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The effective control of atomic coherence with cold atoms has made atom interferometry an essen-
tial tool for quantum sensors and precision measurements. The performance of these interferometers
is closely related to the operation of large wave packet separations. We present here a novel approach
for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated
optical lattice. The corresponding Floquet state is generated by optimal control protocols. In this
way, we demonstrate an unprecedented Large Momentum Transfer (LMT) interferometer, with a
momentum separation of 600 photon recoils (600ℏk) between its two arms. Each LMT beam splitter
is realized in a remarkably short time (2 ms) and is highly robust against the initial velocity disper-
sion of the wave packet and lattice depth fluctuations. Our study shows that Floquet engineering
is a promising tool for exploring new frontiers in quantum physics at large scales, with applications
in quantum sensing and testing fundamental physics.

Atom interferometry has made significant contribu-
tions to quantum technologies, enabling advances in in-
ertial sensing [1–3], and the measurement of fundamental
physical constants [4–6]. It also has great potential for
performing fundamental tests, such as testing the weak
equivalence principle [7], searching for the nature of dark
energy [8, 9], or investigating analogues of the Aharonov-
Bohm effect [10, 11]. Enlarging the spatial separation be-
tween the arms of an interferometer holds great promise
for increasing the sensitivity of quantum sensors. It is
also instrumental in the exploration of new physics at the
interface of relativity and quantum mechanics [12–14], as
well as to the detection of gravitational waves [15–20] and
dark matter [21, 22]. These proposals highlight the criti-
cal need for highly efficient atom manipulation processes,
especially to achieve momentum separations greater than
1000 photon recoils (1000ℏk). Large Momentum Trans-
fer (LMT) techniques increase the momentum separation
from a superposition of two states generated by a π/2
beam splitter pulse. This low momentum separation is
further enhanced by continuous acceleration via Bloch
oscillations [23–25] or discrete acceleration using π pulse
sequences [26–29]. To date, the largest momentum trans-
fer techniques used in interferometers have demonstrated
momentum separations up to 400ℏk [30, 31].

In this paper, we present a novel approach that unifies
discrete and continuous acceleration methods by combin-
ing the Floquet formalism with quantum Optimal Con-
trol Theory (OCT). Quantum OCT is a set of methods
for designing electromagnetic fields to perform specific
quantum operations with optimal efficiency [32]. It has
emerged as a key tool in the advancement of quantum
technologies [33]. In the context of atom interferometry,
OCT has only been successfully applied to a limited num-
ber of momentum states, e.g. to improve the robustness
of interferometers based on Raman beam splitters [34]
or third-order Bragg diffraction [35]. However, the use

of these protocols in optical lattice-based LMT experi-
ments remains challenging due to the significant number
of states involved and the need for robustness over a wide
range of parameters [36, 37]. In our approach, optimal
control protocols are employed to guarantee the robust
preparation of Floquet states against the velocity disper-
sion of the atomic ensemble. This Floquet state based
approach significantly reduces the complexity of the sys-
tem under consideration. Consequently, it allows the ap-
plication of OCT in situations where the control problem
would be numerically intractable without this formalism.
This method operates in deep non-adiabatic regimes,

enabling remarkably fast and highly effective acceleration
within an optical lattice, exceeding the current state of
the art. We demonstrate an interferometer capable of
achieving a momentum separation of up to 600ℏk with
a visibility of 20%. In addition, numerical simulations
confirm the scalability of our approach and suggest the
possibility of atom interferometers larger than 1000ℏk.
This advance paves the way for significant progress in
the measurement of the fine structure constant and ad-
dresses a critical challenge for atom interferometers op-
erating at very large scales, particularly in the context of
gravitational wave detectors.

Experimental setup

Our experimental setup, shown in Fig. 1(a), uses a
Bose-Einstein Condensate (BEC) consisting of about
3 × 104 87Rb atoms. After a free fall of about 5 ms,
the atoms have an initial center-of-mass momentum of
∼ 8ℏk in the laboratory frame and a momentum disper-
sion of 0.3ℏk corresponding to an effective temperature
of approximately 30 nK. The atoms then interact with
a retroreflected vertical optical lattice, with tunable fre-
quency and amplitude. The acceleration due to gravity
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FIG. 1. Large Momentum Transfer Interferometer (a) Scheme of the experimental setup. A vertical optical lattice
is used to manipulate the atom momentum states. Fluorescence imaging is used to detect the atoms after a time of flight.
(b) Space-time diagram of the LMT interferometer based on a sequence consisting of two π/2 pulses separated by a π pulse.
Between these pulses, the two arms are successively accelerated and decelerated by a sequence of additional lattice pulses.
The atoms are in free fall for T ′ between the acceleration and deceleration stages. (c) Scheme of the acceleration-deceleration
process. Blue dots represent the momentum state decomposition at different times of the sequence. (d) Stack of images of
atomic ensembles for different maximum momentum separations. The images are taken after a full sequence of acceleration
and deceleration for a single arm and after a time of flight of 14 ms. A maximum separation of 600ℏk corresponds to a transfer
of 1200ℏk per arm (acceleration + deceleration).

is compensated by applying a linear frequency ramp to
achieve a stationary lattice in the free fall frame.

