

h̄2 (〈H2〉e − 〈H〉2e ) = 1
h̄2 ∑n〈e|V|n〉〈n|V|e〉 = (2N + 1)(v/h̄)2. The duration

TZ corresponds to the Zeno time and decreases with the size of the FQC. As TZ vanishes
in the limit N → +∞, the observed initial quadratic profile witnesses the limited number
of states of the FQC. For the parameters N = 15 and v = 0.3 h̄Γ, one finds TZ ' 0.6 Γ−1,
consistent with the inset in Figure 2.

We now provide a second example of FQC, for which the excited state population
evolves very differently from the expected exponential decay. We take a FQC with N = 15
and v = 0.45 h̄Γ, which corresponds to a larger energy gap between the FQC levels than in
the first example, therefore being further away from an ideal continuum. Good agreement
is observed up to t ' 5Γ−1, when the population πe(t) grows abruptly (gray dashed
line, Figure 2). This revival of the probability distribution in the discrete state reveals the
underlying fully coherent dynamics.

0 2 4 6 8 10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1.00

1

10−1

10−2

10−3

10−4

10−5

Time (normalized to Γ−1)

π
e
=
|〈e

|ψ
(t
)〉|

2

Figure 2. FQC vs. genuine continuum for a single discrete level: Excited state population πe(t) of a
discrete level coupled to FQCs obtained from the full quantum dynamics under the Hamiltonian (8)
with N = 15 and v = 0.3 h̄Γ (solid black line) and N = 15 and v = 0.45 h̄Γ (gray dashed line) as a
function of time (normalized to Γ−1). The dotted line represents the exponential decay expected from
a genuine continuum.

Quantitative mapping of successful FQCs for the emulation of a single-state decay. We now
proceed to a quantitative mapping of the FQC parameters (N, v) suitable for accurate
continuum emulation. In order to capture the accuracy of our model for a given time
window, one needs a distance measure between the quantum evolution observed in the
presence of an FQC and the genuine continuum. For the single-state quantum system
considered here, the density matrix boils down to the excited state population πe(t). We
therefore introduce the following distance

D1(t f ) =
1
t f

∫ t f

0
|πe(t)− π0(t)|dt. (11)

as a figure of merit for the quality of the FQC emulation over the time window 0 ≤ t ≤ t f .
π0(t) = πe(0)e−Γt is the exponential decay expected in the large continuum limit. We
choose t f to be larger than several Γ−1 to best account for the full decay. In our numerical
examples, we systematically use t f = 10Γ−1 (unless otherwise specified). The results
are summarized in Figure 3a. The good set of parameters for the chosen time interval is
provided by the white area. This figure reveals that the quality of the emulation increases
with the number of FQC states and decreases with the potential strength v, corresponding
to FQCs with a larger energy gap h̄δ for a fixed decay rate Γ. In particular, the quality
of the emulation drops off sharply above a critical coupling value vc ' 0.32 h̄Γ, which is
independent of the number of FQC states. We explain below this abrupt change in terms of
quantum interference and revivals of the discrete state population. The dashed gray line of
Figure 2 provides an example of the revival of the excited population πe(t) coupled to a
FQC with a strength v ≥ vc.
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Figure 3. (a) Quality of the emulation of a continuum using a FQC: Parameter D1 (obtained by a
numerical resolution of the Shcrödinger equation) as a function of the FQC parameters {N, v} (v
is given in units of h̄Γ). The white zone reveals a very good agreement with the exponential decay
expected from a genuine continuum. (b) Spectrum analysis of the Hamiltonian (8): Eigenenergies
En in crescent order normalized by δ for N = 15 and δ = 5 Γ (dotted line), δ = 0.5 Γ (solid line) and
δ = 0.05 Γ (dashed line). NFQC = 2N + 1 is the FQC size.

We now provide a quantitative analysis of the occurrence of such revivals in a given
time window. We first look for a necessary condition of revival. For this purpose, we
expand the wave function at time t on the eigenbasis:

|ψ(t)〉 =
Ntot

∑
n=0

an(0)e−iEnt/h̄|ψn〉, (12)

where En are the eigenenergies of the total Hamiltonian (8) and with Ntot = 2N + 2 the
dimension of the total Hilbert space. We denote by Tr the revival time, which necessar-
ily fulfills

|||ψ(Tr)〉 − |ψ(0)〉||2 = 2
Ntot

∑
n=0
|an(0)|2(1− cos(EnTr/h̄)) ≡ ε� 1. (13)

The revivals correspond to a constructive quantum interference occurring at a time Tr
determined by the Hamiltonian (8) spectrum. Actually, this spectrum is only marginally
affected by the coupling to the discrete state and has a nearly linear dependence of its
eigenvalues En ' nh̄δ (see the numerical analysis on Figure 3b). This result is valid
for a wide range of energy gaps h̄δ. The condition (13) requires that for all values of n,
EnTr/h̄ = 2πkn with kn an integer. As En ' nh̄δ, we find kn = n and Tr = 2π/δ. Figure 4
confirms numerically the predictions of this simple revival model. We have plotted the
revival time inferred from the exact resolution of the Schrödinger equations of the model
with the Hamiltonian (8) as a function of 1/δ.

