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Résumé

Les expériences d’interférométrie à ondes de matière ont marqué une avancée dans l’étude
expérimentale de la physique quantique, permettant de dépasser les simples expériences de
pensée. À Toulouse, nous développons des interféromètres atomiques dont la particularité réside
dans une grande séparation spatiale entre les bras de l’interféromètre. Cette caractéristique
o�re possibilité de contrôler les potentiels électromagnétiques et gravitationnels le long des bras
de l’interféromètre, ouvrant ainsi de nouvelles perspectives dans le domaine de la physique
fondamentale.

Nous avons développé un interféromètre exploitant un jet supersonique de lithium et la dif-
fraction de Bragg sur une onde laser stationnaire. La distance maximale entre les deux chemins
atomiques dans cet interféromètre est d’environ 100 micromètres, ce qui permet l’insertion d’un
septum (une fine feuille d’aluminium) entre ces deux chemins. Cela nous a permis d’appliquer
des champs électriques et magnétiques distincts sur les deux bras de l’interféromètre. Ces fonc-
tionnalités ont été exploitées dans une série d’expériences à visée métrologique, telles que la
mesure de la polarisabilité électrique du lithium, ou dans l’exploration de phénomènes quan-
tiques, tels que les phases géométriques He-McKellar-Wilkens et Aharonov-Casher, ou encore la
modulation de phase des ondes atomiques du lithium.

Nous travaillons actuellement sur le développement d’un nouvel interféromètre atomique
utilisant des condensats de Bose-Einstein de rubidium manipulés à l’aide d’un réseau optique
vertical. Pour augmenter la séparation entre les bras de l’interféromètre, nous explorons une
solution fondée sur l’utilisation de séparatrices dites à grands transferts d’impulsion (LMT). Dans
ce contexte, je présente une nouvelle technique reposant sur une séquence d’impulsions laser dans
le régime de di�raction de quasi-Bragg. Nous avons démontré des mesures interférométriques
avec un transfert total de 200 ~k. Ce travail a des applications dans le développement de capteurs
inertiels. De plus, de tels interféromètres, avec des séparations spatiales macroscopiques, ouvrent
la voie à de nouveaux types d’interféromètres atomiques envisagés pour des tests de physique
fondamentale, tels que la recherche de matière noire, les tests de neutralité atomique et les tests
de gravitation.

Mots clés : Interférométrie atomique, Physique quantique expérimentale, Atomes ultra-froids
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Abstract

Matter-wave interferometry experiments are a milestone in the experimental study of quan-
tum physics, allowing to go beyond simple thought experiments. In our group in Toulouse, we
are developing atom interferometers with a high degree of spatial separation between the arms
of the interferometer. This feature makes it possible to control electromagnetic and gravitational
potentials along the interferometer arms, opening new perspectives in fundamental physics.

An interferometer using a supersonic lithium beam and Bragg di�raction on a stationary
light wave has been developed. The maximum separation of the two atomic paths in this interfe-
rometer is about 100 micrometers, which allows the insertion of a septum (a thin aluminum foil)
between the two atomic paths. This configuration enables di�erent electric and magnetic fields
to be applied to the two paths. These possibilities have been exploited in a number of metrolo-
gical experiments. For example, the electrical polarizability of lithium has been measured, and
quantum phenomena such as the He-McKellar-Wilkens and Aharonov-Casher geometric phases
and the phase modulation of lithium atomic waves have been studied.

We are currently developing a new atom interferometer using Bose-Einstein condensates of
rubidium manipulated with a vertical optical lattice. An attractive solution to increase the arm
separation is to use large momentum transfer (LMT) beamsplitters. I present a promising tech-
nique based on a sequence of laser pulses in the quasi-Bragg di�raction regime. In particular,
we have demonstrated interferometers with a total transfer of 200 ~k. This work has applica-
tions in the field of quantum technologies with the development of inertial sensors. In addition,
interferometers with macroscopic spatial separations pave the way for new atomic interferome-
ters proposed in various fundamental physics tests, such as the search for dark matter, atomic
neutrality tests, and gravitational tests.

Keywords : Atom interferometry, Experimental quantum physics, Ultra-cold atoms
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Chapitre 1
Summary of the work

All in all it is just
Another brick in the wall.

Pink Floyd

T
his thesis summarizes my research activities at the Laboratoire Collisions Agrégats et Réac-
tivité (LCAR) since I was recruited as a lecturer at Paul Sabatier University in 2010. My

research focuses on the development of atom interferometers for precision measurements, with
applications in geophysics, navigation and fundamental physics. As some of my research work
prior to 2010 is directly related to atom interferometry and metrology, I begin this chapter with
a brief description.

My research activity started in 2004 with my PhD thesis in the "Atom Interferometry and
Inertial Sensors" group of the SYRTE (SYstème Référence Temps Espace) laboratory, under the
supervision of Philip Tuckey and Arnaud Landragin. My thesis focused on the characterization
of a gyroscope based on the measurement of the Sagnac e�ect with cold atoms. The experiment
is based on the di�erential measurement of the interference signals of two atom interferometers
sharing the same laser beams. The main results concern an improvement of the sensitivity of the
atom interferometer and an evaluation of the accuracy of the rotation measurements. This work
confirmed the utility of cold atoms for controlling systematic e�ects. When I defended my thesis
in 2008, few studies had been published on the metrological limits of dual interferometers, so this
work contributed to the dimensioning of large-scale instruments based on dual interferometers,
such as those intended for gravitational testing, gravitational wave detection, or geophysical
measurements.

During the academic year 2007-2008, I worked as an ATER (attaché temporaire d’enseigne-
ment et de recherche) at the University Paris 13 in the "Metrology, molecules and fundamental
tests" team at the Laboratoire de Physique des Lasers (LPL). Under the supervision of Chris-
tophe Daussy, I participated in the determination of the Boltzmann constant by measuring the
Doppler broadening of a molecular absorption line. The spectroscopy was performed in the mid-
infrared, around 10 µm, in a low-pressure molecular ammonia gas placed inside a thermostat.
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Chapitre 1. Summary of the work

I then spent two years (2008-2010) as a postdoctoral fellow at Durham University in the group
of Charles Adams, where we demonstrated the possibility of "cooperative optical nonlinearities"
induced by dipole-dipole interactions between Rydberg atoms. A first experimental setup based
on optically induced transparency (EIT) allowed us to demonstrate these cooperative optical
nonlinearities induced by interactions between atoms. I also designed and set up an experiment
to trap atoms in a micrometric optical trap to achieve the Rydberg blockade regime. This
experiment allowed us to demonstrate optical single photon trapping in the form of Rydberg
polaritons and their manipulation by microwave fields.

In 2010, I joined the LCAR atom interferometry group led by Jacques Vigué. We used a
large spatial separation interferometer based on a supersonic beam of lithium atoms to study
He-McKellar-Wilkens and Aharonov-Casher geometric phase shifts, matter wave beating, de-
coherence, and measurements of electrical polarizabilities. These experiments are presented in
Sec.3.

Since 2015, the team I lead has focused on the study of atom interferometers using Bose-
Einstein condensates manipulated by optical lattices. I supervise two experimental setups. The
first focuses on interferometers with very large spatial separation. These interferometers are used
in fundamental physics to test the foundations of quantum physics and its relation to gravity,
the neutrality of matter, and models of energy and dark matter. The device we are developing
o�ers a new approach to these tests by using geometric phase shifts. The second is to develop
on-chip Bose-Einstein condensate sources with a view to space missions using cold atoms.

Figure 1.1 summarizes the main experimental setups I’ve worked on since my recruitment
in Toulouse, the corresponding research contracts, and the Ph.D. students I’ve supervised. In
September 2016, Baptiste Allard was recruited as a lecturer in the team. Together, we provide
the scientific leadership of the team.

In addition to this general presentation, the manuscript consists of four chapters. Chap-
ter 2 gives a historical overview of the field and introduces the basics of atom interferometry.
Chapter 3 presents the results obtained with the lithium interferometer. Chapter 4 presents the
development of the new interferometer and the prospects in terms of performance limits, as
well as a number of applications, in particular for matter neutrality testing. I also present the
technological developments of on-chip ultracold atom sources that we are carrying out in the
laboratory.
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Chapitre 2
Basic concepts of atom interferometry

Bazinga!

Sheldon Cooper

This chapter presents the context of my research on atom interferometry. Atom
interferometry was first published in 1991. Since then, it has developed very rapidly,
thanks in particular to developments in atom cooling techniques, which have made
entirely new experiments possible. This chapter briefly introduces the basics of atom
interferometry and some of the recent advances that have inspired me.

Objectifs

Sommaire

1 Principles of atom interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Matter-wave interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Two-wave atom interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Atomic Beamsplitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Atom Interferometers: Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 A brief introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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1. Principles of atom interferometry

1 Principles of atom interferometry

1.1 Matter-wave interferometer

Optical interferometry developed throughout the 19th century, with the work of Young, Fres-
nel, Fizeau, and Michelson, to name just a few famous names. After the discovery of quantum
physics by L. de Broglie [De Broglie, 1924], E. Schrödinger [Schrödinger, 1926] and W. Hei-
senberg [Heisenberg, 1925], the idea of the matter wave optics developed very rapidly. These
theoretical predictions were confirmed for electrons three years later by the observation of elec-
tron di�raction in two independent experiments by G. P. Thomson at the University of Aberdeen
[Thomson, 1928] and by C. J. Davisson and L. H. Germer at Bell Laboratories [Davisson, 1927].
In 1930, di�raction experiments with atoms were performed by I. Estermann and O. Stern
[Estermann, 1930]. These experiments contributed to the development of matter-wave interfe-
rometers, first with electron interferometers [Marton, 1952 ; Möllenstedt, 1955] and then with
neutron interferometers [Rauch, 1974]. A detailed history of these developments is given in the
book [Rauch, 2015].

Atom interferometry has its roots in studies of coherent manipulation of the internal states
of atoms, in particular Ramsey’s separate-field excitation [Ramsey, 1950] 1, as well as advances
in optical spectroscopy and the need to consider the quantization of the external degrees of
freedom of atoms. These advances led to the first atom interferometers in the late 1980s. Four
pioneering experiments, all published in Physical Review Letters (PRL), marked this advent.
These included an experiment using Young’s slits [Carnal, 1991], an interferometer exploiting the
di�raction by material nanograting of a supersonic beam [Keith, 1991], an interferometer based
on Raman di�raction of cold atoms [Kasevich, 1991], and finally a Ramsey-Bordé interferometer
using a thermal beam and single-photon transitions [Riehle, 1991]. Details of these advances
can be found in various books and review articles [Berman, 1997 ; Mi�re, 2006a ; Cronin, 2009 ;
Tino, 2014]. Before discussing certain aspects of atom interferometry, it is worth mentioning the
advances in matter-wave interferometry, where more complex objects, such as macromolecules,
have been successfully used [Fein, 2019 ; Brand, 2020], contributing in particular to the search
for either the limits of quantum mechanics or the ultimate processes of matter-wave decoherence
[Arndt, 2014].

1.2 Two-wave atom interferometer

Most recent atom interferometers share similarities with two-wave optical interferometers
(see figure 2.1). In both cases, an incident wave is coherently split into two paths by a first
beamsplitter and interferes at a last beamsplitter. The populations in the output states depend
on the phase in each of the output ports. In the case of a two-wave interferometer, the popu-
lation measured at one of the two interferometer outputs oscillates as a function of the phase
accumulated between the two interferometer paths:

P = P0
#
1 + V cos(�„)

$
(2.1)

1. This technique was later reinterpreted as a real atom interferometry experiment [Bordé, 1984].
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Chapitre 2. Basic concepts of atom interferometry

Figure 2.1 – Principle of a two-wave interferometer. a) In optics, a laser beam is split along two
paths and, after reflection at mirrors, converges on a 2nd splitter, which recombines the beams
and closes the interferometer. b) In an atom interferometer, matter waves are manipulated
coherently using di�raction gratings (material or light).

P0 is the average detected signal and V = Pmax≠Pmin
Pmax+Pmin

is the visibility.
By measuring the atomic populations at the output, we can determine the phase shift between

the two arms and thus the interaction potentials responsible for this phase shift. To calculate
these phase shifts as a function of the interaction potentials, several approaches are available.
The most common approach is to calculate the propagator in the position space representation
using a semi-classical approximation [Bordé, 1990 ; Pippa Storey, 1994 ; Bongs, 2006]. In the case
of interaction potentials at most quadratic in r and p, exact solutions are available [Bordé, 1990 ;
Antoine, 2003]. This approach has been incorporated into a five-dimensional formalism corres-
ponding to propagation in ordinary space-time plus one dimension corresponding to proper time
[Bordé, 2008]. Despite its complexity, this formalism, to which C.J. Bordé devoted his e�orts
until the end of his life, sheds new light on the significance of atom interferometry measurements
within the framework of general relativity [Jaekel, 2013 ; Overstreet, 2023]. Consequently, it is
of great significance for understanding new proposals to test general relativity with atom inter-
ferometers [Lamine, 2002 ; Dimopoulos, 2007 ; Zych, 2011 ; Loriani, 2019]. These ideas are also
explored using descriptions based on operator evolution, without the need for specific represen-
tations [Kleinert, 2015]. As the accuracy of the interferometer improves, theoretical models must
include e�ects that are increasingly complex to describe precisely, such as propagation e�ects
during atom beamsplitters [Antoine, 2006], as well as non-quadratic potentials [Bertoldi, 2019 ;
Ufrecht, 2020 ; Overstreet, 2021], which become significant when the interferometer arms are
very far apart [Bertoldi, 2019 ; Ufrecht, 2020 ; Overstreet, 2021].

The interferometers I describe in this manuscript have a configuration similar to the Mach-
Zehnder interferometer in optics (see figure 2.1). In this configuration, both arms of the interfe-
rometer close regardless of the initial velocity, allowing us to use atomic ensembles characterized
by a broad velocity distribution ‡v (corresponding to a short coherence length › = ~

m‡v
). Fur-

thermore, this geometry is robust to various perturbations, such as constant frequency shifts,
making it attractive for measuring inertial e�ects and interaction potentials applied to each
interferometer arm. Variants of this configuration are used for specific measurements, such as
the Ramsey-Bordé geometry [Bordé, 1984 ; Riehle, 1988 ; Weiss, 1994] for h/m measurements,
as well as more advanced configurations, such as multi-loop configurations, which are of growing
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1. Principles of atom interferometry258 C. J. Bord~ 

~ ,  E a 

--> I P,Ea 

Eb-Ea+h~ 
FIG. 1. Generalized beam splitter and Bragg condition. In the ideal case where the splitter is 

thick enough to have a narrow momentum distribution width Ak << k, because of energy and mo- 
mentum conservation, the incident particle interacts with only one of the two traveling waves and is 
diffracted from channel I to channel II (two-beam approximation). The labels I and II correspond pri- 
marily to a different momentum in each channel: p and p +-- hk but may include also secondary addi- 
tional labels such as the spin projection on a fixed axis or the quantum numbers corresponding to an 
internal state. 

that the process is still elastic (no extra energy is given to translation) and the 
Bragg condition results from the conservation of kinetic energy: 

kef f  9 (p + hkeff/2) = 0 (1) 

from which, the Bragg angle 08 is given by 

sin08 = hdB 
2Ae-~f. (2) 

where hda is the de Broglie wavelength and he f = 2-rr/kee e. 
The only condition required to have a large diffraction angle 0 8 is to have 

matched wavelengths AOB ~ A ff. In neutron interferometers, this matching re- 
sults from the short interatomic distance in the silicon crystal. In atom interfer- 
ometers, it can be obtained by an increase of AOB, which becomes comparable to 
an optical wavelength for cold atoms or, in the future, by using very short optical 
wavelengths in the case of atoms and molecules at ordinary (room) tempera- 
tures. If this is not the case, the two output channels I and II may not be fully re- 
solved in space, but for a number of applications, this is not an obstacle, since 
the extra-label of the internal state a,b may then be used to discriminate between 
I and II. It should be emphasized that the splitting in space occurs only because 
of momentum conservation, not because of a change in the internal state, al- 

Figure 2.2 – Figure taken from C.J. Bordé’s ar-
ticle in the book [Berman, 1997], showing the
exchange of energy and momentum between an
atom and a light wave. For a su�ciently long
interaction, the conservation of energy and mo-
mentum allows us to consider two exit paths (I
and II). An incident atom in its initial state of
energy Ea and momentum p̨ interacts with a
light wave. It can remain in its initial state (path
I), or it can gain momentum ~k̨ and energy ~Ê
by exchange processes with photons of the light
wave and emerge in state II with energy Ea and
momentum p̨ + ~k̨.

interest in metrology [Graham, 2016 ; Sidorenkov, 2020 ; Schubert, 2021].

1.3 Atomic Beamsplitter

To achieve coherent separation of atomic wave functions, atom interferometers first exploited
di�raction from material gratings [Keith, 1991]. Although these approaches are relatively simple
to implement and robust, they su�er from low e�ciency and limited control over the di�racted
states. Today, most metrology experiments use laser-based atom beamsplitters, which have the
advantage of excellent transmission and phase control. In this case, spatial separation is achieved
by momentum exchange during the interaction between the atom and the light field. The prin-
ciple is shown schematically in figure 2.2, taken from the article by C.J. Bordé in [Berman, 1997].
The atom can either remain in the initial |a, p̨Í state of total energy Ea and momentum p̨, or
it can emerge in the

---b, p̨ + ~k̨
f

and gain energy ±~Ê and momentum ±~k̨ by absorption (+)
or stimulated emission (≠) of photons from the light wave. It is possible to distinguish between
inelastic processes that couple two di�erent internal states, such as single-photon transitions
(Figure 2.3(a)) and two-photon Raman transitions (Figure 2.3(b)), and elastic processes, such
as Bragg transitions (Figure 2.3(c)), where the momentum states are coupled without the atom
changing its internal state.