The experimental configuration implements an analog
of the Mach-Zehnder interferometer for atoms by a se-
quence of optical lattice pulses inducing Bragg transitions
between momentum states [38], as shown in Fig. 1(b).
The initial π/2 pulse creates a coherent superposition
between two momentum states, |p0⟩ and |p0 − 2ℏk⟩, thus
acting as a beam splitter for the matter wave. Here,
p0 ≪ ℏk denotes the initial momentum of an atom in the
free fall frame. The lower path then undergoes an ac-
celeration sequence and is decelerated again after a free
propagation time T ’. This acceleration-deceleration se-
quence (Fig. 1(c)) ideally does not affect the upper arm.
Then a π pulse reverses the momentum states |p0⟩ and
|p0 − 2ℏk⟩, acting as a mirror for the two arms. The
same sequence of acceleration, free propagation T ′ and
deceleration is then applied to the upper path. Finally,
a π/2 pulse acts as a second beam splitter to complete
the interferometer. The populations in the two main out-
put ports with states |p0⟩ and |p0 − 2ℏk⟩ are measured
through fluorescence imaging after ∼ 14 ms of free fall
time.

Principle of Floquet atom accelerator

The acceleration of the atom is achieved by a sequence
of optical lattice π pulses, each of duration τ . Every
pulse transfers a momentum of 2ℏk to the atom. This
results in an average acceleration of al =

2ℏk
Mτ , where M

is the atomic mass. The two-photon resonance condition
is adjusted for each pulse to ensure efficient momentum
transfer. The frequency difference ω between the two
arms of the optical lattice, in the free fall frame, driving
the Bragg transitions is therefore a piecewise constant

function with a decrease of 8ωr = 4ℏk2

M between pulses,
as represented in Fig. 2(b). We define the accelerated
frame as the reference frame following the average accel-
eration al of the atoms. In this frame, the lattice fre-
quency is a periodic sawtooth function with period τ , as
shown in Fig. 2(c). In the accelerated frame, the Hamil-

tonian is periodic, Ĥ(t) = Ĥ(t + τ), and the dynamics
of the system is naturally described within the Floquet
formalism [39].

Floquet’s theorem states that there exists a complete
set of solutions to the time-dependent Schrödinger equa-
tion, called Floquet states, which can be obtained by
diagonalizing the one-period propagator [40] (see Supp.
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FIG. 2. Principle of Floquet acceleration. (a) The time variation of the optical lattice consists of a periodic series of
π pulses of duration τ and amplitude Ω, illustrated here with tanh pulses. (b) The resonance condition in the laboratory
frame is adjusted for each pulse, resulting in a stepwise evolution of the lattice frequency. (c) In the accelerated frame, the
lattice frequency ωa shows a periodic sawtooth shape, resulting in τ -periodic driving of the lattice. OC-1 and OC-2 represent
the optimal Floquet state preparation pulses. (d) Stack of experimental images showing accelerated atoms at different steps
of the acceleration sequence for NF = 20. The images are taken after a time-of-flight showing the momentum distributions
of the input state |p0⟩, the output state |p0 − 2NF ℏk⟩ and the prepared Floquet state |w0⟩ during the periodic acceleration
sequence. (e)-(f) Populations and phases of the transported Floquet state in the momentum states basis for a 5.3 µs square
pulse. (g) Corresponding phase space Husimi representation of the Floquet state (see Supp. Mat.).

Mat.). Here the Floquet’s theorem simplifies as the sys-
tem is observed stroboscopically at times nτ . In partic-
ular, if the system is prepared in a single Floquet state
|wm(t0)⟩ at time t0, its temporal evolution exhibits peri-
odicity up to a phase factor:

|wm(t0 + τ)⟩ = |wm(t0)⟩ eiθm . (1)

The principle of the Floquet accelerator is based on the
stroboscopic stabilization of the system, i.e., the atom re-
turns to the same Floquet state |wm⟩ after each pulse of
duration τ (see Fig. 2(d)). It results in a lossless coher-
ent acceleration of the atomic wave packet in the free fall
frame. Among all the Floquet states, a relevant choice
is the state |w0⟩, which is localized in both position and
momentum within each lattice cell, and has the highest
projection onto the initial momentum state |p0⟩. This
specific Floquet state appears in particular for a π pulse
and depends on the temporal pulse shape. For sufficiently
short pulse duration τ , this state is very similar to a dis-
placed and squeezed state in phase space [41], which is
preserved during the dynamics and whose time evolution
of the position and momentum expectation values is well
described by the corresponding classical trajectory (see
Supp. Mat.). An example is shown in Fig. 2(g) with
the Husimi representation of the Floquet state. The dis-

placement in position of the quantum state results from
a balance between the inertial force −Mal in the accel-
erated frame and the restoring force due to the optical
lattice.

