
Hamiltonian Ratchet for Matter-Wave Transport

N. Dupont ,1,2 L. Gabardos ,1 F. Arrouas,1 N. Ombredane,1 J. Billy,1 B. Peaudecerf ,1 and D. Guéry-Odelin 1
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118 Route de Narbonne, 31062 Toulouse CEDEX 09, France

2Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles,
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We report on the design of a Hamiltonian ratchet exploiting periodically at rest integrable trajectories in
the phase space of a modulated periodic potential, leading to the linear nondiffusive transport of particles.
Using Bose-Einstein condensates in a modulated one-dimensional optical lattice, we make the first
observations of this spatial ratchet, which provides way to coherently transport matter waves with possible
applications in quantum technologies. In the semiclassical regime, the quantum transport strongly depends
on the effective Planck constant due to Floquet state mixing. We also demonstrate the interest of quantum
optimal control for efficient initial state preparation into the transporting Floquet states to enhance the
transport periodicity.
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The ratchet effect is the well-known yet intriguing
phenomenon which sees the emergence of a directed
current for particles initially at rest in a space and time
periodic modulated potential, while no net average force is
exerted on the system. Its origin is well understood and
relies minimally on the breaking of space and time reversal
symmetries [1–3]. Two main families of ratchets can be
distinguished: on one hand, Brownian ratchets are systems
experiencing stochastic forces, where the potential rectifies
the isotropy of Brownian motion [4] into a net directed
transport [5–11]. Such ratchets are thought to take part in
the operation of molecular motors [12,13], as for instance
in the case of kinesin [14]. They are usually studied in the
overdamped regime to model the strong dissipation of
biological media [11,15]. On the other hand, deterministic
ratchets, which can be either dissipative [1,16–19] or
Hamiltonian (see below), are systems for which the
classical dynamics is well captured by their phase-space
flow. Such Hamiltonian systems, under moderate temporal
driving, exhibit a mixed dynamics with phase portraits
displaying islands of regular trajectories embedded in a
chaotic sea of nonintegrable ones (see, e.g., Fig. 1).
Studies on Hamiltonian ratchets have mainly focused

thus far on delocalized transport configurations, where
the directed transport originates either in a momentum-
asymmetric chaotic sea (in the classical case from trajec-
tories ergodically spanning the chaotic sea [1,8,20], and in
the quantum case through state coupling with eigenstates
delocalized over it [20–23]), or by resonantly accelerating
particles in the case of quantum-resonance ratchets [24,25].
In contrast, Hamiltonian ratchets relying on regular islands
of quasiperiodic trajectories offer a mean to incrementally
transport localized particles on a periodic substrate in a

ballistic way [21]. Note that this transport appears
classically and is distinct from topological pumping
effects (Ref. [26] and references therein). Such regular
Hamiltonian ratchets have been experimentally studied
mainly with phase-shifted kicked rotors, implemented in
cold atom systems, in the case of stepwise transport along
the momentum direction (an accelerator ratchet) [27–30],
and with only up to 20% of an initial atom packet loaded in
the transporting island. Meanwhile, regular Hamiltonian
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FIG. 1. Stroboscopic phase portraits and experimental images
for ðγ; ε;φ0Þ ¼ ð1.2; 0.3; 1.7Þ at subperiod observation times
t ¼ ðnþ rÞ × 2π [with n∈N and r ¼ 0, 0.25, 0.5, and 0.75
for (a) to (d) respectively]. Left: the ratcheting island and the
trajectory starting in ðx0; p0; t0Þ ¼ ð0; 0; 0Þ are in blue, the other
regular structures are in gray, and the chaotic sea is in red. The
area of the ratcheting island is A ¼ 0.21. Right: corresponding
time-of-flight absorption images, starting from the ground state of
the lattice during the first period n ¼ 0 for 1=ℏeff ≈ 1.27.
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ratchets along the position coordinate [31] remain
unexplored experimentally so far. Beyond the use of regular
islands with a ballistic motion at all times, as found, e.g., in
the kicked rotor, of particular interest is the design of a
dynamical system in which the transporting island peri-
odically coincides with the ground state of the potential, in
which a collection of particles initially at rest can therefore
be directly loaded and transported.
In this Letter, we solve this nontrivial problem, the