Atomic beamsplitters using single-photon optical transitions, |a, pÍ Ωæ |b, p + ~kÍ (figure
2.3(a)), were already implemented in the first Ramsey-Bordé interferometers [Bordé, 1984 ;
Riehle, 1988]. These beamsplitters use Rabi oscillations between the two coupled states to
control a coherent superposition of the form – |a, pÍ + — |b, p + ~kÍ ei„L . A fi/2 pulse creates
an equiprobable superposition between the two momentum states, thus realizing the equivalent
of beamsplitters for atomic wave functions, while a fi pulse is used to deflect atomic paths with
a probability ideally 100%, thus playing the role of mirrors. It is important to note that these
atomic beamsplitters require long-lived states (e.g., the clock transition in strontium 87) to
avoid losses due to spontaneous emission. In addition, these beamsplitters require strict control
of the optical phase „L, since this phase is transferred to the atomic wave, and the stability
of this phase over the time spent in the interferometer is crucial [Chiarotti, 2022]. This requi-
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Chapitre 2. Basic concepts of atom interferometry

rement necessitates the use of lasers with spectral properties equivalent to those of the best
optical clocks. For this reason, these devices are often referred to as "clock-atom interferome-
ters". Single-photon separators are the subject of renewed interest [Hu, 2017b ; Rudolph, 2020],
especially in the context of dark matter research and gravitational wave detection [Badurina,
2020 ; Schlippert, 2020 ; Abe, 2021].

To circumvent spontaneous emission and mitigate the critical dependence on laser phase
control, one solution is to use multiphoton transitions between long-lived internal ground states
(Figure 2.3(b and c)). The atom interacts with two counterpropagating optical waves of wave-
vectors k1,2, which couple internal ground states |aÍ and |bÍ via an intermediate excited state
|iÍ. This two-photon process is accompanied by a momentum exchange with the two counter-
propagating traveling waves ~(k̨1 ≠ k̨2 ≥ 2~k̨), where the momentum state of the atoms changes
from |p̨Í to

---p̨ + 2~k̨
f
. By choosing a su�ciently large detuning of the lasers with respect to

the optical transition �, it is possible to neglect the population in the intermediate state |iÍ

and thus to reduce the dynamics to an e�ective two-level system between the ground states
|a, p̨Í Ωæ

---b, p̨ + 2~k̨
f
. To create the atomic waves equivalent of mirrors and beam splitters, we

can perform fi and fi/2 laser pulses, as in single-photon transitions.
Among the two-photon transitions, stimulated Raman transitions involve coupling between

two di�erent internal states. In the case of alkali, the two internal states can be the two hyperfine
ground states. The frequency di�erence between these two states is typically several GHz, which
is much larger than the shifts associated with recoil e�ects of a few kHz 2. Consequently, in
contrast to Bragg di�raction, which will be discussed later, it is possible to restrict the dynamics
to an e�ective two-level system |a, p̨Í and

---b, p̨ + 2~k̨
f
. Moreover, the coupling between the two

pulse states implies a dependence of the resonance condition on the atomic velocity due to the
Doppler e�ect. This dependence gives a selectivity of the Raman transitions with respect to the
atomic velocity parallel to k̨. This selectivity increases with the length of the laser pulse used.
Pulses of duration · are characterized by a spectrum whose width is proportional to ·≠1. These
pulses can induce e�cient Raman transitions for initial velocity classes that become larger as ·≠1

increases. In this way, a resonant Raman transition can be achieved for a velocity distribution
whose width is several times the recoil velocity (vr = ~k/m). In addition, Raman transitions
o�er the advantage that the transmitted and di�racted waves are not in the same internal state:
selective detection in the internal state makes it possible to separate the output channels of an
atom interferometer, eliminating the need for spatially separated atom clouds. Currently, Raman
transitions are widely used in atom interferometry for high precision measurements [Gauguet,
2009 ; Hu, 2013 ; Rosi, 2014 ; Fang, 2016 ; Freier, 2016 ; Morel, 2020].

The principle of Bragg transitions is similar to that of Raman transitions. The main di�erence
is that the momentum states are coupled without changing the internal state of the atoms, as
shown in figure 2.3(c). Consequently, to satisfy the resonance condition, it is necessary to tune
the frequency di�erence between the two waves of the optical lattice to multiples of the recoil
frequency Êr/(2fi) (a few kHz). This adjustment can be done with a single laser combined with

2. The recoil frequency associated with the D2 transition, Êr = ~k2
2m , is ≥ 3.77 kHz for rubidium 87 and ≥ 63

kHz for lithium 7.
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Figure 2.3 – (a) Energy momentum diagrams corresponding to a one-photon transition between
two states (a), a Raman transition (b), and a Bragg transition (c).

acousto-optic modulators (AOM) (see chapter 4), or by tilting the standing wave with respect
to the atomic trajectory to induce a Doppler e�ect that compensates for the detuning associated
with the recoil. This tilt angle is known as the Bragg angle, as explained in chapter 3. In addition,
a peculiarity of Bragg di�raction is that it allows coupling to higher di�raction orders associated
with 2n photon transitions |pÍ ¡ |p + 2n~kÍ. However, the two-photon coupling to the next non-
resonant pulse state |p + 2(n + 1)~kÍ shows a relatively small detuning of ”n+1 ≥ 4(n+1)Êr (see
figure 2.4(a)). Consequently, to limit the population in unwanted di�raction orders, the spectral
width of the transition must be well below 4Êr. It is therefore essential to have a source of atoms
with a velocity distribution less than vr to select a single di�raction order. This condition is
also essential to facilitate the spatial separation of the output ports, which is necessary for the
detection of interference fringes, since with the internal state unchanged it is no longer possible
to distinguish the output states other than by their momentum. Despite these limitations, Bragg
di�raction o�ers some interesting features for atom interferometry. Atoms propagate in the same
internal state, which is essential for certain measurements of atomic properties [Décamps, 2020]
that cannot be obtained by spectroscopy, as well as for Aharonov-Bohm-type measurements of
geometric phases (chapter 3). In addition, high-order Bragg di�raction can be used to increase
the separation between the interferometer arms, thereby increasing the sensitivity of inertial
sensors. In addition, as we will see in chapter 4, Bragg di�raction is particularly well suited for
even higher order pulse transfers based on the use of sequences of successive Bragg pulses.

Atomic di�raction through an optical lattice in the quasi-Bragg regime. The dif-
fraction of an atom by an optical lattice formed by a standing wave of light has been the subject
of many theoretical studies. An introduction to the subject can be found in [Meystre, 2001].
A description adapted to the experimental configuration of the chapter 3 can be found in the
thesis of S. Lepoutre [Lepoutre, 2011]. M. Bordoux’s thesis [Bordoux, 2019] and A. Béguin’s
[Beguin, 2023] also deal with Bragg di�raction, but in the context of an experiment with ultra-
cold atoms, described in chapter 4. In the following, I briefly introduce the elements used in the
rest of this manuscript.

The optical lattice consists of two counter-propagating beams, characterized in the laboratory
reference frame by their frequency (Ê1,2), their wave vector (k̨1,2) opposite k̨1 ≥ ≠k̨2, and a
phase („1,2) (see figure 2.4). The frequency di�erence between these two beams is denoted by
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Chapitre 2. Basic concepts of atom interferometry

”Ê = Ê1 ≠ Ê2, and the mean wave vector is defined as k = (k1 + k2)/2. When these two waves
are superimposed, they form a quasi-stationary wave moving with velocity v = ”Ê/2k relative
to the laboratory reference frame.

In our experimental setups, the laser is detuned far from the frequencies of the atomic tran-
sitions, allowing for adiabatic elimination of the excited state. The atom-light interaction is then
reduced to a light shift proportional to the light intensity. This leads to an interaction poten-
tial of the form 2~�(t) sin2(kz ≠ „(t)/2), where �(t) represents the two-photon Rabi frequency.
The Hamiltonian describing the evolution of the atom is the sum of a kinetic energy term, the
potential associated with the standing wave, and a Doppler term corresponding to the relative
velocity between the optical lattice and the atom, denoted ṽ.

H = p̂2

2M
≠ ṽp̂ ≠

~�(t)
2

A

e2ikẑ + e≠2ikẑ

B

(2.2)

The operators e±2ikẑ couple momentum states di�ering by 2~k. The periodic potential can
thus be interpreted as a two-photon process in which a photon is absorbed in one traveling wave
and re-emitted by stimulated emission in the other wave, resulting in a momentum transfer of
2~k. This two-photon process can be repeated n times, transferring 2n photon recoils correspon-
ding to higher di�raction orders, as shown in the figure 2.4. Because of the spatial periodicity of
the Hamiltonian, it is possible to expand the wave function over the plane waves basis {|2l~kÍ}.
In this basis, the Hamiltonian H(t) takes the form of a tridiagonal matrix:

H(t) = 4~Êr

Q

cccccccccccccccca

”≠m “(t) 0 . . . . . . . . . 0

“(t)ú . . . . . . . . . . . . . . . ...

0 . . . 0 . . . . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . . . . ”n

. . . 0
... . . . . . . . . . . . . . . . “(t)
0 . . . . . . . . . 0 “(t)ú ”n+m

R

ddddddddddddddddb

, (2.3)

where Êr is the one-photon recoil frequency, “(t) = �(t)
8Êr

corresponds to the adimensional two-
photon Rabi frequency. The diagonal terms ”l(t) = l2 + lṽ/vr depend on the kinetic energy in
l2 and the velocity ṽ(t) of the lattice relative to the free-falling atoms (in units of vr = ~k/m ):

ṽ(t) = ”Ê

4Êr

+ va(t)
vr

(2.4)

va is the projection of the atomic velocity onto the lattice direction in the laboratory reference
frame. When ”Ê = 4nÊr + 2kva, the diagonal term ”n cancels out, thus defining the Bragg
condition at order n for a given velocity va. In chapter 3, the optical lattice is stationary (”Ê = 0)
in the laboratory reference frame, and we consider atoms whose velocity v̨ makes an angle ◊ with
respect to the normal of the optical lattice (figure 2.4(b)). Bragg’s condition is then rewritten
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1. Principles of atom interferometry

as 4nÊr + 2k̨ · v̨ = 4nÊr ≠ 2kv sin ◊B, which gives the Bragg angle of order n associated with a
wavelength ⁄dB = h/mv and a grating period ⁄/2.

sin ◊(n)
B

= n
⁄dB
⁄

(2.5)

In the chapter 4, the optical lattice is vertical and the atoms are in free fall (figure 2.4(c)).
Consequently, a time-dependent frequency ramp ”Ê(t) = 4nÊr +2kv0 ≠2kgt is set to compensate
for the acceleration due to gravity and to maintain the Bragg condition.

The corresponding Schrödinger equation gives rise to a system of di�erential equations for
which approximate solutions exist, in particular for rectangular pulse shapes of the optical lattice
amplitude. Two extreme cases are widely discussed in the literature [Champenois, 2001a]. The
first case corresponds to interaction times short enough to neglect the dynamics of the motional
states, i.e. for short interaction times compared to the oscillation period in the optical potential
(· < (8Êr

Ô
“)≠1). This approximation corresponds to the Raman-Nath approximation [Raman,

1936], originally introduced for the di�raction of light by acoustic waves. In this approximation,
the degeneracy of the momentum states leads to a multi-order di�raction phenomenon, which a
priori reduces the interest of this di�raction mode for atomic beamsplitters.

The second case concerns atomic di�raction in the Bragg regime, which occurs for a weak
potential |“| π 1. In this perturbative regime, the population of non-resonant momentum states
is negligible, leading to a truly e�ective two-level system and giving rise to Rabi oscillations
characterized by an e�ective Rabi frequency �e� . For the Bragg approximation, the spectral
width of the two-photon ≥ � transition must be small enough not to populate non-resonant
momentum states (i.e. other than the two Bragg states) � π ”n+1 = 4(n + 1)Êr. However, the
duration of a pulse fi of order n grows very rapidly at constant laser power. Consequently, the
high-order Bragg regime requires very long pulse durations, which are of only limited practical
interest. However, the Bragg regime of order n = 1 is very interesting, as we will see in the
experiments described in chapter 3.

We are therefore interested in an intermediate regime known as the quasi-Bragg regime.
This regime has shown high di�raction e�ciency for high orders with experimentally accessible
parameters [Keller, 1999 ; Jansen, 2007 ; Müller, 2008]. The quasi-Bragg regime occurs when
the potential is adiabatically turned on and o�. As in the Bragg regime, two momentum states
are mainly populated at the end of the interaction. However, in contrast to Bragg di�raction,
a complex dynamic between momentum states close to the two Bragg states occurs during the
interaction.

We study this evolution by numerically solving the Schrödinger equation from the Hamilto-
nian (2.3). We use a Gaussian shape of lattice amplitude:

“(t) = “max exp
A

≠
t2

2‡2

B

(2.6)

where ‡ describes the duration of the Gaussian pulse (half duration at 1/
Ô

e) and “max =
�max/(8Êr) where �max is the maximum value of the 2-photon Rabi frequency. The numerical
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ℏ"!"#

Figure 2.4 – a) Conservation of energy and momentum in the Bragg regime. Bragg di�raction
of order n is a 2n photon process that couples two Bragg states. b) Di�raction of atoms by
a stationary lattice in the laboratory reference frame. The resonance condition is tuned by
adjusting the angle between the optical lattice and the incident velocity of the atoms. c) The
vertical optical lattice is formed by two beams propagating in opposite directions. The resonance
condition is adjusted during the free fall of the atoms by adjusting the frequency di�erence of
the atoms ”Ê = Ê1 ≠ Ê2.

propagation is performed over a time window of 10‡ centered on the laser pulse.
Figure 2.5 shows the evolution of the populations in the two resonant states (Bragg states),

as well as in the neighboring momentum states, at the end of the Gaussian pulse. This figure
also shows the evolution of the populations, assuming an e�ective two-level system. We have
highlighted two interaction sub-regimes: i) the short pulse regime (SP), for which the population
in the undesired states (non-adiabatic losses) is non-negligible, and ii) the long pulse regime (LP),
for which the populations in the undesired states become negligible, allowing us to recover a
regime in which, at the end of the pulse, the populations of the two Bragg states oscillate with
opposite phase.

Quasi-Bragg di�raction led to extensive numerical and experimental studies, which I will
present in chapter 4. We will see that in practice it is di�cult to di�ract atomic wave functions
with good e�ciency beyond the order of n ≥ 10. To go beyond these limits, it is possible
to combine quasi-Bragg di�raction and methods of coherent acceleration of the atom with an
optical lattice accelerated either continuously in the manner of Bloch oscillations or sequentially.
The study of interferometers based on these LMT (Large Momentum Transfer) beamsplitters is
a line of research on which we are currently working, and the main results will be presented in
the chapter 4.
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2. Atom Interferometers : Applications

Short pulse Long pulse

!	($!"#)
Figure 2.5 – Numerical simulation at order n = 3 in the quasi-Bragg regime for “max. Evolution
of the populations in the di�erent momentum states at the end of a Gaussian pulse of duration
‡. The black curve represents the population in the |6~kÍ state, and the dashed curves represent
the population in the unwanted states. This population is not negligible in the SP regime. On
the other hand, for longer interaction times, i.e. in the LP regime, we find the dynamics of a
two-level system, with the simulation results superimposed on a calculation of an e�ective two-
level system (blue dots).

2 Atom Interferometers: Applications

2.1 A brief introduction

Atom interferometers have played a role in many precision measurements over the past two
decades, including the development of inertial sensors, the measurement of the gravitational
constant G, the fine structure constant –, and the test of the equivalence principle, to name a
few.

Inertial sensors. The idea of inertial sensors using matter-wave interferometers was introdu-
ced by J.F. Clauser in 1988 [Clauser, 1988]. Atoms, isolated from environmental electromagnetic
fields, serve as the inertial reference. Accelerations and rotations of the interferometer cause the
laser wavefronts to move relative to the atoms. These displacements induce phase shifts (k̨ · r̨(t))
of the atomic wave function in the di�raction process, which manifest as a measurable phase
shift at the output of the interferometer. These inertial phase shifts are given by k̨ · ą T 2 for
accelerations and k̨(v̨ ◊ �̨ T 2) for rotations.