The efficiency of the acceleration is greatly improved
by adding a suitably shaped pulse to prepare the Floquet
state. In practice, this pulse is designed using OCT to
adjust both the amplitude and frequency of the optical
lattice. This step is performed before (and at the end of)
the acceleration sequence, and it transforms the initial
state |p0⟩ into the corresponding Floquet state |w0⟩ de-
fined for a given π pulse of the acceleration sequence (and
vice versa). The corresponding optimal control protocols
are denoted OC-1 and OC-2 in Fig. 2. Similar sequences
are used during the deceleration phase.

Figure 2 shows the principle of Floquet acceleration
with a sequence of NF = 20 pulses that transfers 40ℏk.
At each step of the sequence, a time-of-flight measure-
ment allows the atomic states to be mapped onto the mo-
mentum state basis |p0 + 2nℏk⟩, with n ∈ Z. In Fig. 2(d),
the different states are displayed in the accelerated frame
to improve the readability of the images.

The Floquet acceleration relies on the periodicity of
the pulse sequence, independent of the specific shape of
each pulse. Therefore, the Floquet state |w0⟩ can be
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identified for various types of pulses, including sequential
Bragg pulses, continuous Bloch-type accelerations (such
as adjacent square pulses of constant frequency in the ac-
celerated frame), and their combinations. In this study,
we use discrete frequency evolution and either discrete
(hyperbolic tangent tanh pulses) or continuous (adjacent
square pulses) amplitude evolution. Detailed amplitude
and frequency profiles of the lattice are given in the Meth-
ods section.

It is worth noting that our approach differs from the
use of Floquet’s formalism in [31], where it is used to find
periodic amplitude modulations within a single pulse to
mitigate the opposite Doppler effects of the two arms of
an interferometer.

Robust Floquet state preparation

We have introduced the principle of Floquet acceler-
ation for a pure initial momentum state |p0⟩. The OC
pulses corresponding to this idealized situation, are called
non-robust control. However, each p0 within a BEC mo-
mentum distribution f(p0) is associated with a specific
Floquet state |w0(p0)⟩. For example, Fig. 3(a) shows
the decomposition into momentum states of two Floquet
states associated with 0ℏk and 0.3ℏk. Thus, the non-
robust control does not achieve perfect preparation for
the entire momentum distribution. Therefore, to effi-
ciently implement this approach, we need to find a robust
OC pulse capable of simultaneously preparing Floquet
states |w0(p0)⟩ for all p0.
For acceleration sequences based on short π pulses, the

Floquet state is only slightly changed with respect to
p0, and robust OC pulses can be designed for a reason-
ably broad momentum distribution (see Methods). In
Fig. 3(b), we show in an illustrative example that the
distribution measured in the momentum state basis with
the robust optimal control is very close to the theoretical
distribution, while significant differences are observed in
the case of the non-robust control. The quality of the
robust preparation is confirmed by the measurements of
the fraction of atoms accelerated to 20ℏk, as shown in
Fig. 3(c).

Our experimental results are in a good agreement with
simulations performed without adjustable parameters for
both cases. The acceleration efficiency achieved with
the non-robust preparation shows a rapid decrease with
increasing momentum dispersion, in contrast to the ro-
bust case, which maintains a high efficiency up to 0.35ℏk
(∼ 45 nK). Beyond this velocity dispersion, the OCT al-
gorithm does not converge to robust control within the
100 µs duration of the OC-1 and OC-2 pulses.

Floquet atom acceleration

We measure the efficiency of the Floquet accelerator
using a sequence of acceleration-deceleration over a range

−1 0 1
p0 (ħk)

M
om

en
tu

m
 d

is
tri

bu
tio

n

a

0.2 0.4 0.6
σp (ħk)

0.4

0.7

1

R
em

ai
ni

ng
 fr

ac
tio

n

c

0

0.3

0.6

N
or

m
al

iz
ed

 p
op

ul
at

io
ns

b

-4 0 4

Momentum order (ħk)

FIG. 3. Robustness of the Floquet state preparation.
(a) For a given acceleration sequence, the Floquet state de-
pends on the initial atom momentum p0. The insets show the
Floquet states for p0 = 0ℏk and 0.3ℏk. (b) Histogram of the
momentum state distribution of the theoretical Floquet states
|w0(p0)⟩ averaged over the momentum distribution f(p0) and
experimentally prepared Floquet states. Green circles (resp.
blue squares) correspond to the state obtained with the ro-
bust preparation (resp. non-robust). Lower panel: Image
of the prepared Floquet state with the robust preparation.
(c) Remaining fraction of accelerated atoms at 20ℏk for robust
Floquet state preparation in |w0⟩ (green circles) and without
robust optimization (blue squares) as a function of the mo-
mentum dispersion σp of the atomic cloud. Error bars are
a statistical standard error of the mean over 20 realizations.
The above examples correspond to an acceleration sequence
based on tanh pulses of 8 µs.