The above analysis provides a clear criterion for the suitability of the FQC for emu-
lating irreversible dynamics. A necessary condition is the absence of revival during the
considered time windows, i.e., t f < Tr. This sets an upper bound on the energy gap, namely

δ ≤ δc = 2π/t f , or equivalently on the coupling strength v ≤ vc = h̄
√

Γ/t f , as both quanti-
ties are related by Equation (7). For the considered final time t f = 10 Γ, we obtain the value
vc = 0.316 h̄Γ in very good agreement with the numerical results of Figure 3a. The region
v ≥ vc indeed corresponds to the onset of the gray zone, accounting for the degradation in
the emulation of dissipative dynamics. In the next Section, we investigate the appropriate
choice of the FQC model parameters in the different regimes of a driven two-level system.
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Figure 4. Black disks: Resurgence time Tr as a function of the inverse of the FQC energy gap h̄δ.
Tr is obtained using a numerical resolution of the Schrödinger equation with the Hamiltonian (8).
The solid black line represents a linear fit Tr = a/δ yielding |a − 2π| ≤ 10−3, showing thus an
excellent agreement with our prediction for the revival time.

4. Coupling of a Two-Level System to a Finite Discretized Continuum

Model description and equations of motion. In this Section, we consider a two-level atom
with a stable ground state |g〉 and an unstable excited state |e〉 (see Figure 5), which is
the standard model for spontaneous emission in quantum optics [23]. We denote by ω0
the transition frequency of this two-level system and assume that it is illuminated by a
nearly-resonant laser of frequency ωL ' ω0. This external field drives the system with a
Rabi coupling of frequency Ω0 between the two atomic levels. The excited state acquires a
finite width Γ, due to its coupling with the continuum.

~Γ
~∆

~ωL

~ω0

v

v

v

v

~δ
~δ|0〉

|N〉

| −N〉

|e〉

|g〉
Figure 5. Two-level system driven by a laser pulse with a detuning (∆), involving a stable ground
state |g〉 and an excited state |e〉 coupled to a large but finite set of discrete levels. This coupling
emulates an unstablity and yields an effective linewidth Γ for the transition.

We now consider a Ntot = 2N + 3-dimensional Hilbert space encapsulating the two-
level quantum system and the FQC. Considering the driving term, the total Hamiltonian is
given by

H =



0 h̄Ω0 0 0 ... 0 0
h̄Ω0 h̄∆ v v ... v v

0 v −Nh̄δ 0 0 ... 0
0 v 0 −(N − 1)h̄δ 0 ... 0
0 . . 0 . 0 ...
0 . . . 0 . 0
0 v 0 0 ... 0 Nh̄δ


. (14)

on the basis {|g〉, |e〉, |ψ f 〉} transformed in the rotating frame with the detuning ∆ = ω0 −ωL.
For a given dissipation rate Γ, the system is therefore determined by four independent
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driving ({Ω0, ∆}) and FQC ({N, δ}, or equivalently {N, v} from Equation (7)), parameters.
We denote by |ψ〉 the quantum state of the full Hilbert space. The corresponding density
matrix ρ = |ψ〉〈ψ| follows a unitary dynamics ih̄ dρ

dt = [H, ρ]. We now focus on the non-
unitary quantum dynamics in the reduced Hilbert space. Specifically, we consider the
evolution of the 2 × 2 density matrix ρr = PgeρPge, where Pge = |g〉〈g| + |e〉〈e| is the
projector on the two-dimensional Hilbert space of the system. The reduced density matrix
ρr can be obtained by first solving the full unitary dynamics and then applying the projector.
In order to highlight the role played by the FQC, the equation of motion for the reduced
density matrix can be rewritten in the following form:

ih̄
dρr

dt
= [H0, ρr] + SFQC

r . (15)

The r.h-s contains the unitary driving of the system Hamiltonian H0 = Pge HPge, as well as
a source term accounting for the interaction with the FQC

SFQC
r =

(
0 λN
λ∗N ηN

)
. (16)

where λN = v ∑2N+2
i=2 ρgi and ηN = v ∑2N+2

i=2 (ρie − ρei). This source term drives effective
non-unitary dynamics within the considered time interval and depends on the coherence
between the FQC levels and the quantum system. The equations above contain no ap-
proximation and capture the full quantum dynamics of the two-level system coupled to
a FQC.

Non-Hermitian dynamics. Here, we briefly review the equations of motion under an
effective non-Hermitian Hamiltonian. Beyond their applications in nanophotonics, effective
non-Hermitian Hamiltonians adequately describe the dynamics of open quantum systems
in many experimental situations. For instance, this approach has been successfully used to
explain the subradiance effects in large atomic clouds [28]. As in Section 2, the effective
non-Hermitian Hamiltonian is obtained by deriving differential equations for the two-level
system probability amplitudes (ce, cg). Using rotating wave-approximation, one finds
Heff = H0 + iHd with H0 = h̄Ω0(|e〉〈g|+ h.c.) + h̄∆|e〉〈e| and Hd = − h̄

2 Γ|e〉〈e|. The anti-
Hermitian contribution iHd captures the decay towards the continuum. The evolution of
the reduced density matrix under the influence of this effective Hamiltonian takes a form
analogous to Equation (15)

ih̄
dρ̃r

dt
= [H0, ρ̃r] + S∞

r (17)

with a source term S∞
r = i[Hd, ρ̃r]+ capturing the non-unitary dynamics ([ ]+ is an anti-

commutator). Numerical analysis confirms that S∞
r also corresponds to the limit of the FQC

source terms SFQC
r (16) within the large quasi-continuum limit N → +∞. At resonance

(∆ = 0), the Schrödinger equation in the presence of Heff boils down to the equation of a
damped harmonic oscillator for the probability amplitude ce

c̈e + Γċe/2 + Ω2
0ce = 0. (18)

One identifies the three usual dynamical over/critical/under-damping regimes determined
by the ratio Ω0/Γ (see the black dashed lines in Figure 6).