For more than two decades, there has been a strong e�ort to exploit this remarkable sen-
sitivity to develop sensors with a wide range of applications in geophysics and inertial naviga-
tion. In absolute gravimetry, the best atom interferometers have demonstrated in laboratories
a sensitivity 3 of 50 nm.s≠2.Hz≠1/2 and 0.7 nm.s≠2 at 104s [Gillot, 2014b ; Freier, 2016] and
are now competitive with conventional devices such as cube-corner optical interferometers [Nie-

3. It is necessary to distinguish between sensitivity, the smallest measurable value in a given time interval, and
accuracy, which expresses the uncertainty associated with the measured quantity.
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bauer, 1995]. The sensitivity of atom interferometers is not as good as that of the best relative
gravimeters, such as superconducting gravimeters (about 0.1nm.s≠2 at 200 s) [Merlet, 2021].
However, the latter have a time-varying bias and require regular calibration with absolute gravi-
meters [Merlet, 2021]. The best atomic gravimeters achieve accuracies on the order of 20 nm.s≠2

[Karcher, 2018]. The maturity of this technology has now reached a stage where commercial pro-
ducts are available with a sensitivity of about 750 nm.s≠2.Hz≠1/2 and an accuracy of 100 nm.s≠2

[Ménoret, 2018]. The sensitivity limitation of these measurements is mainly due to vibrations.
Di�erential phase-shift measurements of atom interferometers, spatially separated but sha-

ring common laser beams, o�er the possibility of making gravitational gradient measurements
with a sensitivity that exceeds the limits imposed by the vibrational noise of each interferometer,
thanks to the rejection of common-mode noise in di�erential measurements. Atom gradiometers
have been studied in both horizontal and vertical configurations, with dimensions of the order of
a meter, to measure local variations in the gravitational potential [Fixler, 2007 ; Sorrentino, 2014 ;
Duan, 2014 ; Biedermann, 2015]. The sensitivity of these instruments (Ã ‡„/(kT 2)) is limited by
the quantum projection noise ‡„ = (V

Ô
N)≠1 (N is the number of detected atoms and V is the

fringe visibility), which justifies the development of techniques to increase the scale factor kT 2 of
interferometers, e.g. by using LMT beamsplitters (increasing k) or long interrogation times (in-
creasing T ), as well as the implementation of detection below quantum projection noise 4. Much
longer baselines are envisioned, either as part of space missions [Aguilera, 2014 ; Lévèque, 2022 ;
Chiow, 2015] or as part of "large instrument" research infrastructures [Canuel, 2018 ; Badurina,
2020 ; Zhan, 2020 ; Schlippert, 2020 ; Abe, 2021]. Precise measurements of gravity gradients at
these scales have applications in geodesy, hydrology, and fundamental physics.

Atom interferometers are also considered as gyroscopes. The sensitivity to rotation is derived
from the Sagnac phase shift given by �„ = 2AE

~c2 � [Anandan, 1981 ; Bordé, 2002 ; Gauguet, 2014].
In this equation, A is the area of the interferometer, � is the rate of rotation relative to an
inertial reference frame, and E is the total energy associated with one particle of the wave. For
a matter wave propagating at speeds v π c, the energy is mainly given by E ≥ mc2, while
for electromagnetic waves it is E = ~Ê. Consequently, the potential gain in sensitivity of a
matter-wave gyroscope over an optical one, with equivalent area and comparable signal-to-noise
ratio, is about 1011. However, this statement must be tempered by the fact that the signal-to-
noise ratio and area of atom interferometers remain significantly smaller than those of optical
interferometers. Atomic gyroscopes have demonstrated short-term sensitivities of the order of a
few nrad/s.Hz≠1/2 using atomic beams [Gustavson, 2000]. On the other hand, gyroscopes using
cold atoms have achieved sensitivities of the order of 10≠10rad/s (evaluated with Allan’s variance
at 104 s), due to a very good control of the instrument drifts [Savoie, 2018]. However, their
implementation is more complex than accelerometers and developments are still required for their
use in navigation. Nevertheless, the accuracy of atomic gyroscopes obtained in the laboratory
opens up new prospects in geophysics, in particular for the measurement of parameters that
were previously inaccessible to experiment, such as variations in the direction of the Earth’s axis
of rotation on relatively short timescales (a few hours).

4. The interested reader will find references in the recent review [Szigeti, 2021]
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Determination of fundamental constants. Atom interferometers are also used to measure
the gravitational constant, G, and the fine structure constant, –.

The gravitational constant G is determined by measuring the changes in the gravitational
gradient induced by the displacements of heavy masses along the lines of two atom interferome-
ters forming a gradiometer [Fixler, 2007]. The best measurements made with this method allowed
the gravitational constant G to be determined with a relative uncertainty of 10≠4 [Rosi, 2014],
which is comparable to classical methods using torsion balances [Quinn, 2000]. The gravitational
constant G is the most inaccurate fundamental constant, and di�erent series of measurements
have led to contradictory results [Quinn, 2013]. In metrology it is always very interesting to
benefit from di�erent measurement methods for the same quantity. This is why measurements
with atom interferometry, with systematic e�ects di�erent from other experiments, are essential.

The measurement of the fine structure constant – by atom interferometry is based on the
atomic recoil velocity (vr = ~k/m) [Wicht, 2002]. This measurement yields the ratio h/m, and
hence –, using the relation :

–2 = 2RŒ
c

m

me

h

m
(2.7)

The Rydberg constant RŒ is determined with a relative uncertainty of 1.9◊10≠12 from hydrogen
spectroscopy [Mohr, 2016]. The ratio between the mass m of a rubidium atom and that of the
electron me is known with an uncertainty of ≥ 7◊10≠11 [Mount, 2010]. The measurement of h/m

is performed with a Ramsey-Bordé interferometer whose phase shift depends on a contribution
to the additional kinetic energy associated with the photon recoils exchanged with the atoms.
Recent measurements of h/m allow the fine structure constant – to be determined with a
relative uncertainty on the order of 10≠10 [Parker, 2016 ; Morel, 2020], which is comparable
to the best existing results from the measurement of the anomalous magnetic moment of the
electron [Aoyama, 2012 ; Fan, 2023]. Atom interferometry measurements now contribute to the
determination of the – value of the CODATA [Tiesinga, 2021]. Furthermore, the comparison of
these two results can be seen as a check on QED calculations and, more generally, as a test of
the Standard Model of particle physics [Parker, 2016 ; Morel, 2020].

Gravitation tests. Among the fundamental tests planned with atom interferometers, tests
of gravitation play an essential role and contribute to a better understanding of the connections
between gravitation and quantum theory. The investigation of the validity of Einstein’s weak
equivalence principle using atom interferometry has led to a number of experimental [Fray,
2004 ; Bonnin, 2013 ; Schlippert, 2014 ; Tarallo, 2014 ; Asenbaum, 2020 ; Zhou, 2021 ; Barrett,
2022] and theoretical [Göklü, 2008 ; Kosteleck ,̋ 2011 ; Damour, 2012 ; Altschul, 2015 ; Battelier,
2021] developments. These experiments compare measurements of local gravity using an atomic
gravimeter, either with two isotopes of the same atomic species, or with two di�erent atomic
species. The most constraining limit obtained by atom interferometry corresponds to an Eötvös
parameter 5 ÷ < 10≠12. It was obtained by comparing the free fall of the two stable rubidium
isotopes. Experiments currently under development propose to surpass the best classical tests

5. Weak equivalence principle tests are characterized by the Eötvös ÷ parameter, which is the relative accele-
ration of the test masses divided by the mean acceleration between the masses in the gravitational field.
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based on devices such as the torsion balance experiments [Schlamminger, 2008] (÷ < 10≠13) or the
Microscope space mission using classical accelerometers in free fall [Touboul, 2017] (÷ < 10≠14).

In parallel with the experiments to test the universality of free fall, theoretical studies have
demonstrated the feasibility of measuring general relativity e�ects in the laboratory, such as
the Lense-Thirring e�ect [Jentsch, 2004], or the measurement of PPN parameters [Dimopoulos,
2008]. Despite their small amplitude, some of these e�ects seem to be accessible to the very large
interferometers currently under development [Dimopoulos, 2007], which reach several meters in
height. These apparatuses are also being considered to study the e�ects of time dilation, with
quantum superpositions exploring di�erent gravitational potentials on each of the interferometer
arms [Zych, 2011 ; Greenberger, 2012]. In addition, major e�orts are underway to assess the
ability of atom interferometers to detect gravitational waves [Dimopoulos, 2008 ; Canuel, 2018 ;
Badurina, 2020 ; Zhan, 2020 ; Schlippert, 2020 ; Abe, 2021] or manifestations of dark matter
[Geraci, 2016 ; Arvanitaki, 2018 ; Du, 2022].

2.2 Separate-arm atom interferometers

One of the special features of the interferometers discussed in this manuscript is the large
distance between the interferometer arms. This feature allows controlled perturbations to be
applied to one arm of the interferometer. In the following, we will refer to experiments that
directly exploit this feature as "separated-arm interferometers".

Matter-wave interferometers can produce large distances between the arms. This distance,
denoted �z, is given by the following relation:

�z Ã
n~kG

m
T (2.8)

In this equation, kG is the reciprocal lattice vector, m is the particle mass, and T is the free
propagation time between the beamsplitter and the mirror. To increase the separation between
the interferometer arms, it may be advantageous to use light particles (e.g. neutrons, helium,
lithium), to increase the momentum transfer between the lattice and the particles (n~kG), and/or
to increase the free propagation time.

Neutron interferometers benefit from the low mass of neutrons and the possibility of highly
e�cient di�raction processes on material gratings [Rauch, 2015]. Typical separations of these
interferometers are several centimeters, allowing the experimental verification of many funda-
mental e�ects in quantum physics [Danner, 2023]. However, these devices are limited by neutron
time-of-flight (typical neutron velocity is ≥ 103m.s≠1) and signal-to-noise ratio (the detected si-
gnal is a few neutrons per second).

The first separated-arm atom interferometer experiment was performed in 1991 by the team
of D. Pritchard [Keith, 1991]. This interferometer used a thermal beam of sodium atoms dif-
fracted by three material gratings. This configuration was used to measure the electrical po-
larizability of the sodium atom [Ekstrom, 1995], as well as the refractive index of gases for
sodium waves [Schmiedmayer, 1995]. In addition, this team carried out several studies on la-
ser excitation induced decoherence [Chapman, 1995 ; Kokorowski, 2001]. The interferometer was
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subsequently transferred to the University of Arizona, where A. Cronin performed measurements
of atom-surface interaction in the van der Waals regime [Perreault, 2005], dynamic polarizability
of di�erent atoms [Trubko, 2017], and studies of collision-induced decoherence [Uys, 2005].

The use of ultracold atom sources paves the way for larger separations between the inter-
ferometer arms, aided by longer times of flight and the introduction of very large momentum
transfer beamsplitters, known as LMT beamsplitters. In 2008, the team led by C. Sackett at
the University of Virginia developed an interferometer using a rubidium Bose-Einstein conden-
sate, allowing a separation of several millimeters [Burke, 2008]. This configuration was used to
measure the dynamic polarizability of rubidium by illuminating a single arm with a laser beam
[Deissler, 2008 ; Leonard, 2017]. More recently, the team led by M. Kasevich at Stanford Uni-
versity has demonstrated interferometers with separations of up to several tens of centimeters
[Kovachy, 2015a], using a 10-meter atomic fountain and LMT beamsplitter techniques. This ap-
proach has been used to demonstrate the gravitational equivalent of the scalar Aharonov-Bohm
e�ect [Overstreet, 2022].

This manuscript presents two atom interferometers characterized by a large spatial separa-
tion between the interferometer arms. The chapter 3 presents results obtained with a lithium
beam interferometer. This apparatus has allowed the measurement of non-inertial e�ects with
applications to the study of atomic structure, matter-wave engineering, and the demonstration
of new phases in the Aharonov-Bohm family. The second setup (chapter 4), currently under
construction, is based on the use of a rubidium condensate and LMT beamsplitters. It will allow
interferometers with separations of tens of centimeters. Interferometers with such spatial sepa-
rations open the way to new experiments with applications in fundamental physics, which will
be discussed in chapter 4.
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Chapitre 3
Separated-arm lithium interferometer

J’aime passionnément le mystère, parce
que j’ai toujours l’espoir de le débrouiller.

C. Baudelaire

This chapter is a description of the lithium interferometer research from 2010 to
2015. This experiment has been developed since the late 1990s by J. Vigué (DR-
CNRS), M. Büchner (CR-CNRS), G. Trénec (IR-CNRS) and seven PhD students:
C. Champenois (1999), R. Delhuille (2002), A. Mi�re (2005), M. Jacquey (2006),
S. Lepoutre (2011), J. Gillot (2013), B. Décamps (2016). When I joined the team
in 2010, the experimental setup was operational. After a presentation of the main
features of this atom interferometer, I describe the studies we have carried out with
this experiment between 2010 and 2015.

Objectifs
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1. Description de l’interféromètre lithium

1 Description de l’interféromètre lithium

The design of the experiment and comprehensive analyses of the device are documented in
the thesis [Champenois, 1999 ; Delhuille, 2002 ; Mi�re, 2005 ; Jacquey, 2006 ; Lepoutre, 2011 ;
Gillot, 2013b ; Decamps, 2016]. The atom interferometer is shown in figure 3.1, and is based
on a supersonic beam of a lithium-rare gas mixture. Lithium atoms are di�racted in the Bragg
regime by three horizontal standing light waves separated by a distance L. The interferometer
has a geometry analogous to the Mach-Zehnder interferometer in optics, with a length of 2L =
1,2 m. The average velocity of the atomic beam can be adjusted between 700 and 3400 m · s≠1,
depending on the choice of rare gas used. The special feature of this experiment is the su�ciently
large separation between the two arms of the interferometer (≥ 100 µm) to introduce a controlled
perturbation on just one arm of the interferometer.

Oven 750 °C 0.6 m 0.6 m

Collimation slits
18 µm

Optical
pumping

0.76 m

100 µm

Hot wire
detector

3 m

skimmer

Figure 3.1 – We distinguish four zones: the lithium source, the beam collimation, the inter-
ferometer and the detection. The interferometer has a Mach-Zehnder geometry with a spatial
separation of the order of 100 µm.

1.1 The atomic source

The choice of the lithium atom is based on its low mass, resulting in a substantial recoil
velocity vr = ~k

m
= 8,5 cm · s≠1, which in turn facilitates the spatial separation of the interfe-

rometer’s output beams. In addition, lithium has intense optical transitions near ⁄L = 671 nm,
which are accessible with single-frequency lasers. Finally, lithium can be detected very e�ciently
by ionization on a hot wire.

The atomic beam is produced by supersonic expansion of a carrier gas mixed with a small
amount of lithium. In most cases, the carrier gas is argon, and the mixture is produced in an
oven heated to 1073 K with an argon pressure of 330 mbar. Under these conditions, the average
velocity of the lithium beam is vl =1060 m · s≠1, corresponding to a wavelength of ⁄dB = 56pm
and a Bragg angle of ◊ ¥ 2vr/vl =160 µrad. The beam then passes through a skimmer, which
selects the most intense part of the beam and reduces the gas load. After the skimmer, the beam
is polarized by optical pumping in a Zeeman sublevel. It is then collimated by two vertically
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Chapitre 3. Separated-arm lithium interferometer

aligned slits, 780 mm apart and 18 mm wide. The beam divergence is ≥ 25 µrad 1. This value
is smaller than the first-order di�raction angle and allows the spatial separation of the two exit
ports. The flux of detected atoms is about 3 ◊ 104 at.s≠1, resulting in a brightness of about
B = 2 ◊ 1020 at.s≠1.m≠2.sr≠1.

1.2 Atom optics

Lithium atoms interact sequentially with three optical lattices that di�ract the atoms in the
Bragg regime. The Bragg regime is characterized by the fact that only two di�raction orders
can be coupled, allowing two-wave interferometers without parasitic interferometers. Although
it is possible to perform Bragg di�raction at high di�raction orders, in practice only the 1st
order can strictly satisfy the Bragg conditions. For this reason, the experiments presented in
this chapter were all performed at 1st order di�raction.

Standing light waves are generated with a frequency-stabilized continuous dye laser at 2 GHz
on the blue side of the 2S1/2 ≠

2 P3/2 transition of 7Li. The laser beam is directed into the vacuum
chamber. The beam waist of the standing waves is W = 5 mm, and the power is divided among
the three standing waves to obtain atom beamsplitters for the first and third standing waves, and
an atom mirror for the second standing wave. The three retroreflecting mirrors used to create
the standing waves are placed under vacuum on a rigid bench to limit relative displacements
between the mirrors. Mirror orientation is finely controlled using piezoelectric actuators to adjust
the parallelism of the three optical lattices.

1.3 Atomic signal

A slit of about 50 µm is placed at a distance d = 400 mm after the third standing wave
to select only one of the interferometer output paths. The two interferometer output ports
di�er only in the atomic momentum direction. A very good separation is essential because the
interference signals on these two outputs are complementary. Selected atoms are counted by a
surface ionization detector (Langmuir-Taylor detector or hot-wire detector) with an e�ciency
of about 30%.

The atomic interference fringes are scanned by moving the third mirror parallel to itself with
a piezoelectric actuator. To overcome the nonlinear response of the actuator and the thermal
deformation of the mirror mount, the mirror displacements are measured with an optical Mi-
chelson interferometer. Figure 3.2 shows a typical interference signal obtained with our atom
interferometer. The fringe visibility is about 80%, which is mainly limited by mirror vibrations
that induce interferometric phase noise. The phase sensitivity is on the order of 20 mrad/

Ô
Hz,

limited by shot noise during atom counting and vibration noise.
The experiments I will present address phase drift by implementing di�erential measure-

ments. In this way we achieve a statistical uncertainty of the order of a mrad after several
minutes of measurement.

1. Transverse collimation is associated with a velocity dispersion ‡v ≥ 0.3vrec.
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1. Description de l’interféromètre lithium

Figure 3.2 – Phase-dependent interference fringes from the Michelson interferometer (at 633
nm) measuring the displacement of the mirror forming the third standing wave. Each data point
corresponds to the detected signal integrated over 1 s. The fringes have a visibility of 71% and
the average flux of detected atoms is a few 104 atoms/s.
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Lithium Interferometer
Function Attribute Value (≥)

Atomic source

longitudinal velocity 1000 m.s≠1

longitudinal velocity dispersion 150 m.s≠1

atom flux 5 ≠ 10 ◊ 104s≠1

Beamsplitter
di�raction angle ◊ = n⁄dB

⁄L
= 160 µrad

Di�raction order n = 1
Recoil velocity transfer 2vr = 17 cm/s

Interferometer
size 2L = 1.2 m
duration 2T ≥ 1 ms
area A = 0.6cm2

Inertial Scale factors 2nkT 2 2nkT 2
≥ 2s2.m≠1

Max separation d ≥ 100 µm

Detection
e�ciency 30 %
Signal-to-Noise detection at 1 s 100
phase sensitivity 20 mrad Hz≠1/2

Table 3.1 – Summary of the characteristics of the lithium interferometer. The interferometer
has a Mach-Zehnder type geometry, spatial in the horizontal plane.

