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Boltzmann showed that in spite of momentum and energy redistribution through collisions, a
rarefied gas confined in a isotropic harmonic trapping potential does not reach equilibrium; it evolves
instead into a breathing mode where density, velocity and temperature oscillate. This counter-
intuitive prediction is upheld by cold atoms experiments. Yet, are the breathers eternal solutions of
the dynamics even in an idealized and isolated system? We show by a combination of hydrodynamic
arguments and Molecular Dynamics simulations that an original dissipative mechanism is at work,
where the minute and often neglected bulk viscosity eventually thermalizes the system, that thus
reaches equilibrium.

Ludwig Boltzmann was among the very “first cre-
ative thinkers in any field to look at the world in a
fully twentieth-century manner” [1]. Together with J.C.
Maxwell, he was the founding father of kinetic theory uni-
fying Newtonian mechanics with thermodynamics, two
approaches that had been impervious to each until then.
This accomplishment is epitomized in the so-called Boltz-
mann equation of which we celebrated the 150th anniver-
sary in 2022. It remains an important branch in basic sci-
ences, be it in mathematics [2], physics [3] and engineer-
ing [4, 5]. Lesser known is the fact that a few years after
having laid the foundations, Boltzmann found outlandish
solutions to the eponymous equation, where a confined
dilute gas never reaches equilibrium but rather organizes
into a perpetual oscillating “breathing mode” [6, 7]. For
lack of an experimental realization in a three dimensional
system, Boltzmann’s prediction long remained periph-
eral, garnering limited interest. The situation changed
recently when a large collection of Rb cold atoms con-
fined in a harmonic trap was shown to clearly vindicate
the breather mode, in full agreement with the theory
[8, 9].

Since the Boltzmann equation features irreversibility
[7], the possibility of breathing modes is surprising in two
respects. First, they do emerge under the action of vis-
cous forces, but are themselves shear-less and undamped
[10, 11]. Second, they provide eternal solutions, a priori
trustworthy in the limit where the framework applies, ie
a dilute system with short range interactions. Under such
conditions, far from a critical point or from the crowd-
ing environment that are found in kinetically arrested
states of matter or glasses [12], the system should even-
tually thermalize and reach equilibrium [13]. Yet, the ki-
netic theory framework of the Boltzmann equation fails

to identify any damping mechanism for the breathers. It
is our main purpose to study their fate, from the forma-
tion to their possible disappearance, under a dissipative
mechanism that necessarily requires a description beyond
the Boltzmann equation. While kinetic theory itself is
a possible venue for such an analysis [14], we will see
that hydrodynamics provides a direct answer: not only
does it allow to recover the breathing modes in a eco-
nomical fashion, but more importantly, it sheds lights on
their damping, beyond the Boltzmann equation level. In
essence, the damping is associated to the non locality of
collisions [15]. Hence, it vanishes in the low density limit,
while it is related to the bulk viscosity for finite densi-
ties. Our analytical results will be confronted against
Molecular Dynamics (MD) simulations.

The setting. We consider a dilute system of interacting
atoms (or molecules), trapped in a harmonic potential.
Each atom at position r is subjected to an external force
−mω2r; all masses m are identical. A sketch of the sys-
tem is shown in Fig. 1. We adopt a classical description,
stressing that quantum effects are negligible in the ex-
periment of Ref. [8], and also that the breathers survive
to quantum effects [16]. While pure isotropic harmonic
potentials do not exist in reality, they provide an ex-
cellent approximation in the context of the experiments
carried out in Ref. [8]. We restrict to monoatomic gases;
the analysis relies on energy and momentum conserva-
tion during collisions: it is not necessary to specify the
type of interatomic potential studied, provided that in-
teractions are short range and the system dilute. Under
this proviso, the Boltzmann equation framework applies
[14], and, unexpectedly, does not lead at long times to
Maxwell-Boltzmann distribution ne for the particle den-
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FIG. 1. (Color online) Sketch of the system. The particles,
shown with the disks, are confined in the (red) parabolic po-
tential. Under generic initial conditions, the system evolves
towards a breathing state, oscillating between a dense config-
uration with high temperature (left) and a more dilute con-
figuration with a smaller temperature and a higher potential
energy (right).

sity n:

n(r, t) ̸= ne(r) = n0 exp

[
−mω2r2

2kT

]
, (1)

where k is Boltzmann constant, T the temperature, n0

is a normalization factor and r = |r|. While one may
have expected long-time thermalization starting from
arbitrary initial conditions, solutions indeed exist with
avoided equilibration, where the density, velocity and
temperature oscillate with time t at 2ω, twice the natu-
ral trapping frequency [6–8]. These solutions are readily
characterized as follows.