Example of successful FQC-emulated dynamics. In Figure 6, we investigate the suitability
of a FQC with parameters {N, v} = {30, 0.3 h̄Γ} for the emulation of non-Hermitian
dynamics in these different regimes. We obtain the evolution of the excited state population
πe(t) coupled to this FQC using a numerical resolution of the Schrödinger equation with
the Hamiltonian (14), and compare it to the evolution under the non-Hermitian dynamics
given by Equation (18). Excellent agreement is observed for the three distinct regimes,
covering a wide range of Ω0/Γ values. We investigate below how to determine the minimal
number of levels of an adequate FQC.
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Figure 6. Non-Hermitian vs. FQC dynamics for the two-level system in the following regimes: over-
damping (Ω0 = 0.1Γ, upper panel), critical (Ω0 = 1Γ, middle panel), and under-damping (Ω0 = 0.1Γ,
lower panel) in the presence of an FQC with NFQC = 2N + 1 = 61 levels and v = 0.3 h̄Γ (full quantum
dynamics, gray dotted line) or from the non-Hermitian dynamics (Equation (18), black dashed line).
Both lines are superimposed, showing the excellent emulation of non-Hermitian dynamics with the
considered FQCs.

Quantitative mapping of successful FQCs for the emulation of two-level non-Hermitian
dynamics. Before proceeding to a more systematic analysis of the suitability of the FQC, we
introduce a quantitative measure for the accuracy of FQC-emulated dynamics. Specifically,
in the considered two-level system, we take the trace distance [29] between the reduced
density matrices evolved respectively under the influence of a FQC (unitary evolution
with H (14) followed by projection with Peg) and following non-Hermitian dynamics
(Equation (17)). This distance is defined for two density matrices ρ and σ by

T(ρ, σ) =
1
2

Tr
(√

(ρ− σ)†(ρ− σ)

)
. (19)

In order to obtain a quantitative estimate of the fidelity over the whole considered interval,
we use the mean trace distance over the considered time window:

D2(t f ) =
1
t f

∫ t f

0
T(ρe(t), σ(t))dt. (20)

This definition in terms of trace distance coincides with the measure D1 introduced in
Equation (11) in the one-dimensional case.

As in Section 3, we proceed to a systematic study of the appropriate FQC parameters
(N, v) for the emulation of non-Hermitian dynamics. We here separately consider the
three different regimes evidenced by Equation (18) and we use the mean trace distance (20)
between the respective density matrices evolving in the presence of a FQC (ρr) or following
non-Hermitian dynamics (ρ̃r). The results are summarized in Figure 7a–c for the different
ratios Ω0/Γ corresponding to the three distinct regimes of non-Hermitian dynamics. In or-
der to avoid the revival effect discussed in Section 3, we take a slightly shorter time interval
t f = 8Γ−1. A comparison between the mappings presented Figures 3a and 7a–c reveals
very different characteristics in the FQC emulation for the one- and two-level systems.
For the one-level system, successful FQC emulation only requires the absence of revivals,
associated with a condition v ≤ vc independent of the FQC size N. Differently, we see
for the two-level case that the number 2N + 1 of FQC states has a critical influence on the
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fidelity of the FQC-emulated dynamics. These figures reveal an abrupt transition when the
parameter N falls below a critical value N(v), depending on the coupling strength v for a
given ratio Ω0/Γ. This raises the question of how to choose suitable FQC parameters.

Ω0 = 0.1Γ Ω0 = 1Γ Ω0 = 10Γ

v v v

N
F
Q
C

N
F
Q
C

N
F
Q
C

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7. Quality of the emulation of non-Hermitian dynamics with a FQC: 2D plots of the mean trace
distance (normalized to its maximum value) between the non-Hermitian model and the dynamics in
a FQC model with parameters Ntot, v (in units of h̄Γ) for the respective ratios Ω0/Γ = 0.1 (a), 1 (b),
10 (c). The dotted black–white line corresponds to the number Nmax(v).

Suitability criteria for FQC. Here, we determine the subset of FQC states that are
significantly populated during the time evolution. Intuitively, this set should form the
minimal FQC which accurately captures dissipative quantum dynamics. As can be seen
below, the populated modes essentially depend on the Rabi frequency Ω0 and dissipation
rate Γ.

This situation is reminiscent of the dynamical Casimir effect (DCE), in which a contin-
uum of vacuum electromagnetic modes becomes gradually populated under the harmonic
motion of a moving mirror (See Ref. [30] for a review). In the DCE, the mirror oscillation
at a frequency Ωm induces the emission of photons of frequencies ω ≤ Ωm in initially
unpopulated electromagnetic modes. A similar effect is observed with a moving two-level
atom [31,32] in the vacuum field. We find below that our FQC model with a Rabi driving
reproduces these features, with the emergence of sidebands at the Rabi frequency in the
FQC population. As in the DCE, the external drive provides energy to the system, which
eventually leaks into the continuum.