This apparatus has been used to perform studies of metrological interest, such as the elec-
trical polarizability of lithium [Mi�re, 2006b] or the tune-out wavelength [Décamps, 2020]. Stu-
dies of collisional properties have been conducted via refractive index measurements of matter
waves [Jacquey, 2007] or atom-surface measurements [Lepoutre, 2009], or more fundamentally in
quantum physics, such as the first measurement of the He-McKellar-Wilkens (HMW) geometric
phase [Lepoutre, 2012 ; Gillot, 2013a]. In the following sections I describe the measurements I
participated in between 2010 and 2015.

2 Measurement of HMW and AC phase shifts

The study of He-McKellar-Wilkens and Aharonov-Casher phase shifts has been the main
focus of research on this experiment between 2010 and 2013. These geometric phases belong to
the family of the vector Aharonov-Bohm phase.

2.1 The Aharonov-Bohm e�ect

What is the Aharonov-Bohm E�ect? In classical physics, the dynamics of a charged par-
ticle is a�ected by a magnetic field only when it enters a region where the magnetic field strength
is not zero. In quantum physics, the Aharonov-Bohm e�ect occurs when an interferometer is
made with a charged particle in the presence of a magnetic flux �0 confined to the region bet-
ween the arms of the interferometer 2. This e�ect leads to a phase shift „AB, observable in the
interferometer signal, proportional to the magnetic field flux and the electric charge q, without

2. Y. Aharonov and D. Bohm also propose an electric potential e�ect, which we discuss in chapter 4.
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a) b)

Figure 3.3 – Principle of the vector Aharonov-Bohm e�ect.

necessarily having a magnetic field on the semiclassical trajectory of the particle.

„AB = q

~

j
Ą(r̨) · dr̨ = q

~�0 (3.1)

This e�ect was anticipated in 1949 by Ehrenberg and Siday [Ehrenberg, 1949], as part of theore-
tical work on the development of magnetic lenses for free electrons. However, the deeper meaning
of this e�ect became clear only after Aharonov and Bohm’s detailed discussion of quantum ef-
fects in 1959 [Aharonov, 1959]. They showed that the theoretical predictions were observable
with existing experimental techniques and, more importantly, outlined the remarkable concep-
tual implications [Aharonov, 1961]. The e�ect, now known as the Aharonov-Bohm e�ect, has
been the subject of considerable controversy and extensive study in the literature. Peshkin and
Tonomura have carefully documented the major historical and experimental advances in the
field up to 1988. [Peshkin, 2014]. Since the remarkable measurements of the A-B e�ect by elec-
tron holography [Tonomura, 1986], its existence is no longer disputed, even if discussions of
interpretation remain.

Questions raised by the A-B e�ect. Part of the discussion concerns the "significance of
electromagnetic potentials in quantum theory", initiated by Yakir Aharonov and David Bohm in
their seminal paper [Aharonov, 1959]. Indeed, although they are optional in classical electroma-
gnetism, potentials appear naturally in the Schrödinger equation, and it seems complicated to
replace them only by the B̨ and Ę fields [Aharonov, 2016]. Y. Aharonov and D. Bohm attribute
a more fundamental meaning to vector and scalar potentials than to electromagnetic fields. This
position is obviously unsatisfactory, since the vector potential Ą can be changed by a gauge
transformation, and thus has no direct physical meaning, giving rise to several controversies
[Peshkin, 2014 ; Olariu, 1985].

What is the minimum information needed to describe the coupling between a charged particle
and an electromagnetic field? The most widely accepted answer was given by Wu and Yang
[Wu, 1975], who introduced the concept of the non-integrable phase factor (i.e., this phase factor
depends on the path when the integral is not performed on a closed contour):

exp
3

iq

~c

j
Ą(r̨)dr̨

4
(3.2)
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The non-integrable phase factor is a gauge invariant (adding a gradient of a scalar field only
adds multiples of 2fi to the phase when integrated over a closed path) and therefore represents
a physical quantity. This formalism thus provides a complete, non-redundant description of
electromagnetism. [Wu, 1975] extended the concept to non-abelian gauge fields and proposed a
geometric interpretation by generalizing the concept of parallel transport (see also [Tourrenc,
1977]). In 1984, M. Berry introduced the concept of geometric phase [Berry, 1984], generalizing
the idea of parallel transport of quantum states and showing that the A-B e�ect is a special case
of geometric phase.

Recently, theoretical studies have taken a closer look at the nature of the A-B e�ect, following
theoretical work published by Vaidman [Vaidman, 2012] and Kang [Kang, 2015]. This research
proposes an interpretation of the A-B e�ect using local forces acting between the charged particle
of the interferometer and the charges responsible for the magnetic field, i.e. the electrons moving
in the solenoid. Although this proposal has some inaccuracies [Aharonov, 2015 ; Aharonov, 2016],
it has led to explanations of the A-B e�ect with the concept of entanglement [Marletto, 2020].
However, despite the profusion of theoretical work, there is still no consensus on a detailed micro-
scopic description of the A-B e�ect [Boyer, 2002 ; Earman, 2019 ; Pearle, 2017 ; Marletto, 2020 ;
Li, 2022]. The lack of consensus leaves fundamental elements of the A-B e�ect without definitive
explanations, such as the possibility of a gauge invariant description based on electromagnetic
fields, the role of entanglement, and non-locality [Aharonov, 2015 ; Aharonov, 2016].

From a phenomenological point of view, an essential feature of the A-B e�ect is its non-
dispersive character (the phase shift is independent of the electron velocity), which can be
understood as the absence of forces [Zeilinger, 1986 ; Peshkin, 1999 ; Batelaan, 2015 ; McKellar,
2016]. Time-of-flight and electron di�raction experiments have ruled out the presence of forces in
this context [Caprez, 2007 ; Becker, 2019]. However, the non-dispersive nature of the A-B e�ect
has yet to be experimentally proven, leaving loopholes in the conventional geometric interpreta-
tion. Another approach to study these e�ects is to generalize the A-B e�ect to other phases with
similar geometric properties [Zeilinger, 1986 ; McKellar, 2014 ; McKellar, 2016 ; Marletto, 2020].
These phases are related to the propagation of neutral particles carrying a magnetic or electric
dipole and evolving in an electromagnetic field. In the following paragraphs, I will present our
contribution to the study of Aharonov-Casher and He-McKellar-Wilkens geometric phases with
our separated-arms atom interferometer.

2.2 The Aharonov-Casher and He-McKellar-Wilkens phases

The Aharonov-Casher phase. In 1984, Aharonov et al. [Aharonov, 1984] described the
Aharonov-Bohm e�ect as resulting from the relative motion between a charged particle q and a
line of neutral particles with magnetic moment µ̨ modeled by a permanent current loop (see figure
3.4(a)). They show that the Lagrangian of the charged particle interacting with the potential
vector Ą, induced by the magnetic moment µ̨ is:

L = mv2

2 + MV 2

2 + qĄ(r̨ ≠ R̨) · (v̨ ≠ V̨ ) (3.3)
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2. Measurement of HMW and AC phase shifts

(r̨, m, v̨) and (R̨, M , V̨ ) correspond to the position, mass and velocity of the charged particle
q and the neutral magnetic moment particle µ̨, respectively.

We find that the interaction term depends only on relative positions and velocities. Aharonov
and Casher thus predict the existence of a geometrical phase by exchanging the role of the charge
q and the magnetic moment µ̨ in the A-B e�ect. The Lagrangian for the magnetic moment µ̨ at
position R̨ and a charged particle in r̨ (stationary in the laboratory reference frame) is rewritten
as L = MV

2
2 ≠ qĄ(r̨ ≠ R̨) · V̨ . The classical formalism of electromagnetism allows to calculate the

potential vector Ą(r̨≠R̨) due to a classical magnetic moment µ̨ at the position R̨ [Jackson, 1999]
:

Ą(r̨ ≠ R̨) = 1
4fi‘0c2

µ̨ ◊ (r̨ ≠ R̨)
---r̨ ≠ R̨

---
3 = ≠

µ̨ ◊ Ę(r̨ ≠ R̨)
qc2 (3.4)

where Ę is the electrostatic field at position R̨ created by a charged particle at r̨, ‘0 is the
permeability of the vacuum, and c is the speed of light. The Lagrangian is rewritten as:

L = MV 2

2 + µ̨ ◊ Ę(r̨ ≠ R̨) · V̨

c2 (3.5)

The Hamiltonian of the neutral particle H = 1
2M

(P̨ ≠
1
c2 µ̨ ◊ Ę)2 is obtained using the canonical

transformations of analytical mechanics P̨ = ˆL

ˆV̨
= mV̨ + 1

c2 µ̨ ◊ Ę. Similar to the A-B e�ect, it
is possible to define a vector potential for the neutral particle:

˛̃A = 1
c2 µ̨ ◊ Ę (3.6)

Consequently, a geometric phase shift analogous to the A-B e�ect occurs when a neutral particle
with a magnetic dipole µ̨ propagates in an interferometer whose arms enclose a line of charged
particles (figure 3.4(b)). The Aharonov-Casher phase shift (A-C) is given by:

„AC = 1
~

j
˛̃A · dR̨ = µ⁄E

~‘0c2 (3.7)

In this equation, ⁄E is the linear charge density. Hagen [Hagen, 1990] has shown that the A-C
e�ect, like the A-B e�ect, does not depend on the particle velocity and is therefore not associated
with any classical force. Moreover, Klein [Klein, 1986] gives a simple physical interpretation
of the A-C phase: in the reference frame of the particle translating with velocity v̨ = d̨r/dt, a
magnetic field B̨m = ≠

v̨◊Ę

c2 arises from the Lorentz transformation of the electric field Ę. In the
particle’s rest frame, the A-C phase is the result of the magnetic interaction between µ̨ and the
"motional" magnetic field:

„AC = 1
~c2

j
Ę(r̨) ◊ µ̨ · dr̨ = 1

~

j
µ̨ · B̨mdt (3.8)

The A-C phase was detected in 1989 by A. Cimmino et al. [Cimmino, 1989] using a neutron
interferometer. Several months of integration and a clever design of the experiment allowed to
measure a phase shift of „exp = 2.19 ± 0.52 mrad, to be compared with the theoretical value
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Figure 3.4 – Inspired by [Dowling, 1999]. Summary of geometric phases for four types of
topological e�ects. e and g are electric and magnetic charges, d and µ are electric and magnetic
dipoles. The A-C phase is obtained from the A-B phase by transforming e ¡ µ. The HMW
phase corresponds to the dual e�ect of the A-C e�ect.
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of „theo = 1.5 mrad.
In 1993, Sangster et al. [Sangster, 1993] measured the A-C e�ect with a setup similar to a

Ramsey interferometer, using molecular magnetic moments. Instead of spatially separating the
magnetic moments, the first fi/2 pulse of the Ramsey interferometer prepares the particle in a
coherent superposition of two states with opposite magnetic moment. After propagating in an
electric field, these two states are phase-shifted by the A-C e�ect. This phase shift is measured
after the second fi/2 pulse. This experiment allowed to measure an A-C phase shift with a
relative uncertainty of 4%, confirming its non-dispersive nature. Other measurements using a
similar configuration achieved an accuracy comparable to that of Sangster et al. [Sangster,
1993] using atoms [Görlitz, 1995 ; Zeiske, 1995 ; Yanagimachi, 2002].

The dual e�ect of the A-C phase: the He-McKellar-Wilkens phase. Phases analogous
to the A-B and A-C e�ects can be identified by introducing the magnetic charge and current
density flm and J̨m in addition to the electric charge and current density fle and J̨e. Maxwell’s
equations are then written:

Ǫ̀ · D̨ = fle, Ǫ̀ ◊ H̨ = ˆD̨

ˆt
+ J̨e (3.9)

Ǫ̀ · B̨ = flm, ≠Ǫ̀ ◊ Ę = ˆB̨

ˆt
+ J̨m,

These equations are invariant under the action of the following transformations (3.10), called
the electromagnetic duality [Jackson, 1999] :

Ę = ĘÕ cos › + Z0H̨ Õ sin › Z0D̨ = Z0D̨Õ cos › + B̨Õ sin ›

B̨ = ≠Z0D̨Õ sin › + B̨Õ cos › Z0H̨ = ≠Z0ĘÕ sin › + B̨Õ cos ›

qm = ≠Z0qÕ
e sin › + qÕ

m cos › Z0qe = Z0qÕ
e cos › + qÕ

m sin ›

(3.10)

In particular, for › = fi/2, the duality of electromagnetism exchanges the roles of magnetic and
electric fields, charges (magnetic monopole), and dipoles.

Applying Maxwell’s duality to the Aharonov-Casher phase transforms it into a dual phase
for an interferometer in which a particle carrying an electric dipole encloses a line of magnetic
monopoles 3.4(d), producing a radial magnetic field. The existence of this e�ect was predicted
in 1993 by He et al. [He, 1993]. Since magnetic monopoles have a hypothetical existence, this
prediction remained pure speculation until Wilkens [Wilkens, 1994] proposed a possible test
with an electrically polarized atom interacting with a realistic magnetic field configuration.
However, Wilkens’ proposal seems to be particularly complex to implement with paramagnetic
atoms due to the use of an inhomogeneous magnetic field.

In addition, Wilkens [Wilkens, 1994] gives a complementary interpretation of the HMW
phase by considering the motion of a polarizable particle in a magnetic field. In the rest frame of
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Chapitre 3. Separated-arm lithium interferometer

Figure 3.5 – a) Diagram of the double capacitor. The two high voltage electrodes are labeled
±V , followed by grounded electrodes to limit field gradients at the edges. The septum is placed
between the two arms of the interferometer (blue dotted line). b) In this configuration, an electric
(or magnetic) dipole propagates in a magnetic (or electric) field, giving rise to the HMW (or
-AC) phase.

the particle, a motional electric field Ęm = v̨ ◊ B̨ appears and interacts with the electric dipole.
The HMW phase is calculated by integrating the interaction energy Ęm · d̨ over the duration of
the interferometer:

„HMW = ≠
1
~

j
(B̨ ◊ d̨) · dr̨ = 1

~

j
d̨ · Ęmdt (3.11)

The so-called He-McKellar-Wilkens (HMW) phase is probably the last geometric phase in the
Aharonov-Bohm family to be detected by free particle propagation 3.

2.3 Experimental results

To measure the HMW e�ect, our setup is inspired by the proposal of Wei et al. [Wei, 1995].
In this setup, electric dipoles are induced in opposite directions on each of the interferometer
arms and propagate in a uniform magnetic field. Our setup is shown in Figure 3.5, where the
electric dipoles are induced by two capacitors separated by a septum between the two arms of
the interferometer, generating opposite electric fields. The device can apply a maximum field of
about 800 kV/m, corresponding to voltages of the order of V = ±800 V 4. In this configuration,
the electric fields are in the horizontal plane, while a vertical magnetic field generates an HMW
e�ect. The magnetic field is produced by circulating a current I in two coils surrounding the
capacitor assembly. The B field is given by B ¥ 0.56 ◊ I mT, and is limited by the heating of
the wires to a current I = 40A. The expected value of the HMW phase shift is „HMW /V I =
≠(1.28 ± 0.03) ◊ 10≠6 rad/VA for the value of lithium-7 polarizability. This corresponds to an
HMW phase shift of around 40 mrad, for the maximum values of V and I.

The accurate measurement of such small phase shifts in the presence of such intense electro-

3. The dual phase of the Aharonov-Bohm e�ect 3.4(c) would require a source of magnetic monopoles.
4. The geometry we use is equivalent to that of Wei et al. [Wei, 1995] by contracting the septum into a wire.
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magnetic fields is unusual in atom interferometry. The magnetic and electric phases accumulated
on each arm are on the order of 105 rad and 300 rad, respectively. Controlling the homogeneity
of the electric and magnetic fields is therefore crucial for this measurement. In our setup, the
relative inhomogeneity of the magnetic field is of the order of 10≠4 and the deviation from elec-
trode parallelism is less than one mrad. The residual Zeeman and electrical polarizability phase
shifts are on the order of 10 rad and 0.1 rad, respectively. To measure the HMW phase, it is
therefore necessary to use di�erential measurements, combining measurements in the absence
of fields, in the presence of the electric (or magnetic) field only, and in the presence of both
magnetic and electric fields. The field configurations are alternated during a single fringe scan
to avoid phase drift in the interferometer.

He-McKellar-Wilkens and Aharonov-Casher phase measurements. A measurement
campaign allowed the first detection of the HMW phase [Lepoutre, 2012] with a relative un-
certainty of 30% dominated by imperfect subtraction of systematic e�ects during di�erential
measurements in electric and magnetic fields. These limitations are due to correlations induced
by averaging over the di�erent velocities, positions and Zeeman |F, mF Í sublevels of atoms in
the atomic beam. The detailed study of these e�ects is an important part of Steven Lepoutre’s
PhD thesis [Lepoutre, 2011 ; Lepoutre, 2013a ; Lepoutre, 2013b].