of momentum values, up to an acceleration-deceleration
of 600-600ℏk (i.e. a total transfer of 1200ℏk). Figure 4
shows the measured fraction of remaining atoms for two
different acceleration sequences, one based on tanh pulses
with a duration of 8 µs and the other on square pulses
with a duration of 5.3 µs. We fit these data with a func-
tion P0 · P 2NF , where NF is the number of acceleration
pulses. The parameter P0 mainly represents the overall
efficiency of the OC-1 and OC-2 stages and P is an effec-
tive pulse-to-pulse efficiency of the acceleration process.
We achieve an efficiency per ℏk (

√
P ) of 0.99945(5) (resp.

0.9990(2)) for the square (resp. tanh) pulse sequence.

The observed efficiency is the highest reported to
date [31, 42–44]. In addition, there is potential for im-
provement by mitigating spontaneous emission, a signif-
icant limitation as shown in Fig 4, by increasing laser
detuning and power [45]. Another important factor to
consider is amplitude fluctuations. Numerical simula-
tions show that pulse-to-pulse fluctuations, characterized
by a standard deviation of 4% (typical in our setup), can
account for the observed efficiency. This problem can be
mitigated by laser power stabilization techniques. This
suggests that the intrinsic efficiency of Floquet accelera-
tion allows the realization of large momentum transfers
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Time

FIG. 4. Floquet Accelerator momentum transfer. Frac-
tion of remaining atoms after up to 600ℏk acceleration and
600ℏk deceleration. The red squares (resp. green circles)
correspond to a square (resp. tanh) pulse sequence. Error
bars are a statistical error on the mean over 20 realizations.
Solid lines show fits to the data with the function P0 · P 2NF ,
and the shaded areas indicate numerically estimated losses
due to spontaneous emission (dark blue) and pulse-to-pulse
amplitude fluctuations with a 4% standard deviation (light
blue). Inset: Scheme of the acceleration-deceleration sequence
of 2×NF -pulses showing the OC preparation sequences.

in regimes well above 1000ℏk.
The demonstrated 2× 600ℏk momentum transfer with

an efficiency of 0.5 is achieved in 3.6 ms, including four
OC pulses of 100 µs each. Two of them are used here to
reverse the direction of acceleration, allowing the atoms
to return at a detectable velocity (see inset in Fig. 4).
This results in an average momentum transfer of ℏk every
3 µs, the largest acceleration demonstrated so far with
multi-photon transitions.

Large Momentum Transfer Atom Interferometer

We implement the Floquet accelerator in an LMT in-
teferometer (see Fig. 1(b)). The π/2 beam splitters used
in the interferometer create two arms with a momentum
separation of only 2ℏk. To effectively implement Floquet
accelerations in a LMT interferometer, it is essential to
maintain decoupling between the acceleration processes
in each arm. However, the Floquet state |w0⟩ is typ-
ically decomposed over many momentum states as can
be seen, e.g. in Fig. 3(b). Thus, during the early accel-
eration stage, when the momentum difference between
the two interferometer arms is minimal, typically only a
few ℏk, the momentum components of the Floquet state
of the accelerated arm would coincide with those of the
unaccelerated arm. This overlap leads to a significant
reduction of the LMT beam splitter efficiency. To miti-
gate this effect, one needs to tailor an efficient initial two
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FIG. 5. Floquet accelerator-based atom interferom-
eter. (a) Momentum-time diagram of the composite beam
splitter: π/2 Bragg pulse, 10 CEBS pre-acceleration and 289
Floquet acceleration pulses leading to 600ℏk. Green dots
represent momentum states populated during the sequence.
(b) Fringes for 600ℏk LMT-interferometer. Each point is the
averaged measurement over around 10 realizations and error
bars are the standard errors on the mean. The solid line is a
sinusoidal fit to the data.

ports beam splitter reaching a sufficient momentum sepa-
ration such as high order Bragg diffraction [35, 38], Bloch
acceleration [23], shaken-lattice beamsplitters [46], or ad-
ditional OC pulses [36, 37]. We choose to implement this
pre-acceleration strategy (see Fig. 5(a)) using Coherent
Enhancement of Bragg Sequences (CEBS) [29] until the
momentum difference δp between the interferometer arms
reaches 22ℏk, corresponding to the combined momentum
transferred by the π/2 pulse and the 10 CEBS pulses.
The latter pulses used in the pre-acceleration stage have a
duration of 40 µs, ensuring that only a very limited num-
ber of momentum states are populated during each pulse.
We then switch to Floquet acceleration for the remainder
of the acceleration sequence. Therefore, the maximum
momentum separation is 2Nℏk = (22 + 2NF )ℏk.