solution of which we refer to as a spatial halting ratchet
(SHR). We show how such a solution can be engineered
with a simple gating ratchet [32,33], a one-dimensional
space-symmetric potential modulated in amplitude and
phase. We obtain parameters leading to classical orbits
of initial zero velocity having a ratcheting motion of one
spatial period per modulation period. For these parameters,
we study quantum transport as a function of the effective
reduced Planck constant ℏeff , a free quantum parameter
that sets the minimal phase-space area of quantum states
without altering the classical dynamics. As a modulation
parameter (e.g., ℏeff ) is varied, avoided crossings in the
Floquet spectrum lead to state mixing. Although
this phenomenon is sought after in the case of diffusive
Hamiltonian ratchets [22,34] where it is the source of
transport, and is also key in chaos-assisted tunneling
[35,36], it has a deleterious effect in the regular transport
case, as a wave packet initially prepared over the classical
ratcheting island may dynamically tunnel [37] out of it.
This may be avoided by a precise choice of parameter
values, or controlled through specific state preparation.
From our theoretical analysis, we implement and observe
experimentally the SHR with matter waves, using Bose-
Einstein condensates (BECs) in a modulated one-dimen-
sional optical lattice. We first perform these experiments by
loading the ratcheting Floquet state from the ground state of
the lattice. For values of ℏeff for which the ratcheting island
is substantially coupled with the chaotic sea, we then show
how one can account for state mixing by employing
quantum optimal control (QOC) [38,39] to optimize the
loading of the proper Floquet state.
Classical dynamics.—We consider the case of an inertial

particle in a gating potential [32,33]. Its dynamics is
governed by the dimensionless Hamiltonian

Hðx; p; tÞ ¼ p2

2
− γ½1þ ε cosðtÞ� cos ½x − φ0 sinðtÞ�: ð1Þ

The Hamiltonian of Eq. (1), with its 1∶1 frequency
ratio and phase quadrature between amplitude and phase
modulations, breaks the relevant space and time sym-
metries [1,33], leading to a momentum-asymmetric chaotic
sea carrying diffusive ratchet transport. In contrast, the
dimensionless modulation parameters ðγ; ε;φ0Þ can also be
chosen so that a transporting regular region emerges in the
center of the chaotic sea, i.e., such that a bundle of

trajectories starting around ðx0; p0Þ ¼ ð0; 0Þ at t0 ¼ 0 goes
to the neighborhood of ðx0 þ 2π; p0Þ at t ¼ 2π. We achieve
this numerically by minimizing with respect to ðγ; ε;φ0Þ
(using a Nelder-Mead algorithm) the total variation of
mechanical energy over one modulation period for a set of
trajectories that start near ðx0; p0Þ and change site. This
yields several solutions [40]. In the following we use
ðγ; ε;φ0Þ ¼ ð1.2; 0.3; 1.7Þ, a set of parameters that gener-
ates a SHR with the ratcheting island seen in the strobo-
scopic phase portraits of Fig. 1.
Quantum ratchet in a regular island.—The natural basis

to stroboscopically study quantum dynamics in a time-
periodic potential is the set of Floquet states, the eigenstates
of the evolution operator over one period of modulation.
The quantum study leaves as a free parameter the effective
reduced Planck constant ℏeff ¼ −i½x̂; p̂� that dictates the
minimal phase-space area ΔxΔp of quantum states in the
system. As we are interested in the transport of a quantum
particle on the ratcheting island, we place our study at the
onset of the semiclassical regime, that is for ℏeff ∼A, with
A the area of the studied regular structures in phase space
(Fig. 1). In the semiclassical regime, Floquet states are
generally either localized on regular islands or spread over
the chaotic sea [41,42], with only one state per island for
ℏeff ∼A. The quantum analog of the periodic classical
trajectories at the center of the stroboscopic phase portraits
of Fig. 1(a) is therefore the Floquet state jFrati that can be
associated with the ratcheting island. This state is identified
from its overlap with the ground state jϕ0i of the static
lattice potential [that is ε ¼ 0 and φ0 ¼ 0 in Eq. (1); a state
readily accessible in the experiment]. Furthermore, we
define the expected transport of a state jψðt0Þi between
the times t0 and t1 as