To analyze this effect, we introduce the expansion

|ψ(t)〉 = ce(t)|e〉+ cg(t)|g〉+
N

∑
p=−N

cp(t)|p〉 (21)

into the Schrödinger equation. A projection on the kth state of the FQC yields a differential
equation for the coefficient ck(t) driven by the excited state probability amplitude ce(t).
This equation is formally solved as

ck(t) = −
iv
h̄

∫ t

0
ce(t′)eikδt′dt′. (22)

In the long-time limit, the coefficient ck(t) tends towards the Laplace transform of
the excited state amplitude at the frequency kδ (up to a constant factor). In order to
estimate the occupation probability |ck(t)|2 at time t < t f , we use the probability amplitude
c̃e(t) given by non-Hermitian dynamics (Equation (18)). The latter is indeed an excellent
approximation of the excited state probability ce(t) in coupling to a sufficiently large FQC
(see Figure 6). We find
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ck(∞) =
vΩ0

h̄
√

∆0

[ −1

− Γ
4 + i

√
∆0

2 + ikδ
+

1

− Γ
4 −

i
√

∆0
2 + ikδ

]
(23)

with ∆0 = 4Ω0 − Γ2

4 . Figure 8 shows the probability occupations |ck(t f )|2 ' |ck(∞)|2.
These distributions exhibit two sidebands centered about k values, such that |k|δ ' Ω0,
symmetrically distributed around k = 0 for our choice of ∆ = 0. A similar generation of
sidebands is observed for the dynamical Casimir effect [30]. These occupancy probabil-
ities actually determine the number of relevant FQC states and the size of the minimal
appropriate FQC. Indeed, we have indicated in Figure 7a–c the maximum occupancy
number Nmax(v) as a function of the coupling strength v. This quantity is defined as
|cNmax(v)(t f )|2 = maxn{|cn(t f )|2} for the considered coupling strength v and Rabi fre-
quency Ω0. As the occupation peak approximately corresponds to the Rabi frequency,
we expect Nmax(v) ' Ω0/δ = Ω0h̄2Γ/(2πv2) from Equation (7). In Figure 7a–c, the line
representing the maximum occupancy number Nmax(v) is almost superimposed on the
interface between the suitable and unsuitable FQCs (white/grey zones, respectively). This
confirms that the suitable FQCs are those that host all the significantly populated lev-
els. The population of each Fourier components is represented for different Ω0/Γ ratios
in Figure 8: in the weak coupling limit Ω0 � Γ, Nmax(v) is mainly determined by the
dissipation rate Γ, while in the strong coupling limit Ω0 � Γ, it scales linearly with the
Rabi frequency Ω0 (for v = 0.3, Nmax(v) ' 1.77Ω0).
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Ω0 = 0.1Γ
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Ω0 = 10Γ

|c k
(t

f
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k
Figure 8. Distribution of populations: Occupation probability |ck(t f )|2 at the final time t f as a
function of the level k of the FQC for Ω0 = 0.1 Γ (lower panel), Ω0 = Γ (middle panel) and Ω0 = 10 Γ
(upper panel). Parameters: 2N + 1 = 45 levels, and with v = 0.3 h̄Γ.

5. Non-Markovian Dynamics and Adaptive Quasi-Continuum

In this Section, we analyze quantitatively the finiteness-related effects in the evolution
of an FQC-coupled quantum system. First, we establish the connection between the
presence of revivals (discussed in Section 3) and a measure of non-Markovianity applied to
the FQC-emulated dynamics. Second, we show that the FQC structure of equidistant energy
levels induces a mismatch of the effective Rabi frequency and decay rates when compared
to the equivalent parameters in the non-Hermitian model. Solving this issue suggests an
adaptative structure of FQCs, discussed below, capable of reproducing non-Hermitian
dynamics with a considerably reduced number of states.
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5.1. Revivals and Non-Markovianity

Revivals in the excited state probability πe(t), discussed in Section 3 for the single-level
system, also occur in the two-level FQC emulated dynamics for large values of coupling
strength v. Such revivals are indeed a symptom of non-Markovian dynamics in the FQC;
their exact form depends on the initial quantum state and therefore reveals a memory effect
in the quantum evolution. Despite the successful emulation of dissipative dynamics over
a given time interval, these revivals show that some information about the initial state
has been transmitted and stored in the FQC. The revival appears as a kind of constructive
interference effect when information about the initial state, stored in the FQC, returns
to the system. Non-Hermitian dynamics (17) are Markovian, and so the emergence of
non-Markovianity reveals a discrepancy between the FQC-emulated system and the ideal
irreversible case.

These considerations suggest quantitatively studying the non-Markovianity of the
FQC-emulated dynamics. We proceed by using the measure from Ref. [33], summarized
below for convenience. This measure uses the trace distance T(ρ, σ) (19), which has a direct
interpretation in terms of the distinguishability of the associated quantum states. Indeed,
if we consider an emitter which randomly prepares one of the two quantum states {ρ, σ}
with equal probability, the probability of an observer successfully identifying the correct
quantum state through a measurement is simply 1

2 (1 + T(ρ, σ)). Markovian processes
correspond to a decreasing trace distance for any set of states following the quantum
evolution associated with the process. In this case, no information likely to improve the
dinstinguability of the states {ρ(t), σ(t)} is acquired by the system during the evolution.
The unitary evolution operator of a closed quantum system, and more generally complete
positive trace-preserving maps, fall into this category. Conversely, non-Markovian quantum
processes are those that exhibit at least a temporary positive variation of the trace distance
for some pair of initial states. This increase witnesses a flow of information from the
environment back to the system.