The interferometer signal is the normalized atom
numbers detected in the two main output ports:
S = N0/(N2 + N0), where N2 is the number of
atoms measured in output port −2ℏk, and N0 is as-
sociated with port 0ℏk. The interference fringe be-
tween the two arms is described by a sinusoidal function
S(ϕ) = A(1 + V sin(ϕ)), where V is the fringe visibil-
ity and A is the mean value. The phase shift ϕ can be
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varied with the phase of the optical lattice, which is im-
printed on the accelerated atomic wavefunction at each
pulse transferring a momentum 2ℏk. In practice, an off-
set φl of the optical lattice phase is applied during the
NF Floquet acceleration pulses, resulting in a phase shift
ϕ = NF × φl. The fringe is scanned by incrementing φl.
The visibility is determined by fitting the amplitude of
the sinusoidal function. The scaling with NF provides a
compelling evidence that the interference is specific to the
fully separated interferometer and not to signals associ-
ated with parasitic interferometers (see Methods). Thus,
we demonstrate an atom interferometer with a separation
of 600ℏk and a visibility of 18 % ± 4% (see Fig. 5(b)).
This achievement represents the largest momentum sep-
aration ever achieved in an atom interferometer. The
visibility value is mainly limited by atoms undergoing
spontaneous emission reaching the detection volume and
by background noise within the detection system. In ad-
dition, the maximum momentum separation results from
the inherent time-of-flight constraints of our experimen-
tal setup (see inset of Fig. 1(d)).

Discussion

In conclusion, our work introduces a novel approach
that combines Floquet formalism and optimal control
protocols to accelerate atoms in optical lattices, cover-
ing both continuous and discrete acceleration scenarios.
This method operates in a highly non-adiabatic regime,
allowing accurate control of atomic phases. In particu-
lar, we identify a remarkable regime characterized by a
constant amplitude and a discrete lattice frequency evo-
lution. Our approach achieves unprecedented efficiency
and speed in lattice-based acceleration, resulting in the
highest and fastest demonstrated maximum momentum
separation of 600ℏk in atom interferometry. The momen-
tum separation is limited only by the dimensions of our
vacuum chamber.

Despite this already high efficiency, a major limita-
tion of our setup, spontaneous emission, could be over-
come by increasing the detuning with the excited state,
while maintaining the same lattice depth with more laser
power. In addition, we show that the Floquet state can
be accurately approximated by a squeezed state. This
simple parameterization could allow refinement of the
acceleration sequence, leading to improved robustness of
matter-wave beam splitters, especially with respect to
laser power fluctuations and a fine control of systematic
effects associated with the atomic diffraction phase shifts.
Therefore, this method has the potential to support in-
terferometers well beyond 1000ℏk, opening new avenues
for future applications in precision metrology, quantum
technologies, and addressing one of the critical challenges
for very large scale atom interferometers envisioned for
gravitational wave detection.

These results not only advance applications in atom in-
terferometry but also introduce an innovative approach

that extends the capabilities of quantum optimal control
to navigate high dimensional Hilbert spaces [33, 47]. In
our approach, we encapsulate the complexity within a
Floquet state, allowing both remarkably fast and robust
state-to-state preparation within a vast 300-dimensional
Hilbert space. The ability to precisely manipulate quan-
tum states in such complex systems has great potential
for quantum technologies, either for sensing or for quan-
tum computing and simulation [47–49]. Therefore, be-
yond applications in atom interferometry, our approach
provides an effective method in the quantum control tool-
box.
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METHODS

A. Quasi-Bragg Diffraction in a Nutshell

The optical lattice consists of two counter-propagating
beams, characterized in the laboratory reference frame
by their frequencies (ω1,2), their opposite wave vectors
(k1,2) with k1 ∼ −k2, and a phase (φ1,2). The phase
and frequency differences between these two beams are
denoted by φ = φ1 − φ2 and ωl = φ̇ = ω1 − ω2, and
the mean wave vector is defined as k = (k1 + k2)/2.
When these two waves are superimposed, they form a
quasi-stationary wave moving with a velocity v = ωl/2k
relative to the laboratory reference frame.

The laser is detuned far from the frequencies of the
atomic transitions, allowing for adiabatic elimination of
the excited state. The atom-light interaction is then
reduced to a light shift proportional to the light inten-
sity. This leads to an interaction potential of the form
2ℏΩ(t) sin2(kz − φ(t)/2), where Ω(t) represents the two-
photon Rabi frequency. The Hamiltonian describing the
evolution of the atom is the sum of a kinetic energy
term, and the potential associated with the standing
wave (see Supp. Mat.)