Due to density, momentum, and energy conservation
in collisional events, the density, velocity and tempera-
ture fields, resp n,u, T , obey the generic hydrodynamic
equations [17]

∂tn+∇ · (nu) = 0, (2)

∂tui + (u ·∇)ui +
1

mn
∂jPij + ω2xi = 0, (3)

d

2
n∂tT +

d

2
nu ·∇T + Pij∂jui +∇ · q = 0, (4)

where d denotes space dimension, the summation over
repeated indices is assumed and the xi denote the Carte-
sian coordinates of position r. The total number of atoms
is N =

∫
n(r, t) dr, a conserved quantity. To first order

in the gradients of the fields, the heat flux is q = −κ∇T
and the pressure tensor P reads [17]

Pij = pδij − η

[
∂iuj + ∂jui −

2δij
d

∇·u
]
− ν∇·u δij , (5)

where p is the pressure, η the shear viscosity, ν the bulk
viscosity (also called the volume viscosity, and sometimes
the “second” or “expansive” viscosity), κ the heat con-
ductivity; the expressions of these quantities in terms of
n and T depend on the system. By substituting the ex-
pression of the fluxes into the balance equations, Eqs.
(2)-(4), the Navier-Stokes equations are obtained. On
general grounds, the system’s total entropy S increases

under the action of the various dissipative mechanisms
at work, thermal conduction and internal friction due to
viscous forces. This results in [17]

dS

dt
=

∫
dr

{
κ

T 2
(∇T )2 +

η

2T

(
∂kui + ∂iuk − 2

d
δik∇ · u

)2

+
ν

T
(∇ · u)2

}
. (6)

Recovering the breathing modes. More often than not,
the bulk viscosity ν is neglected [7, 18]. This “tradition”
dates back to the early days of hydrodynamics, and bears
the name of Stokes’ hypothesis [19–21]. Since the term
in brackets in Eq. (5) is traceless, Stokes’ hypothesis im-
plies that the mechanical and thermodynamic pressures
coincide. In a polyatomic system where energy can be
transferred from translational to other degrees of free-
dom (rotational, vibrational), such an assumption would
fail, but it holds in a dilute monoatomic gas [22, 23] and
is often considered to be correct without the diluteness
restriction for such gases, see eg [21, 24–27]. Being in-
terested in monoatomic species, we momentarily endorse
Stokes’ hypothesis, setting ν = 0. For consistency with
the dilute assumption we also have Pij = pδij , where
p = nkT . By taking moments in Eqs. (2) and (3), it
is easily seen that the quantities ⟨r2⟩ =

∫
r2ndr/N and

⟨r ·v⟩ =
∫
r ·undr/N fulfill a closed set of first order dif-

ferential equations, that can be transformed into a closed
second order differential equation for ⟨r2⟩ [16, 28, 29]

d2⟨r2⟩
dt2

=
4e

m
− 4ω2⟨r2⟩, (7)

where the total energy per particle, that is a con-
stant of the motion, has been introduced, e =
1

2N

∫
drn(r, t)

[
mu2(r, t) + dT (r, t) +mω2r2

]
. The so-

lution of Eq. (7) is simply

⟨r2⟩ = ρ2 +∆cos(2ωt− φ), (8)

where ρ2 ≡ e/mω2 is the equilibrium value of ⟨r2⟩,
φ is an irrelevant phase factor, and ∆ is a parameter
quantifying the amplitude of the oscillations that can
be written in terms of the initial condition as ∆ =√