To obtain a quantitative measure, one introduces the rate of variation of the trace
distance for a given quantum process

σρ0
1,ρ0

2
(t) =

d
dt

T(ρ1(t), ρ2(t)). (24)

where ρ1,2(t) are two density matrices undergoing the quantum process under consider-
ation and therefore following the same evolution operator/dynamic equation, but with
distinct initial conditions ρ1,2 (0) = ρ0

1,2. Quantum processes with σρ0
1,ρ0

2
(t) > 0 correspond

to an increasing trace distance, and therefore a flow of information from the environment
to the system. The non-Markovianity measure is given by [33]

Σ(t) = maxρ0
1,ρ0

2

∫ t

0
dt′ Θ(σρ0

1,ρ0
2
(t′)) σρ0

1,ρ0
2
(t′) (25)

The Heaviside function Θ(x) (s.t. Θ(x) = 1 if x ≥ 0 and Θ(x) = 0 for x < 0) guarantees that
only time intervals with an increasing trace distance effectively contribute to the integral.
The quantity Σ(t) is obtained by considering all possible initial quantum states ρ0

i = |ψi〉〈ψi|
(with |ψi〉 a generic quantum state of the full Hilbert space), and the considered evolution
corresponds to ρ(t) = Pege−iHt/h̄ρ0eiHt/h̄Peg, where H is the Hamiltonian (14) and Peg the
projection operator introduced earlier for the two-dimensional subspace. In Figure 9b,
we have plotted the evolution of the non-Markovianity Σ(t) as a function of time for a
given FQC, to be compared with the time evolution of the excited-state population πe(t)
in Figure 9a. We deliberately chose a time window during which a revival was observed.
Figure 9a,b reveal that a sharp increase in the non-Markovianity Σ(t) occurs at the onset of
the probability revival. The non-Makovianity Σ(t) thus provides another determination
of the time window over which the FQC dynamics accurately emulate an irreversible
non-Hermitian evolution.
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Figure 9. Revivals and non-Markovianity: (a) Time evolution of the population in the unstable
state πe(t). (b) Measure of the non-markovianity Σ(t) (see text) of a two-level system composed of
2N + 3 = 53 levels as a function of time. Parameters: Ω0 = 1 Γ, v = 0.25 h̄Γ. The non-Markovianity
measure is estimated within a 1% accuracy by sampling over a set of 256 initial states.

5.2. Adaptive FQC

The study carried out in Section 4 reveals the minimal size of suitable FQCs scales
with the Rabi frequency Ω0. Here, we go one step further and propose adapting the
FQC’s structure depending on the Rabi coupling Ω0. We no longer consider exclusively
flat FQCs with equidistant levels around the excited state energy. Instead, we study
adaptive FQCs with an enhanced density of states around the occupation peaks depicted
in Figure 8. As seen below, such adaptive FQCs yield an optimized emulation of non-
Hermitian dynamics.

We begin by investigating the influence of the discrete FQC structure on the emulated
quantum dynamics. Figure 7c exhibits a slightly gray zone associated with a slight mis-
match between the FQC evolution and the non-Hermitian dynamics. This is the regime
we wish to investigate. For this purpose, we consider non-Hermitian dynamics (18) in the
strong coupling regime Ω0 � Γ. The corresponding excited-state population reads

πe(t) = e−Γt/2 cos2(Ωt), (26)

with Ω = Ω0(1− (Γ/4Ω0)
2)1/2. An effective Rabi frequency (Ω̃) and dissipation rate (Γ̃)

for the FQC dynamics are obtained by fitting the excited-state population π̃e(t) with the
form (26) of exact non-Hermitian dynamics. The corresponding results are represented as a
solid gray line in Figure 10a,b for different FQCs.

The discrepancy between the FQC model and the ideal non-Hermitian case can be
explained through a closer examination of the integration Kernel (2), or more precisely its
equivalent for the two-level case. To reproduce non-Hermitian dynamics, the integration
Kernel must take a form analogous to Equation (4). In this case, the frequency mismatch
∆Ω = Ω̃−Ω cannot be attributed to a Lamb shift effect, as the principal part of the kernel in
Equation (6) cancels out in the presence of a symmetric FQC with a homogeneous coupling
constant. The slight frequency shift is therefore a signature of the non-Markovianity of
the FQC dynamics, i.e., of the residual error committed by replacing Equation (2) with
Equation (4). The corresponding approximations, namely of short kernel memory and the
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extension of the integral in Equation (4) to infinity, are indeed jeopardized by the discrete
FQC structure. Intuitively, the discrete states of zero-energy (i.e., of energy close to the
unstable excited state) can increase the error. We also note that these central states are not
significantly populated in the FQC dynamics: the highly populated levels correspond to
peak population sidebands centered on ±Ω0/δ.
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0
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0.3
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(a)

(b)

(c)

Ω̃−Ω
Ω

Γ̃
Γ

D2(tf)

NFQC

Figure 10. Mismatch between the effective Rabi frequency (a), damping rates (b), and mean trace
distance (c) as a function of the size NFQC obtained by comparing the FQC model with the non-
Hamiltonian model. We have plotted the effective parameters obtained from a flat FQC made of
equidistant levels (gray solid line) and for an FQC with an adaptative structure with removed central
states (black solid line). The dotted line corresponds to NFQC = 35, considered in Figure 11. Parameter
v = 0.3 h̄Γ.

These observations raise the question of the relevant optimal FQC structure in this
regime. From Figure 3b, the central FQC state eigenenergies undergo the largest shift from
the linear dispersion relation expected from an ideal continuum. Furthermore, Figure 8c
shows that, in the strong driving regime (Ω0 � Γ), the final population of these states is
very small. These considerations suggest that the central components of the FQC play a
minor role, or even a deleterious role.