To improve the accuracy and sensitivity of the measurements, we set up an optical pumping
stage to prepare atoms in the states |F = 2, mF = ±2Í [Gillot, 2013c] . Atoms in |F = 2, mF = ±2Í

have a magnetic moment µ̨ = ±µB ęB aligned along the direction of the magnetic field ęB with
a magnitude equal to the Bohr magneton µB. In this configuration, the atoms are sensitive to
the A-C and HMW phase 5. However, the A-C phase changes sign with the direction of the
magnetic moment µ̨, so it is possible to distinguish these two contributions with measurements
for opposite values of mF = ±2. Figure 3.6(a) shows the HMW phase measurements, the discre-
pancy with the theoretical value is less than 5% [Gillot, 2013a]. The improvement in accuracy
is due to the absence of averaging over the {|F, mF Í} as well as to the fact that in the states
|F = 2, mF = ±2Í the Zeeman e�ect is linear with |B|, thus reducing correlations. In addition,
we have performed these measurements for di�erent carrier gases and verified the non-dispersive
nature of the HMW phase (Figure 3.6(b)), thus demonstrating the geometric nature of this
phase shift.

Figure 3.7(a) shows the A-C phase measurements derived from the same experiments. We
obtain a measurement in good agreement with the expected value (theory-experiment di�erence
≥ 3%). The accuracy is similar to that obtained with Ramsey type configurations. We have also
verified the independence of the AC e�ect from the atomic velocity [Gillot, 2014a].

Following these experimental results, He and McKellar carried out a more detailed analysis
of the topological properties of the A-C and HMW e�ects [McKellar, 2014 ; McKellar, 2016 ; He,
2017]. They have shown that there is a mapping between the A-B e�ect and the A-C and HMW
e�ects when the dipoles propagate in a plane and exhibit invariance along the charge line. The

5. Note that the A-C and HMW phases are induced by the vector product of the electric and magnetic fields
B̨ ◊ Ę, illustrating the dual nature of these two geometric phases
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a) b)

Figure 3.6 – a) Measurement of the He-McKellar-Wilkens phase shift as a function of the
amplitude of the fields E and B measured by the product V I. b) Verification of the non-
dispersive nature of the HMW phase. The colored areas represent the variations expected for
a „(v) Ã v≠– phase, where – = 1 corresponds to a perturbation by a potential and – = 2
corresponds to a phase induced by a constant force.

problem is then reduced to (2+1) dimensions. Experimentally, it is essential that the magnetic
(or electric) moment is orthogonal to the plane defined by the electric (or magnetic) field and
the direction of motion, and that the magnetic moment remains constant. Our measurement of
the A-C phase is the first (and, to my knowledge, the only) demonstration that satisfies all the
conditions necessary to prove the topological nature of the A-C phase. 6.

2.4 Conclusions and prospects

Conclusions. There are three geometric phases of the Aharonov-Bohm family that can be
observed in electromagnetism: the A-B phase, the A-C phase, and the HMW phase. With our
atom interferometer, we have developed a unique device that allows precise control of the ma-
gnetic and electric fields applied to each arm of the interferometer. This capability has allowed us
to experimentally demonstrate the existence of the HMW phase, the last unobserved geometric
phase in the A-B family. In addition, we measured the A-C phase to a level of accuracy com-
parable to the state of the art. In contrast to previous measurements, our experimental setup
revealed the topological character of the A-C phase.

Prospects. I am convinced that the results of this study will contribute to a better unders-
tanding of geometric phases in quantum physics. The study of A-C and HMW e�ects by atom
interferometry o�ers the possibility to precisely study the geometric properties of A-B type
phases, taking advantage of the very high accuracy of atom interferometers. More accurate mea-
surements of geometrical phases would pave the way for experimental studies of the role played

6. The experimental configuration used in the neutron interferometer [Cimmino, 1989] has all the characteris-
tics, but this work does not show the independence of the A-C phase with velocity.
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Figure 3.7 – a) Measurement of the Aharonov-Casher phase shift as a function of the amplitude
of the E and B fields. b) Verification of the non-dispersive nature of the Aharonov-Casher
phase. The colored areas represent the variations expected for a phase „(v) Ã v≠–, where – = 1
corresponds to a perturbation by a potential and – = 2 corresponds to a phase induced by a
constant force.

by quantum entanglement and non-locality in the context of A-B type e�ects [Marletto, 2020],
and provide a better understanding of "quantum force" phenomena [Becker, 2019 ; Berry, 1999].

Another interesting perspective concerns the experimental study of the A-B e�ect extended
to non-Abelian gauge fields. These e�ects were introduced by Wu et al. [Wu, 1975] as part
of their very thorough theoretical study of topological phases. In this paper they propose a
thought experiment that highlights the e�ect of a non-Abelian field induced by moving neutrons.
This proposal is based on a modification of the AB e�ect configuration in which the electron
interferometer is replaced by a neutron interferometer, and the electron flow in the solenoid
is replaced by a massive rotating cylinder made of a neutron-rich material (238U). Such an
experiment was attempted by Zeilinger et al. [Zeilinger, 1983] without positive results.

In addition, improving the accuracy of Aharonov-Bohm phase measurements would enable
new fundamental physics tests in atom interferometry. For example, A-B phase measurements
impose a limit on the possible photon mass m“ < 2 ◊ 10≠11 eV [Boulware, 1989]. Although this
limit is not competitive with tests based on astrophysical observations (m“ < 2 ◊ 10≠18 eV) 7

[Ryutov, 2007], it paves the way for laboratory tests. Spavieri et al. [Spavieri, 2007] suggest that
measurements of A-B, A-C, and HMW phases could provide limits comparable to astrophysical
observations. Another example, given by Kobakhidze et al. [Kobakhidze, 2007], shows that A-
B interferometers provide a competitive new method for testing Lorentz invariance [Wolf, 2004].
Extending this theoretical study to experimental A-C and HMW configurations would allow to
assess the relevance of testing Lorentz invariance using separate-arm atom interferometers. In
addition, the possibility of measuring a gravitational analog of the A-B e�ect has stimulated
a considerable number of papers [Dowker, 1967 ; Ford, 1981 ; Bezerra, 1991 ; Audretsch, 1983 ;

7. Value taken by the Particle Data Group.
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Zeilinger, 1986 ; B Ho, 1994 ; Hohensee, 2012]. Recently, Overstreet et al. [Overstreet, 2022]
detected a gravitational scalar A-B e�ect, opening up new prospects for precise measurements of
the gravitational constant G. Such experiments also shed new light on the connections between
gravity and quantum physics [Overstreet, 2023]. Finally, the scalar Aharonov-Bohm e�ect can
be exploited to perform new tests of the neutrality of matter [Greenberger, 1981]. This novel
approach was first proposed in atom interferometry by our group in 2001 [Champenois, 2001b]
and then developed in the context of interferometers with ultracold atoms by the team led by
the M. Kasevich group at Stanford [Arvanitaki, 2008]. This proposal will be further developed
in the next chapter.

These perspectives open new horizons for deepening our understanding of quantum physics
and o�er new explorations in the fields of quantum technologies and fundamental physics. The
implementation of these experiments with ultracold atom interferometers is at the heart of my
research project, which is described in detail in the next chapter.

3 Phase modulation of matter waves

Using the same setup as for the HMW and AC phase measurements, we have implemented
a phase modulator for matter waves by applying a time-dependent perturbation on each of
the interferometer arms [Décamps, 2016 ; Décamps, 2017]. As the atom propagates in a time-
modulated potential at the frequency Ê, it exchanges energy quanta ~Ê, thus changing its
kinetic energy. For an incident plane wave of amplitude Ai, momentum pi and energy ~�i, the
transmitted wave function |�tÍ is written as a superposition of kinetic energy states separated by
~Ê: |�tÍ =

q
l
Al |pl, �i + lÊÍ

8. We have developed an exact theory of matter wave propagation
in an oscillating potential based on Floquet’s formalism [Décamps, 2017]. This theory allows us
to justify the use of a semi-classical model in which the perturbation U(z, t) manifests itself as
a phase shift of the incident wave :

„(t) = ≠
1
~

⁄

�
U(s(tÕ))dtÕ = ≠

U0L

~v
+ „max cos (Êt) (3.12)

In this equation, s(·) is the curvilinear abscissa along the (unperturbed) classical trajectory of
the atoms � and v is the group velocity of the wave. In the case of a harmonic modulation of
the potential U(z, t) = U0 + UM cos (Êt), a phase term U0L/(mv) appears, corresponding to the
time-averaged perturbation, and a harmonic phase modulation of amplitude „max:

„max = ≠
2UM

~Ê
sin

!ÊL

2v

"
(3.13)

The complex phase factor ei„(t) can be expanded on a plane wave basis weighted by Bessel
functions of the first kind Jl(·), ei„(t) =

q
l
ilJl(„max)eilÊt. The transmitted wave function then

8. These sidebands can be interpreted as the temporal analog of matter wave di�raction [Moshinsky, 1952].
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in combining amplitudes (see Fig. 13) resulting in the pth harmonic and we get an
harmonic visibility similar to eq.(50) but with a Bessel’s argument divided by 2:

Ṽ (p) = V0

��

0
P (vi) [Jp (�m,A (vi))]

2 e�ip��(vi)dvi (51)

Now that we have a theoretical description of our Kerr modulator, let us describe
in more details the performed experiments and their results.

(a) Frequency comb
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Figure 12: Schematic representation of the wave-function amplitudes as a function of fre-
quency, in unit of �, for identical modulation frequencies at a modulation phase
��m (u) = 8 rad. The initial state at the top of (a) corresponds to a single atom
having a well defined velocity which is separated and diffracted identically on
two paths (A and B). The superposition of the two outputs leads to (b) on which
we represented all the products making up the signal at � (green arrows) and
only two products for 2� (pink) and 3� (yellow). The width of the frequency
distribution has been exaggerated for clarity
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Figure 13: Schematic representation of the wave-function amplitudes as a function of fre-
quency, in unit of �A, for different modulation frequencies at a modulation phase
�m,� (u) = 1.5 rad. The initial state at the top of (a) corresponds to a single atom
having a well defined velocity which is separated and diffracted on two paths (A
and B). The superposition of the two outputs leads to (b) on which we represented
the products making up the signal at � (green arrows), at 2� (pink) and 3� (yel-
low). The width of the frequency distribution has been exaggerated for clarity as
well as the frequency difference between the two paths which is much smaller
than the modulation frequencies.
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Figure 3.8 – (a) Phase modulation of the wave function creates a frequency comb on each arm.
The interfering signal is shown in figure (b).

forms a matter wave frequency comb:

|�tÍ = Ai

ÿ

l

ilJl(„max)eilÊt
|kl, �iÍ (3.14)

Measurement of matter wave beats. In our experiments, the bandwidth of the hot-wire
detector (¥ 1 ms) limits the maximum observable modulation frequency. In practice, we mo-
dulate perturbations between 10 ≠ 100 Hz. Since these frequencies are well below the spectral
width of the atomic source (¥ 2 THz), it is not possible to resolve the comb components by
direct spectroscopy. However, we can perform a homodyne detection of the di�erent components
by modulating the perturbations UA(t) and UB(t) on each arm of the atom interferometer (see
figure 3.8). The perturbations are generated by the Stark e�ect by applying variable electric
fields with voltages on each arm of the form VA = V0 + cos (Êt) and VB = ≠V0 + cos (Êt).

The measured interference signal oscillates as a function of the phase shifts „A,B induced on
each of the arms:

S(zd, td) = I0[1 + V0 cos(„r + „A(t) ≠ „B(t))] (3.15)

where I0 and V0 correspond to the flux of detected atoms and the visibility of the interferometer,
respectively. Figure 3.9a shows the interferometric signal obtained for a low-frequency modula-
tion of the potential, Ê/(2fi) =21 Hz, with the beat phenomenon between the first two harmonics
clearly visible on the signal. Spectral analysis can be used to determine the amplitudes Al of
the components at the modulation frequency and its harmonics. Figure 3.9a shows an example
of a spectrum where the first four harmonics are resolved.

We measured the amplitude of each harmonic for several modulation amplitudes „max at 11
Hz and 21 Hz (see figure 3.9b), in very good agreement with a theoretical model that takes into
account the detector response time, the propagation, and the velocity distribution of the atomic
beam.

We have also performed heterodyne measurements of Stark perturbations by modulating
the perturbations at two di�erent frequencies, ÊA and ÊB, on the interferometer arms. We then
detect a signal at the di�erence in frequencies, so the frequencies ÊA and ÊB can be significantly
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Chapitre 3. Separated-arm lithium interferometer

�.�.� Low frequency modulation

Interferometric signal

We first apply low identical frequency modulations �/ (2�) � 1 kHz on both in-
terferometer arms. By changing the modulation potential amplitude, we could pro-
duce phase shifts up to 15 rad and detect up to the 16th modulation harmonics
provided that it lays in the detector bandwidth. A typical interferometric signal
is presented on Fig 14 for a modulation frequency of 21 Hz. For each frequencies
� = (2�) {11, 21, 43, 73, 97, 151} Hz, similar interferometric signals were obtained.

Figure 14: Interferometer signal for a constant phase difference ��m = 2.7 rad and a con-
stant diffraction phase �d � �0.5 rad. Top panel: Number of atoms detected per
millisecond as a function of time. Bottom panel: Fourier amplitude of a 16.4 s long
recording as a function of frequency. Up to the 4th harmonics is revealed.

Diffraction amplitudes

In order to extract the Fourier amplitude of the pth modulation harmonic eq. (49),
we vary the interferometer phase �d by slowly moving the position of the third grat-
ing mirror with a piezoelectric actuator. The resulting scanning is monitored with a
Mach Zehnder optical interferometer which records this mirror’s position. As can be
seen from eq. (49), the harmonics amplitude oscillates with the interferometric phase.
Thus, for each mirror position, a 200 ms long interferometric signal was recorded and
Fourier transformed. An example of the resulting interferometer signal and Fourier
signal is represented on Fig 15. Scanning the interferometer phase for approximately
a 2� period allowed for a full oscillation of the modulation amplitude. The result of
such scans can be seen on Fig 16. Finally, by extrapolating the obtained amplitudes
with eq. (49), we extract the modulation "visibility" Ṽ (p) and its phase �m (p).
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(a) Phase modulation at 21 Hz, beat signal and
spectrum.

Visibility and phase

Knowing the Fourier transform amplitude and phase, relative to �d + p�
2 for the pth

harmonic, it is straightforward to extract the experimental visibility and phases. By
varying ��m we observed the appearance, disappearances, inversions and revivals
of up to the 16th harmonic, typical for Bessel’s functions. Fig. 17 summarizes the ob-
tained visibility and the Fig. 18 shows the phases. There is good agreement between
our theoretical model and the experimental data. There was only one free parame-
ter, the ionization delay �res (eq. (47)), for all fits and it was found to remain con-
stant equal to �res = 290(10) µs which agrees qualitatively with the not well known
value of 200 µs (see Sec. 1.3.1 eq. (12) and [102]). For the visibility data, the residual
uncertainty is smaller than the size of the points and for the phases, the statistical
uncertainty corresponding to the quadratic mean of the residual uncertainties of dif-
ferent scans, is represented. The small phase dispersion can be explained by velocity
dispersion effects when the diffraction phase is large.

Figure 17: Evolution of the harmonics visibility as a function of the total diffraction phase.
The squares (solid line) correspond to p = 0, the bullets (dashed line) to p = 1 and
the stars (dotted line) to p = 6. The lines correspond to the theoretical model eq.
(50) with no free parameter.

�.�.� Heterodyne atom wave beats

Confindent that our theoretical model represented well the low frequency domain,
we now demonstrate the sinus cardinal behavior of the differential phase shift eq.
(53). To do so, we keep the modulation potential constant and change the modulation
frequency. In order to maximize the effect, we choose a low frequency differential
phase of 6.7 rad which mainly corresponds to zero, second and fourth harmonics
and almost no first and third harmonic as is summarized in Tab. 3. To be able to
detect the induced modulation, which had to be of the order of the inverse transit
time in the modulation cell � (2�) 22 kHz, we used a heterodyne detection scheme by
applying slightly different frequencies on each interferometer’s arm. By doing so, we

71

(b) Amplitude of the di�erent components of
the atomic frequency comb, p = 0 (black
squares), p = 1 (red circles) and p = 6 (green
stars) for di�erent values of „max. The solid
lines correspond to our theoretical model wi-
thout adjustable parameters.

Figure 3.9 – Measurement of phase modulation phenomena by homodyne beating of matter
waves.

larger (30 kHz) than the bandwidth of the detector.

Prospects. Homodyne and heterodyne detection techniques are widely used in electromagne-
tic signal processing, with applications in radar, telecommunications, high resolution spectro-
scopy, frequency metrology, and more. Our study of the phase modulation of matter waves using
electric fields has paved the way for heterodyne (or homodyne) measurements in atom interfe-
rometry. For example, the sensitivity of He-McKellar-Wilkens and Aharonov-Casher geometric
phase measurements (see section 2) could be improved by modulating electric and magnetic
fields at di�erent frequencies. The spectral components of the signal resulting from the sum and
di�erence of the modulation frequencies then provide a signature of the He-McKellar-Wilkens
and Aharonov-Casher phases.

However, a fundamental di�erence between classical optics and atom optics is the dispersion
of matter waves in vacuum, which results in a dispersion of the propagation times between the
modulator and the detector. This time dispersion limits the visibility of the beating phenomenon.
The use of continuous sources of ultracold atoms would attenuate this e�ect. On the other hand,
conventional atomic detectors (based on ionization, fluorescence, etc.) have typical response
times in the microsecond range, which limits the bandwidth of atomic heterodyne detection. An
attractive prospect arising from this research would be to apply these modulation methods to
electronic interferometers, paving the way for time-resolved electronic interferometers [Décamps,
2017].