⟨r·v⟩20
ω2 + (⟨r2⟩0 − ρ2)

2
, where the index 0 refers to aver-

ages over all atoms in the initial condition. Let us stress
that Eq. (8) is exact in the low density limit. It holds
for all times, independently of the initial condition, and
it clearly shows that, in general, the system will perpet-
ually oscillates at twice the trap natural frequency (the
exception being ∆ = 0 that will be analyzed latter).
The maximum entropy solution, corresponding to the

long-time evolution of our interacting system (that in
the following will be denoted by the subscript B), is such
that the first two terms in parenthesis in Eq. (6) vanish.
Thus, the temperature should be spatially homogeneous
(∇TB = 0), and ∂kuB,i+∂iuB,k − 2

dδik∇·uB = 0 (∀i, k =
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1, . . . , d) that, in turn, imply that uB(r, t) = a(t)r +
j(t) × r + u0(t). By a proper choice of the rest frame,
and discarding globally rotating system, we set u0 and
j to 0, so that uB(r, t) = a(t)r. By substituting the
specific form of the velocity and temperature field into
Eq. (3), it is obtained that the density is gaussian with
the above identified variance

n
B
(r, t) = N

[
d

2π⟨r2⟩

]d/2
exp

(
− d

2⟨r2⟩
r2
)
. (9)

Performing the same in Eq. (2) by taking into account
the gaussian density profile, the time-dependent coeffi-
cient, a(t), is identified, a(t) = (1/2)∂t log⟨r2⟩ and, if Eq.
(4) is used, it is obtained that TB(t)⟨r2⟩ is a constant.
This is a signature of the kinetic to potential energy con-
version at work in the present swing mechanism: when
the cloud is extended, with a large value of ⟨r2⟩ (ie a large
potential energy), the temperature is small, and the tem-
perature is conversely maximal when ⟨r2⟩ is minimal, and
the peak density (at the origin) maximal. To summarize,
starting from arbitrary initial conditions, in the long time
limit the system reaches a state that is characterized by
the parameters describing the dynamics of ⟨r2⟩ (N , e, ∆
and φ): the density is gaussian given by Eq. (9) and

uB(r, t) =
r

2
∂t log⟨r2⟩, TB(t) =

C

⟨r2⟩
, (10)

where C is a constant that depend on the same param-
eters [14]. The velocity field is shear-less, and thus im-
mune to shear-viscosity effects. In fact, this is exactly
the breathing mode solution obtained by Boltzmann.
The equilibrium solution (ne in Eq. (1)) corresponds
to ∆ = 0, which requires highly specific initial conditions
[30]. Note that the interatomic interaction specifics are
immaterial here.

Damping mechanism for the breathing modes. It is ap-
propriate at this point to revisit Stokes hypothesis [31].
Physically, the bulk viscosity arises because collisions in-
volve particles that are not exactly located at the same
point in space; in other words, there is a transfer of mo-
mentum through a given surface due to the interaction
of a pair of particles located at different sides of the sur-
face. The rationale for setting ν = 0 is that dilatational
dissipation is often small compared to its shear coun-
terpart. In the context of the Boltzmann equation, the
pressure tensor is purely kinetic and the bulk viscosity
vanishes. The Boltzmann equation is derived in the low
density limit, whereas the bulk viscosity makes an ap-
pearance at higher densities. For the breathers, shear
dissipation vanishes and attention should be paid that
the bulk viscosity, no matter how small, may cause dis-
sipation. As it has been discussed, for a monoatomic
gas, what can be shown rigorously is that ν/η → 0 when
n → 0, but taking ν = 0 does not yield a valid descrip-
tion at all times. Interestingly, the hydrodynamics frame-
work above is convenient for the analysis where ν ̸= 0,