To confirm this intuition, we studied a different FQC model obtained from the former
FQC, by removing the states close to the E = 0 energy while preserving the symmetry of
the distribution. The corresponding results are shown in Figure 10a–c (solid black line).
For large FQC sizes, both the flat and adaptive FQC provide a good emulation of non-
Hermitian dynamics, although the latter had the same error in the Ω̃, Γ̃,D2 parameters
with a much smaller size. For small sizes NFQC ≤ 30, the spectrum of the regular flat FQC
is too narrow to include the highly populated Rabi sidebands of Figure 8c. Consequently,
small regular FQCs produce a negligible effective damping rate Γ̃. On the other hand, by
construction, the adaptive FQC contains states nearby these sidebands. Thus, even small
adaptive FQCs NFQC ' 10 already give an effective damping rate Γ̃ close to the appropriate
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value. At intermediate sizes (10 ≤ NFQC ≤ 50), adaptive FQCs also outperform regular
FQCs: a strong improvement is observed in the agreement between the effective Rabi
frequency Ω̃ and damping rate Γ̃ with their non-Hermitian counterparts Ω, Γ, as well
as a significant reduction in the mean trace distance compared to exact non-Hermitian
dynamics. We conclude that, for the damped Rabi dynamics considered, adaptive FQCs
with a tailored distribution (involving mostly states close to the Rabi frequency sidebands
±Ω0/δ and presenting a hole in the central zone near the unstable state energy (E = 0))
provide a higher fidelity to non-Hermitian dynamics with constant resources, i.e., with the
same number of states and for an identical time window.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1πe(t)

Γt
Figure 11. FQC-emulated dynamics in the strong coupling regime (Ω0 = 10Γ): excited population
as a function of time for a flat FQC (dotted gray line) made of NFQC = 2N + 1 = 35 equidistant
levels and for an adaptative FQC (dashed black line) made of NFQC = 2N = 34 levels. For both
FQCs, we used the parameters v = 0.3 h̄Γ. The solid gray line represent the exact evolution expected
from the non-Hermitian dynamics (Equation (26)), and is almost superimposed onto the adaptative
FQC results.

Figure 11 provides an example, where both kinds of FQC (flat vs. adaptive) produce
very different qualitative behaviors, while having a very similar number of states. While
the coupling to a regular equidistant FQC cannot account for the damping of the Rabi
oscillation, the quantum system coupled to the adaptive FQCs yields an excellent agreement
with the predicted non-Hermitian dynamics (Equation (26)).

6. Conclusions

In conclusion, we discussed the emulation of non-Hermitian quantum dynamics
during a given time window with a finite quasi-continuum composed of discrete states. We
specifically considered the exponential decay of an unstable state, and the Rabi driving of a
two-level quantum system exhibiting an unstable state. We characterized the short- and
long-time deviations of the FQC-emulated system compared to the exact non-Hermitian
case. Short-time deviations can be interpreted in terms of the Zeno effect, while the
long-term deviations correspond to a probability revival that can be quantified using a
measure of non-Markovianity. We provided a criterion for the adequacy of the discrete
FQCs considered by evaluating the occupancy probabilities of the quasi-continuum states.
There is a trade-off between using FQCs involving a large number of states and achieving
high accuracy in emulating non-Hermitian dynamics. We showed that, in the strong
coupling regime, this trade-off can be significantly improved by considering FQCs with
an adapted density of states. This study is potentially relevant for many body systems,
where a given subsystem can be coupled to a large set of states corresponding to the
surrounding bodies [7]. Quantum dots coupled to nano-wires are a promising platform for
implementing low-dimensional systems coupled to FQCs [34,35]. This work also paves
the way for the emulation of non-Hermitian dynamics with a finite set of states. A long-
term goal is to integrate a tunable dissipation within quantum simulators [7]. Different
methods have been investigated to reach this goal, relying on the Zeno effect [36–39], atom
losses [40,41], and multichromatic Floquet [42], to name a few.



Entropy 2023, 25, 1256 16 of 17

Author Contributions: Conceptualization, D.G.-O.; Formal analysis, D.G.-O., E.F.; Investigation,
E.F.; Methodology, D.G.-O., E.F., F.I.; Validation, D.G.-O., F.I.; Supervision, D.G.-O.;writing—original
draft preparation, D.G.-O., F.I.; writing—review and editing, F.I., D.G.-O. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Brazilian agencies CNPq (310265/2020-7), CAPES and
FAPERJ (210.296/2019), by the CAPES-PRINT Program and by INCT-IQ (465469/2014-0).

Data Availability Statement: Data is contained within the article or supplementary material.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khalfin, S.A. Contribution to the Decay Theory of a Quasi-Stationary State. Sov. J. Exp. Theor. Phys. 1958, 6, 1053.
2. Chiu, C.B.; Sudarshan, E.C.G.; Misra, B. Time evolution of unstable quantum states and a resolution of Zeno’s paradox. Phys.

Rev. D 1977, 16, 520–529. [CrossRef]
3. Greenland, P.T. Seeking non-exponential decay. Nature 1988, 335, 298. [CrossRef]
4. Wilkinson, S.R.; Bharucha, C.F.; Fischer, M.C.; Madison, K.W.; Morrow, P.R.; Niu, Q.; Sundaram, B.; Raizen, M.G. Experimental

evidence for non-exponential decay in quantum tunnelling. Nature 1997, 387, 575–577. [CrossRef]
5. Rothe, C.; Hintschich, S.I.; Monkman, A.P. Violation of the Exponential-Decay Law at Long Times. Phys. Rev. Lett. 2006,

96, 163601. [CrossRef]
6. Torrontegui, E.; Muga, J.G.; Martorell, J.; Sprung, D.W.L. Enhanced observability of quantum postexponential decay using distant

detectors. Phys. Rev. A 2009, 80, 012703. [CrossRef]
7. Altman, E.; Brown, K.R.; Carleo, G.; Carr, L.D.; Demler, E.; Chin, C.; DeMarco, B.; Economou, S.E.; Eriksson, M.A.; Fu, K.M.C.;

et al. Quantum Simulators: Architectures and Opportunities. PRX Quantum 2021, 2, 017003. [CrossRef]
8. Guo, A.; Salamo, G.J.; Duchesne, D.; Morandotti, R.; Volatier-Ravat, M.; Aimez, V.; Siviloglou, G.A.; Christodoulides, D.N.