4 Electrical polarizability: tune-out wavelength

The interaction of an atom with a non-resonant optical field results in a "light shift" of
energy levels proportional to the intensity of the light and the dynamical polarizability of the
atom –(Ê). The most sophisticated calculations of dynamical polarizability include quantum
electrodynamics e�ects [Flambaum, 2005], the Breit interaction [Dzuba, 2006], and electronic
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Atomes ⁄T O Methods rel. uncertainties References
He 413 nm OMMT 3, 6 ◊ 10≠7 [Henson, 2022]
Li 671 nm AI 1, 64 ◊ 10≠8 [Décamps, 2020]
Li 671 nm AI 1, 0 ◊ 10≠8 [Copenhaver, 2019]
K 769 nm AI 5, 2 ◊ 10≠7 [Trubko, 2017]
Rb 790 nm AI 4, 05 ◊ 10≠8 [Leonard, 2017]
Rb 790 nm AD 5, 2 ◊ 10≠7 [Schmidt, 2016]
Rb 421 nm AD x [Herold, 2012]
Cs 880 nm AD 4, 6 ◊ 10≠7 [Ratkata, 2021]
Dy 741 nm AD x [Kao, 2017]
Sr 689 nm PH 2, 3 ◊ 10≠8 [Heinz, 2020]

NaK 866 nm PH 2, 3 ◊ 10≠7 [Bause, 2020]

Table 3.2 – Tune-out wavelength measurements for di�erent species and for di�erent methods:
optical modulation in magnetic traps (OMMT), atom interferometry (IA), atom di�raction
(AD), parametric heating in optical traps (PH).

correlation e�ects [Arora, 2011]. Uncertainties in these calculations are di�cult to estimate, so
benchmark polarizability measurements are needed to verify these calculations or to experimen-
tally determine the parameters used in them.

Precise measurements of polarizability in the optical frequency range are di�cult to make
because they require accurate knowledge of the light intensity seen by the atoms. However, it
is possible to precisely measure a wavelength at which the polarizability cancels out. These wa-
velengths ⁄0 are known as "tune-out" wavelengths 9. If the wavelength is chosen between two
atomic transitions, their contributions cancel and the dynamical polarizability vanishes. This
phenomenon has been introduced in the context of ultracold atomic mixtures to manipulate
specific species in optical traps [LeBlanc, 2007]. Exact measurements of tune-out wavelengths
allow to test fundamental atomic properties such as dipolar transition matrix elements or ex-
cited state lifetimes. These parameters are essential for the determination of the black-body
radiation shift of atoms [Safronova, 2012 ; Nicholson, 2015], which is a limit of the accuracy of
atomic clocks, or for the interpretation of atomic parity violation and electron dipole moment
experiments [Dzuba, 2012].

The tune-out wavelengths were measured by parametric heating in optical traps (PH), by
atomic di�raction experiments on optical lattices (AD), and by atom interferometer experiments
(AI). These experiments measured the tune-out wavelengths for di�erent alkalis Li [Copenhaver,
2019 ; Décamps, 2020], K [Trubko, 2017], Rb [Herold, 2012 ; Schmidt, 2016 ; Leonard, 2017], and
Cs [Ratkata, 2021], as well as for other atomic species, including He [Henson, 2022], Sr [Heinz,
2020], and Dy [Kao, 2017], and for NaK [Bause, 2020] molecules. Published relative uncertainties
for these species are given in the table 3.2.

We have measured the lithium tune-out wavelength [Décamps, 2020] with our separated-arm
interferometer. The principle of the measurement is to focus a laser beam of intensity I on one

9. To be distinguished from the "magic wavelengths" used in optical clocks, which correspond to identical light
shifts for the two clock states.
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arm of the interferometer and to measure the phase shift induced by the light shift U

~ as a
function of the laser frequency Ê/(2fi):

„ = 1
~

⁄
U(Ê)dt = ≠

–(Ê)
2‘0c~

⁄
I(t)dt (3.16)

For an alkali in the |iÍ state, the dynamical polarizability is the sum of a contribution from
the core electrons –core = 2.04 a.u., which is almost independent of frequency, and contributions
corresponding to the excited |eÍ states of the valence electron:

–i(Ê) = –c + 1
~

ÿ

e

2Êie

Ê2
ie

± Ê2 |die|
2 (3.17)

In this equation, the transition frequency between the |iÍ and |eÍ states is denoted by Êie,
die = Èf | d̨ · ‘̨ |iÍ is the dipole matrix element, and ‘̨ is the polarization of the Stark beam. For an
atom with total angular momentum F and projection mF , the general form of the polarizability
can be decomposed into a scalar part –(0)

i
, a vector part –(1)

i
, and a tensor part –(2)

i
:

–i(Ê) = –c + –(0)
i

≠ V ęB · k̨
mF

2F
–(1)

i
+

33(̨‘ · ęB)2
≠ 1

2

43m2
F

≠ F (F + 1)
F (2F ≠ 1) –(2)

i
(3.18)

where V is the Stokes parameter representing the degree of circular polarization of the laser
beam, ęB is a unit vector in the direction of the quantization axis, and k̨ is the unit vector in
the direction of the wave vector.

We want to find the wavelength at which the scalar part of the polarizability vanishes. To get
rid of the vector component, the Stark beam is linearly polarized (V = 0) and a magnetic field
is directed orthogonal to the laser wavevector. The experimental setup for this measurement is
shown in figure 3.10. In this configuration, the dynamical polarizability is expressed as :

–F =2,mF = –c + –(0)
g,F =2 + 3(̨‘ · ęB)2

≠ 1
2

m2
F

≠ 2
2 –(2)

g,F =2 (3.19)

In practice, the tune-out wavelength is determined by measuring the phase shifts „S as
a function of the Stark laser frequency. This frequency is measured using a laser beatnote
with a reference laser locked to the S1/2, F = 1 Ωæ P1/2, F = 2 transition. An example of
a signal is shown in Figure 3.11(a), where the measured Stark phase shift is „S = 213 mrad.
The phase shifts „S are measured as a function of the frequency di�erence in the region of
the tune-out frequency, and a linear fit is used to estimate the frequency at which „S cancels.
In-fine, we have determined the contribution of the scalar part of the tune-out wavelength
[Décamps, 2020] with an uncertainty of 11fm dominated by the optical pumping instability in---2S1/2, F = 2, mF = ±2

f
, which corresponds to:

Ê0/(2fi) = 446803175(8)MHz (3.20)

⁄0 = 670972085(11)fm (3.21)
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5

A. The atom interferometer

Our lithium Mach-Zehnder interferometer has been de-
scribed in detail [48] and it is schematically represented in
Fig.2. The lithium atomic beam, produced by supersonic
expansion of lithium seeded in argon, has a Gaussian ve-
locity distribution with a mean velocity vm � 1050 m/s
and a 24% FWHM. This atomic beam, which is strongly
collimated by two very narrow slits, crosses three laser
standing waves which di�ract the atom wave in the Bragg
regime. We use first-order di�raction to split, reflect and
recombine the atom waves. The laser standing waves
are produced by a single frequency dye laser, with its
frequency on the blue side of the 2S1/2 � 2P3/2 tran-
sition of 7Li at 671 nm: this choice makes the interfer-
ometer very selective for this isotope and this selectivity
combined with the very large natural abundance of 7Li,
(92.5%) makes that only this isotope contributes to the
signal [49]. This signal I is the number of atoms arriv-
ing on the Langmuir-Taylor detector during a counting
period, usually = 0.1 s, and it is given by

I = I0 [1 + Vobs cos (�d + �P )] , (12)

where �d is a phase due to the di�raction process. This
phase, which is independent of the atom velocity, is a
function of the x-position of the laser standing wave mir-
rors: �d is used to scan the interference fringes. �P is a
phase shift due to the perturbation under study.

FIG. 2: (Color online) Atom interferometer configuration in-
cluding an optical pumping stage and a dephasing region. To
measure the optical pumping e�ciency, we use a coil at mid-
distance between the first and second laser standing waves
(upper box): this coil produces a magnetic field gradient on
the interferometer arms. The lower box shows the laser inter-
action region. In this region, the magnetic field is along the
x-axis, with Bx � 10�4 T. The Stark laser beam enters along
the vertical y-axis, perpendicular to the atom beam propa-
gating along the z-axis. This laser beam is linearly polarized
with its polarization vector parallel to the z-axis.

B. Stark phase shift

In order to induce a phase shift, one must apply a
perturbation U on one arm and not on the other one.
The best place is just ahead of the second laser standing
wave, as the separation of the two interferometer arms
is largest, close to 100 µm, while the full width at half
maximum of the atomic beams is about 30 µm. If the
perturbation U is applied on one arm only, the phase
shift �P , given by a semiclassical calculation, is

�P = �
�

U

~v
dz. (13)

This calculation is valid if U is very small with respect to
the atom kinetic energy, a condition very well fulfilled. v
is the atom velocity and the integral is taken along the
unperturbed atom interferometer arm.

The laser beam used to produce the Stark phase shift
is perpendicular to the interferometer plane and it is fo-
cused on one interferometer arm. Assuming a Gaussian
TEM00 beam of radius w and power PL, the Stark phase
shift is equal to

�S,F,mF =
PL�

2��0c~vw
�F,mF (�), (14)

where c the speed of light and �0 the vacuum permittiv-
ity. This calculation, which corresponds to the ideal case
of an atom going through the center of the laser beam,
neglects the fact that the other interferometer arm is also
irradiated by the wing of the TEM00 beam. A smaller
Stark phase shift is induced on this arm and we measure
their di�erence. This e�ect does not change the tune–out
frequency.

C. Polarization of the laser in the interaction
region

We choose to work with a linear polarization, perpen-
dicular to the quantization axis and parallel to the atom
propagation direction. A point which must be stressed
is that no spin-flip occurs in the interferometer. If there
is no point on the interferometer arms where the three
components of the magnetic are very small at the same
time, the atom angular momentum F follows adiabati-
cally the direction of the magnetic field direction: this
means that the projection mF of the total angular mo-
mentum F on the field B is conserved along the atom
propagation. This is why we do not control the direction
of the magnetic field between the optical pumping region
and the interaction region.

In the interaction region, the magnetic field B is made
parallel to the x-axis. For this purpose, we use two pairs
of rectangular coils acting on its Bx and By components
and a pair of circular coils acting on the Bz component.
All these coils, in a quasi-Helmholtz configuration, are
outside the vacuum chamber. We checked that the fringe

Figure 3.10 – Experimental setup for Tune-Out wavelength. A laser beam is focused on one
of the interferometer’s arms, inducing a phase shift due to light shift. The diagram shows the
beam polarization and quantization axis.
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a) b)
8

FIG. 4: Example of interferometer fringe signal I/(2I0) plot-
ted as a function of the di�raction phase �d: measurements
with laser o� (black triangle) and their best fit (dashed black
line); measurements with laser on (red crosses) and their best
fit (full red line). In the present experiment, the measured
value of the Stark phase shift is �S = 213 mrad.

B. Determination of the tune-out frequency

We measure phase shift �S as a function of the Stark
laser frequency. As explained above, this frequency
is measured by the frequency di�erence � with the
laser locked on the 2S1/2, F = 2 � 2P1/2, F

� = 1
transition whose frequency is very accurately known,
(446799771.121 ± 0.013) MHz [44]. Figure 5 displays the
variation of �S as a function of � in the vicinity of tune-
out frequency: �S is a linear function of � with a good
accuracy and a linear fit gives the frequency for which
�S vanishes : this is the position �TO of the tune-out
frequency. In the case of fig. 5, we get �TO = 3400 ± 1
MHz and a slope of 1.84 ± 0.1 mrad/MHz, with 1� un-
certainty).

C. E�ect due to an imperfect optical pumping

By changing the optically pumped sub-level, we have
measured the Stark phase �S for the two F = 2, mF =
±2 sub-levels. Figure 6 presents the results of these mea-
surements. From the linear fits, we extract the tune-out
frequencies given by �TO(mF = +2) = 3407.1±0.5 MHz
and �TO(mF = �2) = 3427.4 ± 0.6 MHz. If the exper-
iment was perfect, the tune-out frequency of these two
sub-levels should be equal, while we observe a frequency
di�erence equal to 20.3 MHz. We think that this di�er-
ence is due to an imperfect optical pumping, with dif-
ferent distributions of the population among the ground-
state sub-levels as shown in table II. Using the measured
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value of the Stark phase shift is �S = 213 mrad.
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ferent distributions of the population among the ground-
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Figure 3.11 – (a) The phase shift induced by illuminating one arm of the interferometer with
a laser beam is measured. (b) By changing the laser wavelength, it is possible to determine the
Tune-Out wavelength when the phase shift cancels.

This measurement is in agreement with Copenhaver et al. [Copenhaver, 2019]. Furthermore,
the tune-out wavelength depends critically on the ratio R = d2

3/2/d2
1/2 between the oscillator

strengths of the alkali D1 and D2 transitions. Our measurement of ⁄0 gives an experimental value
for the ratio of R = 1.999(7), a value in agreement with Tang et al. [Tang, 2013]’s calculations
of R ≠ 2 = 0.000024107 10.

Our results add to a series of recently completed measurements of tune-out wavelengths for
di�erent atomic species (see table 3.2). The most accurate measurements in oscillator strength
ratio, made using an atom interferometer with a rubidium-87 condensate [Leonard, 2017], have
achieved relative uncertainties on the order of 10≠5, while with a helium condensate the un-
certainty obtained is on the order of 6 ◊ 10≠6 [Henson, 2022]. Measurements of the tune-out
wavelengths for di�erent atomic species have contributed to a better understanding of the theore-
tical predictions and have confirmed the validity of the methods used to evaluate computational
uncertainties.

In this context, lithium is of particular interest for polarizability measurements because its
electronic structure is simple enough to allow explicit consideration of electronic correlations
in ab initio calculations. In addition, measurements on more massive atomic species (such as
rubidium and cesium) are more sensitive to relativistic e�ects. Therefore, it seems appropriate
to have several references to tune-out wavelengths for di�erent atomic species in order to test
theoretical models.

5 Pancharatnam phase shifter

As part of his work on light propagation in anisotropic media, S. Pancharatnam studied the
problem of determining the phase of a light wave when its polarization is changed. When the

10. In the case of a 1-electron atom R = 2 in the non-relativistic approximation.
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Figure 3.12 – The polarization state of light is represented on the Poincaré sphere, with the
poles representing circular polarization and the equator representing linear polarization. The
orientation of the vector on the tangent plane represents the phase of the light wave. When a
vector travels a closed path on the sphere, it returns with a di�erent orientation equal to the solid
angle enclosed by the surface. The initial polarization of the standing wave is linear |Psi1Í. The
ray passes through two quarter-wave plates. The first is fixed with a fast axis at 45o with respect
to the incident polarization. The second is at an angle ◊ to the initial polarization direction. The
corresponding trajectory is shown on the Poincaré sphere (a). The polarization state changes
from straight to right circular. Then, depending on the angle ◊, it returns to linear polarization.
After being reflected by the mirror, it changes from linear to left circular polarization and finally
returns to its original state.

polarization of the wave is changed and returns to its initial state of polarization, he demonstra-
ted a phase shift between the initial and the final wave that depends solely on the path traveled
in the space of polarization states. These results were published in 1956 [Pancharatnam, 1956],
anticipating the concept of geometric phase. A few decades later, M. Berry demonstrated the
underlying geometrical nature of these phases and generalized the concept beyond electroma-
gnetic waves [Berry, 1984 ; Berry, 1987]. The polarization state of the light field is represented on
the Poincaré sphere; more generally, the state of the light field is represented by a vector tangent
to the Poincaré sphere, whose orientation measures the phase. If a vector is parallel transported
on a sphere along a closed path, it returns with a di�erent orientation, and the angle between
the two vectors is proportional to the solid angle subtended by the path traveled 11. We used
this phase shift induced by a change in polarization to modify the phase of the standing wave
di�racting the atoms, and thus to control the output phase of the atom interferometer.

In practice, the laser beam with linear polarization is retroreflected by two quarterwave plates
(Fig. 3.12(b)). The axis of the first quarterwave plate is fixed at 45o to the incident polarization,
and the second quarterwave plate can be rotated continuously. The angle between the initial
polarization direction and the waveplate axis is called ◊. The polarization state changes from
horizontal polarization (H on the Poincaré sphere) to right-handed circular polarization (RH)
after the first quarterwave plate. After passing the second quarterwave plate, the polarization

11. Note that the rules of parallel transport are not specific to wave phenomena; they also explain mechanical
e�ects such as the precession of Foucault’s pendulum
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Chapitre 3. Separated-arm lithium interferometer

Figure 3.13 – a) The Pancharatnam phase shifter is located in front of the M3 retroreflecting
mirror. b) Atomic interference fringes scanned with the Pancharatnam phase shifter.

state returns to linear polarization (P) with an orientation that depends on ◊. After retrore-
flection on the mirror, the linear polarization (P) is transformed into the left-handed circular
polarization (LH) and finally returns to its original polarization state (H), but phase-shifted
by „P ancha = 2◊. To change Pancharatnam’s phase, we simply rotate the second quarter wave
plate.

The main result of this study is the demonstration of a new technique, based on the Pancha-
ratnam phase, for controlling the phase of an atom interferometer using a retroreflected optical
lattice. Figure 3.13(b) shows interference fringes scanned with the Pancharatnam phase. This
first result confirms the principle of the Pacharatnam phase shifter. Indeed, the visibility is not
degraded by this device and we did not observe any additional phase noise. In addition, we
identified its limitations using optical interference devices. The main limitation relates to the li-
nearity between the induced phase shift and the angle of rotation of the quarter wave plate. This
is due to the imperfect alignment of the quarterwave plates, which could be greatly improved
by appropriate mechanical design.