Δxðt0;t1ÞðψÞ ¼
Z

t1

t0

hp̂iψðtÞdt: ð2Þ

The transport over one periodΔxð0;2πÞðFÞ for a Floquet state
jFi is related to its time-averaged group velocity v̄g in the
Floquet spectrum, Δxð0;2πÞðFÞ ¼ 2πv̄g (see Supplemental
Material [43]). In the semiclassical regime, one expects
regular Floquet states to behave as their associated region of
regular classical trajectories, and, in particular for the
ratcheting Floquet state, Δxð0;2πÞðFratÞ ≈ 2π. Therefore in
that regime, the very existence of a transporting regular
island generally guarantees for all quasimomenta (see below
and Supplemental Material [43]) the existence of a localized
transporting Floquet state, a key feature differing from
previous ballistic ratchets [22,23].
We illustrate these notions in Fig. 2 where numerical

results for the transport of noninteracting wave functions in
the ratcheting island as a function of 1=ℏeff are shown.
Figure 2(a) shows the overlap between jFrati and the ground
state jϕ0i. This metric informs on the phase-space centering
of jFrati, as well as on its expected loadingwhen running the
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experiment with jϕ0i as the initial state. Figure 2(b) shows
the expected periodic transport of jFrati. As 1=ℏeff varies,
both jhϕ0jFratij2 and Δxð0;2πÞðFratÞ [Figs. 2(a) and 2(b)
respectively] display sharp nonmonotonic fluctuations
ascribed to Floquet state mixing: the variation of quasie-
nergy levels in the Floquet spectrum gives rise to avoided
crossings leading to sharp changes of the Floquet states near
the crossings (see Supplemental Material [43]).
Figures 2(c)–2(e) show the Husimi quasidistributions

of jϕ0i and jFrati for different values of 1=ℏeff .
At given coordinates ðx; pÞ, this phase space representation
of a quantum state corresponds to the evaluation of its
overlap with a Gaussian state centered in ðx; pÞ [44,45].
With 1=ℏeff ¼ 1.27, Fig. 2(d) is an example of a
semiclassical, island-shaped jFrati, with a ground state
overlap jhϕ0jFratij2 ¼ 0.86 and a periodic transport
Δxð0;2πÞðFratÞ ¼ 0.93 × 2π, meaning that this state exhibits
a stationary flux of particles, periodically at rest at the
bottom of the lattice wells. On the other hand, Figs. 2(c) and
2(e) correspond to respectively smaller and larger values of
1=ℏeff for which the system initialized in jϕ0i evolves out of

it [toward a mode of high momentum for Fig. 2(c) and over
the chaotic sea for Fig. 2(e)]. Figure 2 shows overall that, for
sufficiently large values of 1=ℏeff andwhile paying attention
to Floquet state mixing, a SHRwith a semiclassical periodic
transport of quantum states can be achieved, with
Δxð0;2πÞðFratÞ fluctuating around 2π for 1=ℏeff > 0.75.
Ratchet transport from the ground state.—We experi-

mentally observe a SHR with matter waves using BECs of
5 × 105 87Rb atoms initially obtained in a hybrid trap setup
[46]. The atoms are adiabatically loaded at time T0¼0
in the ground state jϕ0i of the optical lattice potential

VðX; TÞ ¼ −AðTÞ s
2
EL cos

�
2πX
d

þ φðTÞ
�
; ð3Þ

with AðT0Þ ¼ 1 and φðT0Þ ¼ 0 (we denote with capital X,
P, and T dimensional quantities). The optical lattice is
produced by the superposition of two counterpropagating
far-detuned laser beams of wavelength λ ¼ 1064 nm.
Before each experiment, we independently calibrate [47]
the depth s of the lattice in units of the lattice energy scale
EL ¼ h2=2md2 (with d ¼ λ=2 the lattice spacing, m the
atomic mass and h Planck’s constant). The driving
amplitude of an acousto-optic modulator (AOM) placed
before the splitting of the lattice beams controls AðTÞ, while
the relative driving phase of twoAOMsplaced on each beam
after the splitting controls φðTÞ. The optical lattice potential
[Eq. (3)], with the correlated modulation functions AðTÞ ¼
½1þ ε cosðωTÞ� and φðTÞ ¼ −φ0 sinðωTÞ where ω is the
modulation angular frequency, yields the dimensionless
gating Hamiltonian [Eq. (1)] for γ ¼ sðEL=ℏωÞ2 and an
effective reduced Planck constant ℏeff ¼ 2EL=ℏω [48].
The 1=ℏeff range of Fig. 2 corresponds in practice

to a lattice depth range s∈ ½0.5; 14�. A weak harmonic
trapping with angular frequencies ðΩX;ΩY;ΩZÞ ¼ 2π ×
ð10.4; 66; 68Þ Hz remains present during experiments, but
its impact is negligible over the short experimental times of
up to ∼500 μs in this Letter. In the subspace of null
quasimomentum, the BEC state along the x axis is thus
described by a superposition of plane waves