Ĥ2 =
1

2M

(
p̂− Mωl

2k
−Mgt

)2

− ℏΩ(t)
2

(
e2ikẑ + e−2ikẑ

)
.

The operators e±2ikẑ couple momentum states differ-
ing by 2ℏk. The periodic potential can thus be inter-
preted as a two-photon process in which a photon is ab-
sorbed in one traveling wave and re-emitted by stimu-
lated emission in the other wave, resulting in a 2ℏk mo-
mentum transfer. Energy conservation leads to the two-
photon Bragg resonance condition: ωl = 4ωr + 2kva,
where va is the projection of the atomic velocity onto
the lattice direction in the laboratory reference frame.
Here, the optical lattice is vertical and the atoms are in
free fall. Consequently, a time-dependent frequency ramp
ωl(t) = 4ωr+2kv0−2kgt = ω−2kgt is set to compensate
for the acceleration due to gravity and to maintain the
Bragg condition, ω is the lattice frequency in the free fall
frame.

For weak optical lattice depths, the dynamics of the
system is described by an ”effective two-level system”
(Bragg approximation). Under these conditions, we ob-
serve Rabi oscillations between two momentum states
separated by 2ℏk. The Rabi phase is defined as ΘR =∫
Ω(t)dt, for ΘR = π/2 (resp. π) the corresponding

pulse is called a π/2 pulse (resp. π pulse). In the Bragg
regime, a π/2 pulse creates an equiprobable coherent su-
perposition similar to a beam splitter for the atomic wave
function. A π pulse reverses the two momentum states,
essentially acting as a mirror for the atoms. For larger
lattice depths, the Bragg approximation breaks down, re-
quiring consideration of more complex dynamics between
momentum states [38].

B. Experimental setup

Cold atom source

The atomic source consists of an ensemble of
Rubidium-87 atoms cooled by forced evaporation in an
all-optical trap. The configuration of this dipole trap is
based on two horizontally crossing beams at 1070 nm,
plus a third beam at 1560 nm at an angle of 45◦ to
the vertical, with a smaller waist. This configuration
allows the trapping frequencies and trapping depth to
be adjusted independently, and the runaway regime to
be achieved during evaporative cooling. In addition, a
horizontal magnetic field gradient is applied during the
evaporative cooling process to prepare the condensate in
the pure |F = 1,mF = 0⟩ state. In 6 seconds we pro-
duce a Bose-Einstein condensate (BEC) consisting of
6 × 104 atoms. Confinement frequencies at the end of
evaporation reach about (60×900×1100) Hz3. By trans-
ferring the BEC to a less confining trap, characterized by
frequencies around (10× 80× 80) Hz3, we achieve a sig-
nificant reduction in the velocity dispersion. This allows
us to obtain atomic ensembles of 3 × 104 atoms with a
momentum dispersion of about 0.3ℏk (corresponding to
an effective temperature of 30 nK).
For the data presented in Fig. 3(c), we adjust the mo-

mentum distribution either by adding a delta kick colli-
mation step (for the data below 0.3ℏk) or by changing
the trap parameters during the final evaporative cooling
steps.

Optical lattice

Our 780 nm-optical lattice is made by frequency dou-
bling of a 1560 nm-laser. The resulting 780 nm-beam
is split into two to form the arms of a standing light
wave used to create the optical lattice. The phase and
frequency of each arm are controlled using a acousto-
optic modulator in a double-pass configuration. The
two beams are then recombined with orthogonal linear
polarizations and coupled through a fiber. An addi-
tional acousto-optic modulator at the fiber output con-
trols the amplitude of the two beams. The vertically
aligned beams are retroreflected to create a standing light
wave that forms the optical lattice. This retroreflected
configuration implements a double lattice with opposite
effective wave vectors and orthogonal circular polariza-
tions, as described in detail in [38]. The Bragg tran-
sitions for both lattices are degenerate for a vanishing
relative atom-lattice velocity. However, a brief free fall
induces a Doppler shift that causes one lattice to go out
of resonance. Each lattice operates at an approximate
power of 250 mW, with a fixed detuning of 40 GHz from
the atomic resonance. At the atom positions, the waist
measures approximately 1.6 mm, resulting in a maximum
lattice depth characterized by the peak two-photon Rabi
frequency Ωmax = 25ωr.



8

The relative atom-lattice velocity is set by the fre-
quency difference between the two beams that form the
lattice [38]. A frequency chirp is systematically added
to the frequency difference profile to compensate for the
atomic free fall and create a quasi-standing wave in the
free fall frame.

Detection

Atoms are measured through fluorescence imaging af-
ter time-of-flight. Given the typical velocity dispersion
of the atomic cloud, the final free fall time must be
larger than 14 ms to separate the two adjacent momen-
tum states distant from 2ℏk. The fluorescence beams are
the laser beams used for initial laser cooling brought at
resonance. The beam waist of 7 mm, and the limited
field of view of the camera limit the detection volume
to a typical size of less than 1 cm and thus the overall
available time of free-fall to ∼ 45 ms.