Observation of PT -Symmetry Breaking in Complex Optical Potentials. Phys. Rev. Lett. 2009, 103, 093902. [CrossRef] [PubMed]
9. Wan, W.; Chong, Y.; Ge, L.; Noh, H.; Stone, A.D.; Cao, H. Time-Reversed Lasing and Interferometric Control of Absorption.

Science 2011, 331, 889. [CrossRef]
10. Weidemann, S.; Kremer, M.; Helbig, T.; Hofmann, T.; Stegmaier, A.; Greiter, M.; Thomale, R.; Szameit, A. Topological funneling of

light. Science 2020, 368, 311. [CrossRef]
11. Okuma, N.; Kawabata, K.; Shiozaki, K.; Sato, M. Topological Origin of Non-Hermitian Skin Effects. Phys. Rev. Lett. 2020,

124, 086801. [CrossRef] [PubMed]
12. Zhang, K.L.; Yang, X.M.; Song, Z. Quantum transport in non-Hermitian impurity arrays. Phys. Rev. B 2019, 100, 024305.

[CrossRef]
13. Damanet, F.; Mascarenhas, E.; Pekker, D.; Daley, A.J. Controlling Quantum Transport via Dissipation Engineering. Phys. Rev. Lett.

2019, 123, 180402. [CrossRef] [PubMed]
14. Shu, C.; Zhang, K.; Su, K. Loss-induced universal one-way transport in periodically driven systems. arXiv 2023, arXiv:2306.10000.
15. Yao, S.; Wang, Z. Edge States and Topological Invariants of Non-Hermitian Systems. Phys. Rev. Lett. 2018, 121, 086803. [CrossRef]
16. Kunst, F.K.; Edvardsson, E.; Budich, J.C.; Bergholtz, E.J. Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems.

Phys. Rev. Lett. 2018, 121, 026808. [CrossRef]
17. Martinez Alvarez, V.M.; Barrios Vargas, J.E.; Foa Torres, L.E.F. Non-Hermitian robust edge states in one dimension: Anomalous

localization and eigenspace condensation at exceptional points. Phys. Rev. B 2018, 97, 121401. [CrossRef]
18. Lee, C.H.; Thomale, R. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B 2019, 99, 201103. [CrossRef]
19. Yokomizo, K.; Murakami, S. Non-Bloch Band Theory of Non-Hermitian Systems. Phys. Rev. Lett. 2019, 123, 066404. [CrossRef]
20. Zhang, K.; Yang, Z.; Fang, C. Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems. Phys. Rev.

Lett. 2020, 125, 126402. [CrossRef]
21. Yang, Z.; Zhang, K.; Fang, C.; Hu, J. Non-Hermitian Bulk-Boundary Correspondence and Auxiliary Generalized Brillouin Zone

Theory. Phys. Rev. Lett. 2020, 125, 226402. [CrossRef]
22. Stey, G.; Gibberd, R. Decay of quantum states in some exactly soluble models. Physica 1972, 60, 1–26. [CrossRef]
23. Tannoudji, C.C.; Grynberg, G.; Dupont-Roe, J. Atom-Photon Interactions: Basic Processes and Applications; John Wiley and Sons:

New York, NY, USA, 1992.
24. Verstraete, F.; Wolf, M.M.; Cirac, J.I. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys.

2009, 5, 633. [CrossRef]
25. Winter, R.G. Evolution of a Quasi-Stationary State. Phys. Rev. 1961, 123, 1503–1507. [CrossRef]
26. Fonda, L.; Ghirardi, G.C.; Rimini, A. Decay theory of unstable quantum systems. Rep. Prog. Phys. 1978, 41, 587. [CrossRef]
27. Peres, A. Nonexponential decay law. Ann. Phys. 1980, 129, 33–46. [CrossRef]
28. Bienaimé, T.; Piovella, N.; Kaiser, R. Controlled Dicke Subradiance from a Large Cloud of Two-Level Systems. Phys. Rev. Lett.

2012, 108, 123602. [CrossRef] [PubMed]
29. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000.