jψðTÞi ¼
X
l∈Z

clðTÞjχli; ð4Þ

with the coefficients clðTÞ∈C,
P

l jclðTÞj2 ¼ 1, and
hXjχli ¼ eilkLX=

ffiffiffi
d

p
, where kL ¼ 2π=d is the lattice wave

vector. Finally, we access at time T the BEC momentum
distribution by absorption imaging following a 35 ms time
of flight. We obtain the typical diffraction patterns of Fig. 1,
from which we extract jclðTÞj2. The experimental transport
[Eq. (2)] is then computed by sampling the average
momentum hP̂iψðTÞ=ℏkL ¼ P

l ljclðTÞj2 in the course
of the ratchet modulation. In this system, a transport of
one site per modulation period corresponds to a veloc-
ity v ¼ ℏkL=mℏeff ≈ 8.63=ℏeff mm=s.

(a)

(b)

(c) (d) (e)

FIG. 2. Eigenstate and transport dependences on the effective
Planck constant. (a) Overlap between the ground state jϕ0i of the
lattice and the ratcheting Floquet state jFrati and (b) transport
[Eq. (2)] of jFrati over one modulation period as a function of
1=ℏeff . (c)–(e) Stroboscopic phase portraits in the unit cell of
system [Eq. (1)] and Husimi representations of jϕ0i (top, purple)
and jFrati (bottom, green) for the values of 1=ℏeff ¼ 0.70, 1.27,
1.56 respectively, identified by vertical lines on the panels (a)–
(b). The color range for each Husimi function extends from zero
to its maximum value, with a truncation to a quarter of this value
in the outlined rectangular regions of panels (d) and (e) in order to
reveal details (note that the Floquet states share the x → −x
symmetry of the phase portrait).
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We first perform ratchet transport experiments with jϕ0i
as the initial state. We acquire four images per modulation
period over ten periods (as shown in Fig. 1 for the first
period). Figure 3 shows, for two values of 1=ℏeff , the
experimental evolution of the momentum distribution and
the resulting integrated transport compared with numerical
simulations of the same quantities from the integration of
the Schrödinger equation. The values of 1=ℏeff in Figs. 3(a)
and 3(b) correspond to those of Figs. 2(d) and 2(e)
respectively. For Fig. 3(a), jϕ0i is rather well projected
onto jFrati [Figs. 2(a) and 2(d)]. We thus observe an almost
periodic evolution of the momentum distribution, mainly
carried by plane waves of positive momentum and resulting
in a linear semiclassical ratchet transport over ten lattice
sites in ten modulation periods [Fig. 3(c); a study of
the transport over longer timescales is detailed in
the Supplemental Material [43]). In the experiment of
Fig. 3(b) however, as jϕ0i has limited overlap with
jFrati, which moreover extends over the chaotic sea
[Fig. 2(e)], we observe a nonperiodic evolution of the
momentum distribution associated with a diffusion over the
chaotic sea as seen from the increase of the momentum
dispersion. This results in a nonlinear evolution of the
transport [Fig. 3(c)], in contrast to its classical counterpart.
Interestingly, this nonclassical behavior happens for a
smaller value of ℏeff , highlighting the quantum nature of
the underlying mechanism of state mixing.
A key feature of the ratchet effect is the ability to reverse

the transport direction via adequate symmetries [3,11]. In
our gating system, this transport direction is imposed
by the sign of the phase quadrature between the amplitude

and phase modulations [Eq. (1)]. The change φðtÞ ¼
−φ0 sinðtÞ → þφ0 sinðtÞ is thus expected to result in a
reversed ratchet transport in the lattice. In Fig. 3(c), the
integrated transport for ðγ; ε;φ0Þ ¼ ð1.2; 0.3;−1.7Þ and a
value of ℏeff similar to that of panel (a) is shown [with label
(a’)]. We measure as expected a symmetric ratchet transport
over −10 sites in ten modulation periods. We get an overall
excellent agreement between experiments and simulations.
Optimized loading through quantum optimal control.—

Even for values of 1=ℏeff for which Δxð0;2πÞðFratÞ ≈ 2π,
semiclassical ratchet transport can be limited when working
with jϕ0i as the initial state [see, e.g., Figs. 2(a), 2(b),
and 2(e)]. To enhance this transport, we use, in a second set
of experiments, the phase of the lattice φ as a control
parameter to optimally prepare jFrati before applying the
ratchet modulation. To that end, after determination of
jFrati, an optimal phase variation φð0 < T < TcÞ in the
lattice of fixed depth s is computed using a first-order
gradient-ascent algorithm (detailed with its experimental
implementation in previous works [45,49]), to drive the
BEC from jϕ0i to jFrati. We set in this Letter Tc ≈ 80 μs.
The QOC algorithm converges to a control field
that theoretically prepares a state jψQOCi with a fidelity
of jhFratjψQOCij2 ≥ 0.995 [50], while the fidelities ex-
perimentally reached for such targets are typically
∼0.95 [45]. We illustrate in Figs. 4(a)–4(c) the QOC