For all the data, the population in each momentum
state is measured as the fluorescence signal integrated
over a square box, typically 60 µm of size, centered on
the center of mass position of the considered state. For
the data presented in Fig. 3 and 4, the populations are
normalized to the total atom number of a free fall BEC at
the same position on the camera without any interaction
with the optical lattice. For Fig. 5, data are normalized
to the sum of the populations in the two main output
states.

C. Visibility measurements and analysis

Interferometer fringe data (see Fig. 5) are
fitted with the following function: N0

N0+N2
=

A (1 + V sin (Kφl + φ0)), where the offset A, the
visibility V and the offset phase φ0 are the three fitted
parameters. K is a known scaling factor with the phase
jump φl (see below).
For this measurement procedure, the positions of the

two boxes measuring the populations in the two output
ports are slightly adjusted within the cloud size to opti-
mize the signal-to-noise ratio of the fitted visibility. The
position changes have a marginal effect on the detected
atom number or on the value of the fitted parameter (vis-
ibility and offset phase).

The statistical significance of the fitted visibility has
been checked. We have simulated a large number (Ns =
106) of fully random datasets (with exactly zero visibil-
ity) each with the same size as the measurements repre-
sented in Fig. 5(b). The variance of the normal distribu-
tion corresponds to the observed detection noise. Each
dataset is then analyzed with the same procedure for
the presented measurement from which we construct a
number V/σV where V is the fitted visibility and σV
the corresponding uncertainty. From the histogram of
the Ns values of V/σV , we compute the complementary

cumulative distribution function. For a given value x,
this function is the probability to obtain a fitted V/σV
larger or equal to x on a random dataset. Evaluating the
complementary cumulative distribution function of the
measured value of V/σV (i.e. x = 4.8) gives the prob-
ability to fit a value at least as extreme from a dataset
with zero visibility. For the presented measurement, we
estimate this probability to be less than 10−5, which sig-
nificantly rejects the no visibility hypothesis.
To further strengthen the visibility measurement, we

performed experiments with the same maximum momen-
tum separation 2Nℏk = (22 + 2NF )ℏk but changing the
scaling factor K. It corresponds to the number of accel-
eration pulses that experience the phase jump φl among
the NF pulses of the acceleration sequence (see extended
data Fig. 6(a)). Figure 6(b) shows the same data pre-
sented in Fig. 5(b) with K = NF = 289. Fringes for
K = 200 and K = 100 are also given in Fig. 6(c) and
(d) respectively. The three measurements show a sinu-
soidal behavior with the expected scaling with the phase
jump and consistent fitted visibilities (V = 18 ± 4% for
K = 289, V = 27±5% for K = 200 and V = 21±4% for
K = 100). It confirms that the visibility measurement
is not biased by parasitic interferometers at this level of
uncertainty.

D. Interferometer sequence

The full interferometer sequence is illustrated in
Fig. 6(a). It starts with a first beam-splitter creating the
coherent superposition between momentum states |p0⟩
and |p0 − 2ℏk⟩. The lower arm is further accelerated by
a serie of pre-acceleration pulses using the CEBS. The
state is then sufficiently separated from |p0⟩ (upper arm)
to be transformed into the Floquet state by the prepara-
tion pulse OC-1 and accelerated by a serie of NF pulses.
A second preparation pulse OC-2 transforms it back to
the fully accelerated state. A free evolution time T ′ is
added before the symmetric deceleration sequence. In
practice, for the experiments reported in this paper, T ′

remains small (below 1 ms). After a central miror pulse
exchanging the momentum states, the interferometer is
closed by a symmetric sequence addressing the upper arm
and a final beam splitter.

Beam splitter, mirror and pre-acceleration pulses

Except for the OC preparation sequences and Floquet-
acceleration pulses, for which the shape are dis-
cussed in the dedicated sections, all the pulses use
hyperbolic tangent amplitude profiles Ω(t) = Ω0 ×
max {0, tanh (8t/τ0) tanh (8(1− t/τ0))} where τ0 is the
total duration of the pulse and Ω0 the peak Rabi fre-
quency. In particular, the beam splitter (resp. mirror)
pulses have a duration τ0 = 50 µs (resp. τ0 = 60 µs)
and the corresponding amplitude Ω0 to produce the ex-
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FIG. 6. Extended data: Floquet accelerator-based
atom interferometer. (a) Schematic representation of the
interferometer sequence. The phase jump φl is applied during
the K last Floquet acceleration pulses of the first acceleration
sequence. (b)-(d) Fringes for a maximum momentum sepa-
ration of 600ℏk for three different scaling of the phase. Dots
are mean values of the normalized population over around 10
realizations and the error bars are the corresponding standard
errors on the mean. (b) The phase jump φl is applied during
all the Floquet acceleration pulses of the first acceleration se-
quence (K = 289) . (c) and (d) Same as (b) but with K = 200
and K = 100, respectively.

pected Rabi phase when coupling momentum states |0⟩
and |−2ℏk⟩ at the two-photon resonance. Similarly, the
pre-acceleration pulses using the CEBS technique are
mirror pulses with the same amplitude profile of dura-
tion 40 µs following the accelerated trajectory.