In conclusion, the Pancharatnam phase shifter is of interest for the engineering of atom inter-
ferometers, especially for space missions. This method allows precise control of the interferometer
phase without the need to move the retro-reflecting mirror, thus simplifying the implementation
of other controls such as mirror rotations, which are essential to compensate for the rotations
of an on-board sensor. Furthermore, by exploiting the geometric nature of the Pancharatnam
phase, it is possible to e�ectively control the phase shift of atomic species di�racted by laser
beams of di�erent wavelengths. This property is of particular interest in space experiments
designed to test the equivalence principle using two-species interferometers.

6 Conclusion and prospects

In this chapter, I have presented my research activities carried out between 2010 and 2015
in the atom interferometer team at LCAR. The work I presented is based on the operation of
an atom interferometer, which uses a continuous source of lithium atoms di�racted by stan-
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6. Conclusion and prospects

ding light waves. What distinguishes our device from most other atom interferometers is the
spatial separation between the arms of the interferometer, which allows to control the di�erent
perturbations on each of the two arms. This feature has paved the way for the exploration of
non-inertial measurements that are uncommon with atom interferometers.

Continuous sources of atoms are less frequently used in atom interferometry than "pulsed"
sources of laser-cooled atoms (e.g. optical molasses). In our experiment, the choice of a su-
personic atomic beam was made with the aim of observing refractive index e�ects during the
propagation of matter waves in a dilute medium. However, beyond the study of these colli-
sional properties, continuous sources o�er advantages that could be exploited in the field of
inertial sensors. Interferometers using thermal beams have a considerable flux of atoms, which
translates into excellent performance in terms of signal-to-noise ratio. In addition, continuous
measurements allow for a wider measurement bandwidth, which also reduces spectral aliasing
e�ects that can limit the sensitivity of these instruments. These features are extremely useful
for atomic gyroscopes, whose scaling factor is proportional to atomic velocity (unlike accelero-
meters) [Durfee, 2006 ; Gustavson, 2000]. However, thermal beam interferometers have a high
longitudinal atomic velocity, which poses a problem in terms of device compactness. Research
is underway to develop high-brightness, continuous sources of cold atoms [Phillips, 1982] for
use in inertial sensors and atomic clocks [Xue, 2015 ; Manicchia, 2023] or for short-range force
measurements with material nano gratings [Garcion, 2021]. Furthermore, recent developments
have highlighted the possibility of cold atom sources without the need for laser cooling [Hun-
tington, 2023]. This approach, successfully demonstrated on lithium, could be generalized to
other paramagnetic atoms or molecules, paving the way for metastable hydrogen or helium cold
atom beams. In addition, the slowing and rovibrational cooling of more massive paramagnetic
molecules, such as YbF, would have significant implications for parity violation measurements,
as well as for the study of collisions and chemistry at ultracold temperatures.

The work carried out by our team using the Lithium Interferometer has demonstrated the
possibility of making new measurements using the spatial separation of the interferometer arms.
This approach has allowed us to explore the special features of quantum physics, in particular
geometric phases of the Aharonov-Bohm type. Furthermore, recent developments in interferome-
ters using ultracold atoms have highlighted the possibility of manipulating quantum coherences
at macroscopic scales, with dimensions up to several tens of centimeters [Kovachy, 2015a]. The
prospect of interferometers with macroscopic spatial separations and better control of systematic
e�ects opens up new possibilities for fundamental tests. In the next chapter, some promising
aspects of these prospects will be discussed in more detail, highlighting their novel character in
the context of atom interferometry.
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Chapitre 4
Ongoing research and prospects

The most exciting phrase to hear in
science, the one that heralds new
discoveries, is not "Eureka!" but "That’s
funny..."

I. Asimov

Since 2016, I have oriented our e�orts on the study of atom interferometers using
Bose-Einstein condensates (BECs) with large spatial separation. These interferome-
ters have led to many proposals, both in the field of quantum sensors and in the
implementation of fundamental physics tests. Our research focuses on the develop-
ment of new methods in atom optics, such as atom beamsplitters with very high
momentum transfer, the study of ultracold atom sources at high rates, and new
physics tests exploiting geometric phase shifts.

Objectifs
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1. Atom interferometry with macroscopic separation

1 Atom interferometry with macroscopic separation

The experimental setup we are developing is designed to make atom interferometers with se-
parations between the arms of the interferometer ranging from centimeters to a meter. It is based
on Bose-Einstein condensates manipulated by an optical lattice. Recently, ultracold atoms have
demonstrated their ability to achieve large momentum transfers using optical lattices, while al-
lowing interferometer durations (T ) significantly longer than those obtained with atomic beams.
These devices therefore allow a significant enhancement of the scaling factors of inertial sensors,
as well as h/M measurements used to determine the fine structure constant. In addition, the
large spatial quantum superpositions generated in these interferometers create singular situa-
tions in quantum physics, paving the way for tests of the macroscopicity of quantum physics.
The macroscopic separation between the interferometer arms also provides opportunities to tai-
lor the interaction potentials at these arms. This allows detailed studies of phenomena such as
geometric phase shifts and their applications in metrology, as well as gravitational measurements,
including the determination of the universal gravitational constant G.

In this section I will briefly present the preliminary results we have obtained in the field of
Large Momentum Transfer (LMT) with an interferometer using rubidium Bose-Einstein conden-
sates. I will then describe the main features of a new apparatus that is currently under deve-
lopment. Finally, I will discuss some of the measurements we plan to achieve with this device,
focusing on a new method for measuring the neutrality of matter based on the scalar Aharonov-
Bohm e�ect.

1.1 Preliminary results

1.1.1 Interferometer with ultra-cold atom sources

Between 2016 and 2022, we developed a new atom interferometer based on rubidium-87 Bose-
Einstein condensates (BECs) (figure 4.1 (a)). Atoms are launched upward through an optical
lattice at 1064 nm and then di�racted by a vertical lattice at 780 nm to create the interferometer
(Figure 4.1 (b)). The atoms are detected by fluorescence imaging on a CMOS camera after a
time-of-flight of 15 ms, a time that allows the di�erent pulse states to be clearly distinguished at
the output of the interferometer (figure 4.1 (c)). The design and assembly details of the vacuum
system and the laser cooling system are documented in the thesis of Boris Décamps [Decamps,
2016].

Bose Einstein condensate source. The atomic source consists of an ensemble of Rubidium-
87 atoms evaporatively cooled in an all-optical trap. The configuration of this dipole trap is
based on two horizontally crossing beams at 1070 nm (crossed trap), plus a third beam at
1560 nm at an angle of 45circ to the vertical, with a smaller waist (dimple trap) (see figure
4.2). This configuration, inspired by the work of Clément et al. [Clément, 2009], allows the
confinement frequencies and trapping depth to be tuned independently with the power of the
cross-trap, and the runaway regime to be reached during evaporative cooling. In addition, a
horizontal magnetic field gradient is applied during the evaporative cooling process to prepare

43



Chapitre 4. Current research directions and projects

!ℏ#!""
$%ℏ#!""

Δ"

(a) (b)

! (#$)

Densité
intégrée (u. a. )

230 µm
7 ∼ 60 µm

:

!

⨂
;

(c)

Figure 4.1 – (a) In the experiment we are building, ultracold atoms are manipulated with
optical lattices to create an interferometer with arms separated by several centimeters. Such a
separation �z allows to apply di�erent potentials on each of the interferometer arms. (b) The
condensate is manipulated with a 780 nm retro-reflected optical lattice (in red). A 1064 nm
optical lattice, superimposed on the previous one, is used to launch the atoms upwards. (c) The
atoms are detected by fluorescence. The exit ports correspond to momentum states separated
by 2~k, with populations that can be measured after a time of flight. The image shows that the
spots corresponding to these di�erent states are well separated.

the condensate in the pure |F = 1, mF = 0Í [Cennini, 2003] state. In 6 seconds we create a
Bose-Einstein condensate (BEC) of N = 6 ◊ 104 atoms. The trap frequencies at the end of the
evaporation reach about (60 ◊ 900 ◊ 1100)Hz3. By transferring the BEC to a less confining trap,
characterized by frequencies around (10 ◊ 80 ◊ 80)Hz3, we achieve a significant reduction in
the velocity dispersion. This allows us to obtain atomic ensembles of 3times104 atoms with a
velocity dispersion of about 0.3vr (corresponding to an e�ective temperature of 30 nK). Details
of the experimental setup and methods for characterizing the optical trap can be found in the
thesis of Julien Alibert [Alibert, 2017] and Maxime Bordoux [Bordoux, 2019].

Launching and collimation. To increase the free fall time of the interferometer, the conden-
sate is launched vertically with Bloch oscillations into a 1070 nm optical lattice with a waist of
80 µm. This optical lattice is formed by a pair of vertically aligned, counter-propagating laser
beams that are independently controlled in frequency and amplitude by acousto-optic modu-
lators (AOMs) 1. We adjust the relative frequency di�erence of the lattice beams to accelerate
the atoms. We have recently obtained the first results for vertical atom acceleration, launching
up to 40vr ¥ 160 mm/s without observing any atom loss or increase in velocity dispersion. The
launch velocity is currently limited by transverse confinement, which produces center-of-mass
oscillations and leads to heating of the atomic cloud. This limitation results from a compromise

1. This optical lattice is not retroreflected, which avoids the problems associated with interference induced by
dual lattices at zero velocity, unlike the Bragg optical lattice.
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Figure 4.2 – a) Diagram of the crossed (blue) and dimple (red) traps used to realize the
conservative dipole trap during evaporative cooling. b) Trapping potential plots of the dipole
trap used at the beginning of evaporation. This geometry allows to decouple the frequencies
(dominated by Êx and Êprime

z ) and the trap depth (dominated by the depth of the trap crossed
along the yprime axis) during evaporation.

in the size of the beam used for both the launch and the optical trap. A modification of the
optical setup of the beams at 1070 nm will increase the waist of the optical lattice and overcome
this limitation.

Measurements planned with the separated-arm interferometer experiments require a subna-
nokelvin atom source. To achieve this goal, we have implemented a phase-space manipulation
technique, also known as delta-kick collimation (DKC) [Chu, 1986 ; Ammann, 1997 ; Morinaga,
1999 ; McDonald, 2013 ; Kovachy, 2015b ; Corgier, 2020 ; Deppner, 2021]. This technique consists
of applying a velocity dependent force field that opposes the atomic motion, leaving the cloud
with almost zero velocity dispersion. In practice, the atoms are allowed to spread out for a
su�ciently long free-fall time so that the position distribution of the atoms reflects the initial
velocity dispersion. We then apply a harmonic optical potential to collimate the spatial expan-
sion of the source to reduce its velocity dispersion. The DKC sequence is shown in figure 4.3(a).
After being released from the dipole trap, the atoms are in free fall. They are then accelerated
upward at a velocity of 40vr so that the apogee of their trajectory coincides with the center of the
optical trap (a similar implementation with ytterbium atoms is described in [Gochnauer, 2021]).
After an expansion period of texp, the DKC pulse is realized by reflashing the optical trap. For a
velocity of 40vr, expansion times of 16.5 ms can be achieved. Under these conditions, the DKC
technique allows us to obtain a source of atoms with an e�ective temperature of about 2 nK
(Figure 4.3(b)), in agreement with our numerical simulations. These simulations also indicate
that, despite the nonlinearities of the trap, temperatures of the order of 500 pK can be achie-
ved for longer expansion times. However, increasing the expansion time requires higher launch
velocities, which leads to a heating of the atomic cloud with the current lattice, compensating
for the advantages of DKC.

The details of the experimental setup and the characterization of the launching and DKC
collimation are described in Ashley Béguin’s thesis [Beguin, 2023].
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Figure 4.3 – a) Schematic diagram of the atom trajectory for the DKC experiment. The
collimation pulse is applied at the top of the atom trajectory to minimize displacements during
the laser pulse. b) Experimental study of the cloud size evolution after time of flights: without
DKC (pink), corresponding to an e�ective temperature of 30 nK, and with DKC (blue). The
DKC parameters are: duration · = 150µs, power P = 6 W, waist w0 = 145 µm and expansion
time before DKC of 16.5 ms. We obtain an e�ective temperature of 1.78 ± 0.25 nK.

1.1.2 Di�raction in the quasi-Bragg regime

To achieve a spatial separation of several centimeters with free fall times limited to a few
hundred milliseconds, the use of atomic beam splitters capable of inducing large momentum
transfers (> 80~k) is essential. In addition, we will see that for some applications it is important
that the atoms propagate through the interferometer in the same internal state. To satisfy these
constraints, the interferometers we use employ an optical lattice operating in the quasi-Bragg
di�raction regime.

We have performed a comprehensive numerical and experimental study of the di�raction of
ultracold atoms in the quasi-Bragg regime. Although di�raction by an optical lattice has been
the subject of numerous theoretical and experimental investigations, our study has provided
insight into the convergence of numerical models, the phase shifts inherent in the quasi-Bragg
regime, and the optimal conditions for di�raction. Details of this study have been published in
[Béguin, 2022 ; Beguin, 2023], and I present the main results here.

The theoretical model we use to describe di�raction in the quasi-Bragg regime is presented
in chapter 2. The n-order di�raction process results from resonant coupling between the |p0Í and
|p0 + 2n~kÍ momentum states. We study the dynamics by numerically solving the Schrödinger
equation using the Hamiltonian 2.2 (page 10). In this study, the time envelope of the interaction
with the optical lattice is a Gaussian defined numerically over an interval ±5‡:

“(t) = “max exp
C

≠
≠t2

2‡2

D

. (4.1)

We distinguish two interaction subregimes: Short Pulse ("SP"), dominated by non-adiabatic
transitions populating unwanted pulse states, and Long Pulse ("LP"), where oscillations between
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the two Bragg states are found.

! (#!"#)

γ$%&

P'

P'

!!
= #

!!= 3#

!!= 5#

Figure 4.4 – Population P3 of the di�racted
state |6~kÍ in the quasi-Bragg regime. The si-
mulation considers a velocity dispersion of 1.8
mm/s (i.e. T = 30 nK). Right panel: popula-
tion P3 as a function of (‡, “mathrmmax). Dashed
lines indicate local maxima associated with Rabi
phases fi[2fi]. The blue line corresponds to the
Rabi oscillation of figure 4.5 for “max = 3.3. Left
panel: Population P3 as a function of ‡ along
the lines of the local maximum. For this tempe-
rature, the optimal di�raction e�ciency is rea-
ched for a pair (‡, “max) such that ◊R Ø 3fi.

We have numerically investigated the in-
teraction time and lattice depth that optimize
the di�raction e�ciency to order n for a given
atomic cloud temperature. The temperature
T is defined by the standard deviation ‡v of a
Gaussian velocity distribution ‡2

v = kB/mT .
The right side of the figure shows the evolution
of the population in the Bragg state |6~kÍ as
a function of lattice duration and amplitude
‡ ≠ “mathrmmax. We observe a series of local
maxima corresponding to odd multiples of fi

of the Rabi phase ◊R. The left side of the figure
shows the evolution of the transferred popula-
tion along the lines of the local maxima (da-
shed lines in the right side of the figure). Each
curve corresponds to a particular Rabi phase
(pi, 3pi, 5pi, . . . ). All odd Rabi phases in the
LP regime reach a similar maximum transfer
e�ciency for a pair ‡ ≠“mathrmmax}mathrmopt.
We have demonstrated an interesting compro-
mise that minimizes the maximum amplitude
of the optical lattice at the boundary between
the SP regime, characterized by non-adiabatic
losses, and the LP regime, dominated by velocity selectivity. Considering a higher Rabi phase
would have the e�ect of reducing non-adiabatic losses and the associated di�raction phases.
However, this approach has the disadvantage of accentuating other e�ects, such as spontaneous
emission and light shifts, which increase in proportion to the product ‡ ◊ “max. The trade-o�
between the SP and LP regimes is illustrated in figure 4.4, where maximum e�ciency is observed
for values of ◊R Ø 3fi. An important feature of this study is the very good agreement between
our experimental data and our numerical simulations. High-order Bragg di�raction in the quasi-
Bragg regime is illustrated in the figure 4.5. In this example, we measure the populations in the
di�erent pulse states at the end of the laser pulse, adjusted to a transition of n = 3. The pulse
duration ‡ is scanned between 0.05Ê≠1

r and 1.1Êr≠1. We distinguish between SP (‡ . 0.5Ê≠1
r )

and LP (‡ & 0.5Ê≠1
r ) regimes. We obtain very good agreement between our experiment and

our numerical model, with the populations of the di�erent momentum states being very well
reproduced by the numerical simulation without adjustable parameters.