(a) (c)

(b)

FIG. 3. Transport of the ground state. (a) Top: numerical
simulation of the momentum distribution during the modulation
as a function of time for 1=ℏeff ≈ 1.27 [corresponding to
Fig. 2(d)]. Bottom: corresponding experimental integrated ab-
sorption images. (b) Same as (a) for 1=ℏeff ≈ 1.56 [corresponding
to Fig. 2(e)]. (c) Expected numerical (solid red line) and
experimental (blue markers) transport (see text) for data (a)
and (b) as a function of time, and transport reversability (a’) for
φ0 → −φ0 and 1=ℏeff ≈ 1.30 (see text).

(a)

(d) (e)

(b) (c)

FIG. 4. Transport of the ratcheting Floquet state prepared by
QOC. (a)–(c) Example of QOC for ratchet transport at
1=ℏeff ≈ 1.56. (a) Husimi representation of jϕ0i (purple) in the
phase space of the static lattice (solid black lines). The color
range for the Husimi function extends from zero to its maximum
value. (b) Phase of the lattice along time to drive the system from
jϕ0i to jFrati. (c) Same as (a) for the prepared state jψQOCi.
(d) Top: numerical simulation of the momentum distribution
during the modulation as a function of time for 1=ℏeff ≈ 1.27
[corresponding to Figs. 2(d) and 3(a)]. Bottom: corresponding
experimental integrated absorption images. (e) Same as (d) for
1=ℏeff ≈ 1.56 [corresponding to panels (a)–(c) as well as
Figs. 2(e) and 3(b)].
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protocol of Floquet state preparation, with an optimized
φðTÞ driving jϕ0i to jFrati for a given value of 1=ℏeff
[corresponding to Figs. 2(e) and 3(b)]. Figures 4(d) and
4(e) show experimental results and numerical simulations
for the same parameters as Figs. 3(a) and 3(b) respectively,
with a preliminary QOC preparation applied. While the
experiment of Fig. 3(a) already featured a clear linear
quantum transport, Fig. 4(d) demonstrates how the QOC
preparation of the ratcheting Floquet state enhances
the periodicity of the momentum evolution. Comparing
Fig. 4(e) with Fig. 3(b), the gain is even more spectacular.
Interestingly, Fig. 4(e) displays a broad momentum
dispersion from the beginning of the modulation, which
demonstrates the preparation of a ratcheting Floquet state
partially extending over the chaotic sea as expected [see
Fig. 2(e)].
Conclusion.—In this Letter, we have studied a spatial

Hamiltonian ratchet effect exploiting regular trajectories in
phase space to transport particles periodically at rest. We
showed how such a SHR can be obtained classically within
a gating ratchet. We then considered quantum transport in
the near semiclassical regime, for small but realistic values
of the effective Planck constant ℏeff , and discussed how
quantum transport can be strongly affected by Floquet state
mixing as ℏeff varies. We experimentally observed coherent
SHR transport of matter waves with BECs of 87Rb in a
modulated optical lattice. For values of ℏeff coupling the
ratcheting island with the chaotic sea, we witnessed how
atoms loaded in the island evolve out of it through
dynamical tunneling. Finally, we demonstrated how this
effect can be mitigated through the use of state control
methods such as QOC, to prepare the ratcheting
Floquet state and thus enhance the periodicity of the
dynamics.
Our modeling relies on an infinite lattice description, and

is in good agreement with experimental data. Finite-size
effects therefore have a limited impact on our experiments,
which is due both to the extension of the BEC (≈100 lattice
sites) and to the fact that in the cases studied here the
ratcheting Floquet state has a uniform group velocity in the
vicinity of zero quasimomentum (see Supplemental
Material [43]).
The regular ratchet effect we demonstrated constitutes a

novel way to coherently transport matter waves in a periodic
potential, alongside conveyor belt approaches [51–53].
Higher SHR currents could be obtained by decreasing
ℏeff in a deeper lattice. Our results lend themselves to further
investigations, such as the extension to higher dimensional
modulated lattices, the investigation of the impact of
interactions on the transport dynamics, or the use of optimal
control to optimize the actual shape of the transporting state,
in order, e.g., to maximize its initial overlap with the ground
state of the potential.
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