that aims at going beyond the low density approxima-
tion. In particular, the maximum entropy argument now
demands that the three terms in parenthesis in Eq. (6)
do vanish, so that a = 0 = ∇ · u: the long-time maxi-
mum entropy solution thus has u = 0 (in the rest frame,
assuming again no global rotation), a uniform temper-
ature, and a profile set by Eq. (3), ie the hydrostatic
balance ∇p +mnω2r = 0, which is the equilibrium so-
lution. Beyond the dilute limit, the explicit form of the
pressure p depends on the specific interactions at work,
which modifies the Gaussian profile on the rhs of Eq.
(1). We have just shown that the bulk viscosity dissipa-
tion drives equilibrium: ultimately, the breathers have to
decay to thermal equilibrium This takes place at constant
energy per particle e in our conservative system [32].
The damping time. What is the lifetime of a Boltz-

mann breather? From Eqs. (2)-(4), we obtain on general
grounds

d2⟨r2⟩
dt2

=
4e

m
− 4ω2⟨r2⟩+ 2d

mN

∫
dr[∆p− ν∇·u], (11)

where ∆p ≡ p− nkT is the excess pressure that depends
on density n and temperature T , themselves time and
position dependent. This opens the way to a multiple
time scale analysis. Indeed, plugging the breather expres-
sions into Eq. (11) and linearizing around the equilibrium
value, ⟨r2⟩e, a differential equation for x ≡ ⟨r2⟩ − ⟨r2⟩e
is obtained

ẍ+
2

τ
ẋ+Ω2x = 0, (12)

where a new time scale τ appears, which measures the

life time of the breathers. We have τ = 2mNρ2

d2
∫
drνe

, that

is a functional of the equilibrium bulk viscosity νe, itself
position dependent. The frequency of the oscillations,

Ω =
[
4ω2 + 2d

mN

∫
dr δ∆p

δ⟨r2⟩

]1/2
, differs from the Boltz-

mann value, 2ω, due to the excess pressure contribu-
tion and its explicit expression depends on the particular
equation of state. Here, the excess pressure contribution
does not affect the relaxation time because, to linear or-
der, is ẋ-independent. As expected, in the low-density
limit τ → ∞ and Ω → 2ω. In contrast with Eq. (7),
Eq. (12) does not hold for all times, but it describes the
universal long time behavior in which the initial condi-
tion is forgotten and the fields are close to their breather
counterparts.
Comparison to numerical simulations. To proceed,

we specify the analysis to the simplest non-trivial
monoatomic case possible: the hard-sphere system, for
which all quantities of interest are known [33]. For
this model, the explicit expressions for τ and Ω2 are

τ = d2(d−1)/2Γ(d/2)N1/d

πd/2ϕ(d+1)/2ω
and

Ω2 = 4ω2

[
1 +

(d+ 2)πd/2

2(d+4)/2dΓ(d/2)
ϕ

]
, (13)
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FIG. 2. ⟨r2⟩/ρ2 as a function of the dimensionless time, ωt,
for ϕ = 9 × 10−3. The circles are the simulation results and
the solid line the Boltzmann theoretical prediction (8). In the
inset, the envelope of the oscillations (dashed line) is plotted
on a much longer time scale (the dotted line at unity is plotted
for reference).

where the maximum (dimensionless) density at equilib-

rium at Boltzmann level, ϕ ≡ N
(

d
2πρ2

)d/2

σd, has been

introduced. We have also neglected position correlations
at contact.

We have put our predictions to the test with MD sim-
ulations of a system with N = 1000 hard disks (two-
dimensional system), where the particle trajectories are
followed with time, under the action of the harmonic one-
body confinement potential, and of instantaneous inter-
particle collisions [34]. Figure 2 shows that the cloud
spread, ⟨r2⟩, for a system with ϕ = 9 × 10−3, oscillates
in time as predicted for the breather state around the
(equilibrium) value, ρ2. The circles are the simulation
results and the solid line the Boltzmann theoretical pre-
diction. The agreement between both in the shown time
window is excellent taking into account that there are no
adjustable parameters. Nevertheless, a tiny discrepancy
with the theoretical frequency, 2ω, can be appreciated
(specially for times ωt ∼ 50 as it is a cumulative effect).
In the inset, the envelope of the oscillations is plotted on a
much longer time scale (dashed line), where the damping
becomes visible. Both effects, shifting of the frequency
and damping, are precisely those predicted by our hydro-
dynamical theory. In addition, the breather state char-
acterized by the hydrodynamic fields (9) and (10) is only
reached for times ωt > 40. This can be appreciated by
checking the constancy of T

B
⟨r2⟩ with time.