http://doi.org/10.1103/PhysRevD.16.520
http://dx.doi.org/10.1038/335298a0
http://dx.doi.org/10.1038/42418
http://dx.doi.org/10.1103/PhysRevLett.96.163601
http://dx.doi.org/10.1103/PhysRevA.80.012703
http://dx.doi.org/10.1103/PRXQuantum.2.017003
http://dx.doi.org/10.1103/PhysRevLett.103.093902
http://www.ncbi.nlm.nih.gov/pubmed/19792798
http://dx.doi.org/10.1126/science.1200735
http://dx.doi.org/10.1126/science.aaz8727
http://dx.doi.org/10.1103/PhysRevLett.124.086801
http://www.ncbi.nlm.nih.gov/pubmed/32167324
http://dx.doi.org/10.1103/PhysRevB.100.024305
http://dx.doi.org/10.1103/PhysRevLett.123.180402
http://www.ncbi.nlm.nih.gov/pubmed/31763915
http://dx.doi.org/10.1103/PhysRevLett.121.086803
http://dx.doi.org/10.1103/PhysRevLett.121.026808
http://dx.doi.org/10.1103/PhysRevB.97.121401
http://dx.doi.org/10.1103/PhysRevB.99.201103
http://dx.doi.org/10.1103/PhysRevLett.123.066404
http://dx.doi.org/10.1103/PhysRevLett.125.126402
http://dx.doi.org/10.1103/PhysRevLett.125.226402
http://dx.doi.org/10.1016/0031-8914(72)90218-2
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1103/PhysRev.123.1503
http://dx.doi.org/10.1088/0034-4885/41/4/003
http://dx.doi.org/10.1016/0003-4916(80)90288-2
http://dx.doi.org/10.1103/PhysRevLett.108.123602
http://www.ncbi.nlm.nih.gov/pubmed/22540580


Entropy 2023, 25, 1256 17 of 17

30. Dalvit, D.A.R.; Maia Neto, P.A.; Mazzitelli, F.D. Fluctuations, Dissipation and the Dynamical Casimir Effect. Lect. Notes Phys.
2011, 834, 287.

31. e Souza, R.D.M.; Impens, F.; Neto, P.A.M. Microscopic dynamical Casimir effect. Phys. Rev. A 2018, 97, 032514. [CrossRef]
32. Impens, F.; e Souza, R.D.M.; Matos, G.C.; Neto, P.A.M. Dynamical Casimir effects with atoms: From the emission of photon pairs

to geometric phases. Europhys. Lett. 2022, 138, 30001. [CrossRef]
33. Breuer, H.P.; Laine, E.M.; Piilo, J. Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems.

Phys. Rev. Lett. 2009, 103, 210401. [CrossRef] [PubMed]
34. Ricco, L.S.; Kozin, V.K.; Seridonio, A.C.; Shelykh, I.A. Reshaping the Jaynes-Cummings ladder with Majorana bound states. Phys.

Rev. A 2022, 106, 023702. [CrossRef]
35. Ricco, L.S.; Kozin, V.K.; Seridonio, A.C.; Shelykh, I.A. Accessing the degree of Majorana nonlocality in a quantum dot-optical

microcavity system. Sci. Rep. 2022, 12, 1983. [CrossRef]
36. Syassen, N.; Bauer, D.M.; Lettner, M.; Volz, T.; Dietze, D.; García-Ripoll, J.J.; Cirac, J.I.; Rempe, G.; Dürr, S. Strong Dissipation

Inhibits Losses and Induces Correlations in Cold Molecular Gases. Science 2008, 320, 1329–1331. [CrossRef] [PubMed]
37. Barontini, G.; Labouvie, R.; Stubenrauch, F.; Vogler, A.; Guarrera, V.; Ott, H. Controlling the Dynamics of an Open Many-Body

Quantum System with Localized Dissipation. Phys. Rev. Lett. 2013, 110, 035302. [CrossRef]
38. Zhu, B.; Gadway, B.; Foss-Feig, M.; Schachenmayer, J.; Wall, M.L.; Hazzard, K.R.A.; Yan, B.; Moses, S.A.; Covey, J.P.; Jin, D.S.;

et al. Suppressing the Loss of Ultracold Molecules Via the Continuous Quantum Zeno Effect. Phys. Rev. Lett. 2014, 112, 070404.
[CrossRef]

39. Tomita, T.; Nakajima, S.; Danshita, I.; Takasu, Y.; Takahashi, Y. Observation of the Mott insulator to superfluid crossover of a
driven-dissipative Bose-Hubbard system. Sci. Adv. 2017, 3, e1701513,

40. Rauer, B.; Grišins, P.; Mazets, I.E.; Schweigler, T.; Rohringer, W.; Geiger, R.; Langen, T.; Schmiedmayer, J. Cooling of a One-
Dimensional Bose Gas. Phys. Rev. Lett. 2016, 116, 030402. [CrossRef]

41. Schemmer, M.; Bouchoule, I. Cooling a Bose Gas by Three-Body Losses. Phys. Rev. Lett. 2018, 121, 200401. [CrossRef]
42. Impens, F.; Guéry-Odelin, D. Multichromatic Floquet engineering of quantum dissipation. arXiv 2023, arXiv:2306.01676.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevA.97.032514
http://dx.doi.org/10.1209/0295-5075/ac6975
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://www.ncbi.nlm.nih.gov/pubmed/20366019
http://dx.doi.org/10.1103/PhysRevA.106.023702
http://dx.doi.org/10.1038/s41598-022-05855-y
http://dx.doi.org/10.1126/science.1155309
http://www.ncbi.nlm.nih.gov/pubmed/18535241
http://dx.doi.org/10.1103/PhysRevLett.110.035302
http://dx.doi.org/10.1103/PhysRevLett.112.070404
http://dx.doi.org/10.1103/PhysRevLett.116.030402
http://dx.doi.org/10.1103/PhysRevLett.121.200401

	Introduction
	Decay of a Single Level Coupled to an Effective Continuum
	Coupling of a Single State to a Finite Discretized Continuum
	Coupling of a Two-Level System to a Finite Discretized Continuum
	Non-Markovian Dynamics and Adaptive Quasi-Continuum
	Revivals and Non-Markovianity
	Adaptive FQC

	Conclusions
	References