Robust optimal control

We use optimal control theory [32] and a gradient-
based algorithm, GRAPE [50], to design the control
pulses OC-1 and OC-2. The optimal control problem
is to maximize the figure of merit F1 defined as

F1 =

∫ +∞

−∞
|⟨ψ(τc)|w0(p0)⟩|2f(p0)dp0,

0 25 50 75 100
Time (μs)

0

12

Ω
/ω

R

a

0

-3.3ω
/ω

R

b

−π/3 0 π/3

-4

0

4

p/
ħk

c

−π/3 0 π/3 −π/3 0 π/3
kz

−π/3 0 π/3 −π/3 0 π/3

FIG. 7. Extended data: Optimal control profiles for
Floquet state preparation. (a)-(b) Amplitude and fre-
quency profiles used to prepare the Floquet state |w0⟩ for a
square pulse sequence of period τ = 5.3 µs. (c) Evolution of
the state during the OC preparation sequence in the Husimi
representation. The initial state (for t = 0) is the plane wave
|p0⟩. The target Floquet state |w0⟩ is obtained at t = 100 µs
and is very similar to a displaced squeezed state in phase
space.

where |ψ(t)⟩ is the solution of the Schrödinger equation
at time t in the free fall frame for a given value of the
parameter p0 and τc the duration of the optimal con-
trol. Note that one could define a different figure of merit
that takes into account the phase of |w0(p0)⟩ (see Supp.
Mat.). The algorithm optimizes both the amplitude and
the frequency of the optical lattice over time to achieve
the expected target fidelity. The corresponding control
solution is said to be robust to p0 in the sense that the
same control protocol is used for all values of this parame-
ter in the range [−3σp, 3σp]. Details about the numerical
implementation can be found in the Supp. Mat.

In this study, we considered a given acceleration se-
quence corresponding to a Floquet state |w0⟩ and trans-
formed the input state to this Floquet state using optimal
control protocols. This solution is the most efficient and
provides the highest momentum transfer rate. However,
there is another optimization strategy based on Floquet
analysis, which is to apply optimal control algorithms to
design pulses (amplitude and frequency) of the accelera-
tion sequence itself. This pulse shaping aims to generate
a Floquet state with a significant overlap with the initial
momentum state |p0⟩ ≈ |w0⟩. This strategy has resulted
in a less efficient and much longer acceleration sequence.

Example of OC preparation sequence

Figure 7 gives an example of the OC pulse designed for
a Floquet acceleration based on square amplitude with a
duration τ = 5.3 µs. The total duration of the OC prepa-
ration sequence is constrained to 100 µs. Extensive nu-
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merical simulations show that this time is a good compro-
mise between efficiency of the process and the relatively
simple shape of the optimal pulse. The time evolution of
the state during the OC pulse is illustrated in Fig. 7(c). It
is continuously transformed from a non-localized initial

plane wave |p0⟩ to the target Floquet state |w0⟩, simi-
lar to a displaced squeezed state in phase space. Note
that the reverse OC sequences used in this work (labeled
OC-2 in the main text) have a similar global shape and
are close to the time-reversal of the profiles displayed in
Fig. 7.
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[29] A. Béguin, T. Rodzinka, L. Calmels, B. Allard, and
A. Gauguet, Atom Interferometry with Coherent En-
hancement of Bragg Pulse Sequences, Phys. Rev. Lett.
131, 143401 (2023).

[30] M. Gebbe, J.-N. Siemß, M. Gersemann, H. Müntinga,
S. Herrmann, C. Lämmerzahl, H. Ahlers, N. Gaaloul,
C. Schubert, K. Hammerer, S. Abend, and E. M. Rasel,
Twin-lattice atom interferometry, Nature Communica-
tions 12, 2544 (2021).

[31] T. Wilkason, M. Nantel, J. Rudolph, Y. Jiang, B. E.
Garber, H. Swan, S. P. Carman, M. Abe, and J. M.
Hogan, Atom Interferometry with Floquet Atom Optics,
Phys. Rev. Lett. 129, 183202 (2022).

[32] U. Boscain, M. Sigalotti, and D. Sugny, Introduction to
the Pontryagin Maximum Principle for Quantum Opti-
mal Control, PRX Quantum 2, 030203 (2021).

[33] C. P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Fil-
ipp, S. J. Glaser, R. Kosloff, S. Montangero, T. Schulte-
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