For different small densities and starting with an initial
condition close to equilibrium, ∆/ρ2 = 0.2, (the density
has to be “close to Boltzmann” and the amplitude of ⟨r2⟩
small for the theory to be valid), MD simulations have
been performed. The frequency and the relaxation time
of the oscillations have been measured by counting the
number of maxima (minima) per unit time and by fitting
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(Ω
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FIG. 3.
(
Ω
ω

)2
as a function of the dimensionless density, ϕ.

The dots are the simulation results and the solid line is the
theoretical prediction (13).
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FIG. 4. ωτ as a function of the dimensionless density, ϕ, in
logarithmic scale. The points are the simulation results, the
solid line is the theoretical prediction for τ as defined above
(13) and the dashed line is the linear fitting of the simulation
results.

the envelope to an exponential, respectively. In Fig. 3,
the frequency is plotted. The points are the simulation
results (the error bars are not plotted because they can
not be seen in the figure) and the solid line the theoret-
ical prediction. The agreement between the theoretical
prediction and the simulation results is excellent in the
whole range of densities. Note that the corrections to the
Boltzmann prediction are of the order of ϕ, ∼ 10−2. In
Fig. 4, ωτ is plotted as a function of ϕ in logarithmic
scale. The points are the simulation results (as above,
the error bars are not plotted), the solid line is the theo-
retical prediction and the dashed line is the linear fitting
of the simulation results with slope −1.53± 0.02, in per-
fect agreement with the theoretical prediction for d = 2,
τ ∼ ϕ−3/2. The quotient between the theoretical and
measured relaxation times is of the order of 1.5, indicat-
ing that, although the density dependence is perfectly
captured by the theory, there are other not considered
ingredients that “renormalize” the amplitude of ϕ−3/2.
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The only approximation made in the theory has been to
take for the hydrodynamic fields the corresponding ones
of the breather state. It seems that it is perfectly valid to
first order in ϕ (the frequency Ω fits the theoretical pre-
diction), but it fails beyond first order. Yet, the agree-
ment is satisfactory taking into account the simplicity of
the theory.

In conclusion, treading in Boltzmann’s footsteps, we
have recovered that an isolated low-density system con-
fined in a harmonic trap generically evolves towards a
time-dependent breathing mode. Such a solution how-
ever cannot be eternal: it holds in a finite time-window,
all the larger as the system is more dilute, and we could
characterize the ultimate fate of a breather. Under an
original dissipation mechanism that is insensitive to usual
shear viscous forces, but involves dilatational dissipation,
the system reaches asymptotically thermal equilibrium,
as expected. The key player is the bulk viscosity, that
is minute compared to the shear viscosity for dilute sys-
tems: neglecting it allows to recover Boltzmann’s results
in a convenient fashion; yet, it rules the long-time dy-
namics. This dissipation mechanism, which operates as
consequence of the breathing mode spherical symmetry,
is unique and provides a platform for measuring the elu-
sive bulk viscosity.
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[3] V. Garzó and A. Santos, Kinetic Theory of Gases in
Shear Flows (Kluwer Academic Publisher, Dordrecht,
2003).

[4] G. Bird, Molecular Gas Dynamics (CreateSpace Inde-
pendent Publishing Platform, 2013).

[5] S. Succi, The lattice Boltzmann equation for complex
states of flowing matter (Oxford University Press, Ox-
ford, 2018).

[6] L. Boltzmann, in Wissenschaftliche Abhandlungen,
edited by F. Hasenorl (J. A. Barth, Leipzig Vol II, 1909).

[7] C. Cercignani, The Boltzmann Equation and Its Applica-
tions (Springer Verlag, New York, 1988).

[8] D. S. Lobster, A. E. S. Barentine, E. A. Cornell, and
H. J. Lewandowski, Observation of a persistent non-
equilibrium state in cold atoms, Nat. Phys. 11, 1009
(2015).
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