We have also studied three-pulse Mach-Zehnder interferometers. In a two-level model adapted
to Raman pulses or the Bragg regime, the beam splitters are realized with a ◊R = fi/2 pulse,
while the mirror is obtained with a ◊R = fi pulse. However, in the quasi-Bragg regime, these
Rabi phases correspond to the SP regime, leading to significant non-adiabatic losses. For these
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Figure 4.5 – The figure shows the evolution of Pn populations in each of the 2n~k momentum
states as a function of ‡ for a Gaussian envelope of the lattice. The coupling is chosen to be
resonant for 3rd-order di�raction with a two-photon Rabi frequency “max = 3.3. The initial state
is the n = 0 momentum state. (a) Evolution of the two Bragg states n = 3 and n = 0, (b) and
(c) population in the non-resonant momentum states. The solid lines are the results of numerical
simulation for a velocity dispersion ‡v ¥ 1.8mm/s (¥ 30 nK) without adjustable parameters.
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Figure 4.6 – Interference fringes obtained for a mirror pulse in the LP (a) and SP (b) regime
for n = 3. The solid lines are the result of a sinusoidal fit. Each experimental data is the average
of 5 measurements. The LP regime allows for a two-wave interferometer that produces sinusoidal
fringes, while the SP regime induces multiple interferometers that distort the interference fringes.
The distortion of the fringes is interpreted as an additional phase „d.

experiments, atomic beam splitters with longer pulses ◊R = 3fi/2 are used. This corresponds to
a pulse at the boundary between the SP and LP regimes. The mirror pulse is chosen either in
the SP regime ◊R = fi or in the LP regime ◊R = 3fi. In particular, we have studied the e�ect
of non-adiabatic losses up to n = 5 on the visibility and deformation of interference fringes. For
example, the figure 4.6 shows fringes for n = 3. Unlike previous studies [Altin, 2013 ; Parker,
2016], we directly measure the interference fringes in all output channels of the interferometer.
This feature opens the way to quantitative studies of the systematic e�ects associated with
di�raction phases [Kirsten-Siemß, 2023].

Conclusion. We have studied atomic di�raction and interferometry with a BEC di�racted by
an optical lattice in the quasi-Bragg regime up to the sixth order of di�raction. We have presented
simulations performed without adjustable parameters, which are in excellent agreement with
experimental data. This work provides a quantitative understanding of the di�raction phases
associated with the multiport nature of interferometers based on quasi-Bragg di�raction. We
have numerically confirmed the relationship between di�raction phases and non-adiabatic losses,
explaining di�raction phase shifts up to tens of milliradians.

These characterization elements contribute to our understanding of atom interferometers
using high order di�raction. Laser power limitations reduce the interest in di�raction orders
beyond n = 10. However, interferometers using Bragg beam splitters . 20~k remain relevant
in the context of inertial sensors where sensitivity is the main limitation. These beamsplitters
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also have applications in space missions, where long interferometry durations in small volumes
and thus moderate pulse separation are required 2. However, their use for metrological purposes
requires a better understanding of the multipath phases. A detailed study of these phase shifts
and of methods to attenuate them is currently being pursued in collaboration with the group of
N. Gaaloul in Hannover [Kirsten-Siemß, 2023]. Last but not least, these studies have given us
a deep understanding of the quasi-Bragg regime, both experimentally and numerically. These
insights have been crucial for the design and development of the large momentum transfer
interferometers we are planning.

1.1.3 Beam splitters with large momentum transfer

Recently, there have been many e�orts in the community to increase the number of photon
momentum (~k) transferred to atoms, with the goal of creating Large Momentum Transfer
(LMT) atomic beam splitters. Various solutions have been demonstrated, most of them beginning
with the creation of a superposition of two momentum states using a quasi-Bragg di�raction.
One of the two states is then accelerated, either continuously using Bloch oscillations [Cladé,
2009], or discretely using fi pulse sequences [McGuirk, 2000 ; Gupta, 2002].

The first method, based on Bloch oscillations and Bragg di�raction, was implemented by
the group of E. Rasel [Gebbe, 2021] for the demonstration of an interferometer that allowed a
transfer of 408 ~k in the horizontal direction. A similar approach proposed by Malinovsky et
al. [Malinovsky, 2003], based on the use of two optical lattices accelerated in opposite directions,
was used by Pagel et al. [Pagel, 2020] to construct 240 ~k interferometers. M. Kasevich’s
group demonstrated interferometers with a momentum separation of 102~k using successive
Bragg transitions (n = 3) [Chiow, 2011]. More recently, in the group of S. Gupta, a 112~k

interferometer was realized also using sequences of Bragg pulses, but with ytterbium atoms
[Plotkin-Swing, 2018]. Sequential acceleration methods have also been implemented with single-
photon transitions on strontium atoms using a sequence of fi pulses [Rudolph, 2020 ; Wilkason,
2022]. These achievements have led to the demonstration of interferometers with beam splitters
of 400~k. Our team has recently demonstrated an interferometer with a beamsplitter of 200~k.
A non-exhaustive list of LMT interferometers is given in the table 4.1.

LMT Type Atoms References Transfer
Bragg CEBS Rb [Béguin, 2023] 200 ~k

Bragg Yb [Plotkin-Swing, 2018] 112 ~k
Bragg Rb [Chiow, 2011] 102 ~k
Bloch Cs [Pagel, 2020] 240 ~k

Bragg + Bloch Rb [Gebbe, 2021] 408 ~k
1 photon Sr [Rudolph, 2020] 141 ~k

1 photon (Floquet) Sr [Wilkason, 2022] 400 ~k

Table 4.1 – Non-exhaustive list of LMT interferometers achieved in recent years.

2. As an example, the STE-QUEST project considers an interferometer duration of 2T =25 seconds, which
would result in a separation of almost 1 m for 6~k beamsplitters with rubidium atoms
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Coherent Enhancement of Bragg Sequences. Large momentum transfer interferometers
require very high transfer e�ciencies due to the cumulative losses associated with each transition.
Using 1000~k as a reference for the next generation of LMT interferometers, an e�ciency greater
than 99.88% per ~k (or 99.97%) is required to detect 10% (or 50%) of useful atoms at the output
of a Mach-Zehnder-type interferometer.

The previous approach to achieve e�cient transfers relies on optimizing each Bragg tran-
sition individually. [Chiow, 2011 ; Plotkin-Swing, 2018]. However, achieving e�ciencies greater
than 99.5% in the quasi-Bragg regime is a real challenge. To meet this challenge, it is necessary
to combine the use of long pulses to minimize non-adiabatic losses with the use of highly col-
limated atomic sources (temperature below 500 pK) to limit losses due to velocity selectivity.
Typically, the time interval between each pulse is in the millisecond range, resulting in interfe-
rometer durations of several hundred milliseconds or even a few seconds, limiting the practical
interest of these techniques to & 100~k interferometers. We have demonstrated the possibility
of circumventing this limitation by exploiting destructive interference between non-adiabatic
losses. This approach has been named Coherent Enhancement of Bragg pulse Sequence (CEBS)
[Béguin, 2023].

Before studying the e�ects of this sequential transfer on a complete interferometer, we analyze
a single acceleration sequence. The evolution of the number of atoms in the accelerated state
(|2N~kÍ) is shown in figure 4.7(a). The sequence consists of N fi pulses at n = 1, of duration
· and separated by a time tc. We have set the lattice parameters to favor non-adiabatic losses,
which, unlike those associated with velocity selectivity, are coherent and thus allow interference
between losses. This setting leads to an e�ciency of 0.6 for a single pulse (N = 1 in figure
4.7(a)). If we were to consider independent processes for each acceleration pulse, this would lead
to dramatic cumulative losses, since the remaining fraction of 0.6N would be undetectable after
only N = 10 pulses. However, we find that more than 30% of the initial atoms are detected in
the fully accelerated trajectory after N = 37 pulses. This corresponds to an e�ciency of over
99% per ~k.

This e�ciency results from destructive interference between the loss channels. To illustrate
this process, we examine the losses in the |2(N ≠ 2)~kÍ state at the Nth pulse (Figure 4.7(b)).
We consider two paths, the first corresponding to the atoms not di�racted at the (N-1)-th pulse,
whose amplitude is calculated to be equal to ‘ (path a in Figure 4.7(b)), the second path cor-
responds to the non-resonant coupling at the Nth pulse with an amplitude of ‘ exp[i(fi ≠ 4Êrtc)]
(path b in figure 4.7(b)). If the coherence length › = ~/(m‡v) is larger than the distance bet-
ween the two paths � = 2vrtc, they interfere, and the population in this loss channel oscillates
according to:

P|N≠2Í ¥ 2‘2
C

1 + cos(fi + 4Êrtc)
D

. (4.2)

When the time between pulses is short enough, tc π (4Êr)≠1, the loss channels interfere destruc-
tively. This phenomenon also occurs in all other loss channels, leading to a significant reduction
in non-adiabatic losses. To study these dynamics in more detail, we have performed simulations
including higher order paths, finite temperature, and lattice amplitude fluctuations between each
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Figure 4.7 – (a) Blue circles: Population measured in the accelerated state after a sequence
of N fi pulses. The dark blue (respectively magenta) solid line is a model including interference
phenomena between loss channels and lattice amplitude fluctuations (respectively without inter-
ference). The dashed line is a simulation without fluctuations. The dotted (respectively dashed)
lines represent the power law corresponding to an independent process for each acceleration
pulse for ‡v = 2.2 mm.s≠1 (respectively ‡v = 0 mm.s≠1). (b) Diagram of the space-time trajec-
tories around the (N-1)th and Nth fi acceleration pulses. The accelerated trajectory corresponds
to the solid lines, and the dotted lines are the loss channels. After the second pulse, several
trajectories (e.g., a and b, c and d, etc.) have the same momentum state. These trajectories
interfere destructively if the distance between them � is smaller than the coherence length and
if tc π Ê≠1
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Figure 4.8 – (a) Paths corresponding to an 8 k̄ interferometer in the free-fall frame of reference.
The red lattices represent the fi/2≠fi≠fi/2 di�raction pulses of a standard atom interferometer.
The separation between the arms is increased by sequences of N fi pulses separated by a time tc

acting on only one arm (red arrow). Due to imperfections in the fi pulses, loss channels (dashed
and dotted lines) can induce spurious interferometers. The bottom panel shows the optical lattice
pulse train and the hyperbolic tangent amplitude profile used for each pulse. (b) Interference
fringes for a 200 ~k beamsplitter.

pulse. The results of these simulations agree remarkably well with the experimental data (see
figure 4.7(a)), confirming the favorable e�ect of interference between the di�erent loss channels.
The e�ciency is limited by the power fluctuations of the optical lattice, which are of the order of
7%. By reducing these fluctuations to less than 1% and using a 50 nK source like the one we used,
our simulations predict an e�ciency per ~k greater than 99.5% (dotted line in Figure 4.7(a)).
This e�ciency could be further improved by using a sub-nK source, reaching an e�ciency of
99.9%.

We have implemented these LMT beamsplitters in Mach-Zehnder LMT interferometers,
realized by a sequence of Bragg pulses (see figure 4.8(a)). The interferometer is one dimensional
according to gravity g̨ = ≠gz̨. The first beam splitter consists of a fi/2 pulse, which creates a
coherent superposition between two momentum states 2~k. Next, the upper path in the figure
4.8 undergoes a CEBS acceleration sequence of N fi pulses, which do not act on the lower arm.
After a time T Õ of free propagation, the upper path is decelerated by a CEBS sequence. A fi

pulse then acts as a mirror for both arms. The lower path then undergoes identical sequences of
CEBS acceleration (N pulses fi), free propagation T Õ, CEBS deceleration (N pulses fi). Finally,
a fi/2 pulse forms the second beamsplitter that closes the interferometer. We detect populations
in the two main output ports with states |0Í and |2~kÍ. Due to imperfect fi pulses, visibility
measurements may be biased by unwanted interferometric paths; these e�ects are studied in
detail in [Beguin, 2023].

Figure 4.8(b) shows fringes from an interferometer made with 399 pulses 3 to produce a
maximum momentum separation between the arms of 200~k. To scan the fringes, we add a laser

3. 4N + 3 pulses where N is the number of CEBS acceleration pulses
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phase jump („l) during the first N acceleration pulses, generating an oscillating signal at N ◊„l.
The frequency of these oscillations with N is a signature of the interferometer 2(N + 1)~k. We
measure a visibility of 9 ± 1% up to 200~k (Figure 4.8 (b)). The limitation at 200~k is related
to the time of flight available in our apparatus, which limits the number of Bragg pulses.

Conclusion The CEBS method allows very high transfer e�ciencies, paving the way for very
large momentum transfer interferometers. To demonstrate the potential of CEBS beam splitters,
we have performed numerical simulations which suggest that e�ciencies in excess of 99.95% per
~k are achievable. This allows the design of interferometers with beam splitters in excess of
1000~k. In addition, this method relaxes the usual trade-o� between velocity selection and
non-adiabatic losses. In addition, the CEBS technique achieves shorter pulse trains than many
other acceleration methods. For example, our simulations show that a transfer of 1000~k is
achievable in less than 5 ms with an overall e�ciency of > 10%. This technique is therefore well
suited for the compact LMT interferometers being developed for quantum sensors. In addition,
fast LMTs can increase the spatio-temporal range and the spatial separation between the arms
for a given interferometric duration. We have performed a quantitative study of the e�ect of
the finite duration of pulse sequences by extending the sensitivity function formalism to LMT
interferometers [Décamps, 2019].

The increase in e�ciency and speed of momentum transfer associated with destructive in-
terference between loss channels is also the basis of "shortcut to adiabaticity" methods [Guéry-
Odelin, 2019]. In addition, the acceleration regime we have studied is closely related to quantum
resonance phenomena in the delta-kick rotor [Moore, 1995 ; Daszuta, 2012 ; Fekete, 2017], to
the temporal Talbot e�ect [Deng, 1999], and more recently to multiple interference phenomena
during continuous acceleration in an optical lattice [Rahman, 2023].

We are currently investigating the limits of the CEBS beamsplitter, particularly in terms of
pulse transfer rate, e�ciency and robustness. To this end, we plan to implement optimal control
protocols and to use atom sources at temperatures below 500 picoKelvin. The metrological
characterization of LMT interferometers using these CEBS beamsplitters will be an important
outcome of this project. To achieve these goals, we are developing an improved version of the
device, the main features of which are outlined in the next section.

1.2 A new experimental setup

We are currently developing a new vacuum chamber. The principle of the apparatus is illus-
trated in the figure 4.9. The new experimental setup will allow us to isolate and independently
access the chambers dedicated to the BEC source and interferometry. This advance will provide
greater flexibility to integrate di�erent interaction potentials within the interferometry chamber.

The current design of the cold atom source was originally specified for integration with an
atom chip [Alibert, 2017]. This specification has imposed significant limitations on optical access
that will be overcome in the new device under development. Several approaches are possible for
the production of rubidium condensates. In the context of a laboratory experiment, particular
attention will be paid to the reliability of the method, the atom flux and the integration with the
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overall experimental setup, including aspects related to optical access and magnetic shielding.
All-optical methods provide high confinement and optimized optical access while significantly
reducing magnetic field complications. These approaches can be implemented in a variety of
configurations combining multiple laser beams. All-optical methods often allow fast and e�cient
evaporation, leading to high frequency BEC production. Among the various possible implemen-
tations, the use of "time-averaged optical potentials" seems to be a promising solution. This
technique simplifies the configuration of the optical setups and optimizes the use of the available
laser power by adapting it to the di�erent steps of the evaporative cooling. These methods have
already demonstrated their ability to generate BEC of ≥ 105 atoms in a few seconds, with a flux
of the order of 1 to 5 ◊ 104 atoms per second [Roy, 2016 ; Condon, 2019 ; Albers, 2022]. Mode
matching between optical molasses and optical traps is a significant limitation on atomic flux.
To overcome this limitation, a promising strategy is to use sub-recoil laser cooling techniques
in the optical traps during the loading process. By applying a double cross trap configuration
combined with laser cooling methods in optical lattices, Yamashita et al. [Yamashita, 2017]
obtained a condensate of 106 atoms in 4 seconds (2.5 ◊ 105 at./s). Condensation in magnetic
traps can perform highly e�cient, though relatively slow, evaporation cooling, allowing up to
107 rubidium atoms to be condensed in a few tens of seconds [Streed, 2006]. However, these
magnetic traps often have limited optical access and require the use of large electrical currents,
limiting their applicability in the context of quantum sensing. However, their robustness makes
them attractive candidates for laboratory experiments. The so-called TOP ("Time Orbiting Ave-
raged Potential") and "Plug" configurations have successfully generated condensates containing
between 1 and 2 ◊ 106 atoms within a time window of 10 to 20 seconds (about ≥ 2 ◊ 105 at./s).
This type of trap is used in particular in the rubidium interferometer of M. Kasevich’s team at
Stanford. On the other hand, Io�e-Pritchard type configurations on atom chips have demonstra-
ted the realization of condensates containing about 2 ◊ 105 atoms in 1 second [Rudolph, 2015].
These sources are used in the 0-g interferometers in Hannover or in the CAL project on the In-
ternational Space Station and are being considered for future space missions. It should be noted,
however, that atom chips impose significant constraints on optical access. A hybrid approach,
first proposed by Comparat et al. [Comparat, 2006] and implemented by Lin et al. [Lin, 2009],
consists in using a quadrupole trap as a reservoir to feed a dipole trap. This method has allowed
the creation of robust BEC sources with production rates of about 5 ≠ 10 ◊ 104 at./s and is
currently used by several research groups. The configuration planned for the new experiment is
based on an adaptation of the all-optical approach currently used. These adaptations are aimed
at integrating time-averaged optical potential techniques (or "painted potentials") to simplify
the configuration of our dipole trap. In addition, we plan to integrate sub-recoil laser cooling me-
thods [Wolf, 2000 ; Kinoshita, 2005 ; Hu, 2017a ; Schreck, 2021] to improve the loading e�ciency
of the optical trap.

The visibility and the number of atoms detected in our LMT interferometers are mainly
limited by spatio-temporal fluctuations in the phase and amplitude of the optical lattice, as well
as by spontaneous emission and the limited e�ciency of the LMT pulse sequences. To overcome
these problems, we are building a new laser system for the optical lattice that is capable of pro-
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Figure 4.9 – New vacuum chamber in development.

viding higher optical power (> 10 W) [Kim, 2020]. This will allow higher detuning (> 300 GHz),
making spontaneous emission negligible. In addition, the new system will benefit from improved
servo control, which will significantly reduce phase and amplitude fluctuations. Furthermore,
the divergence of the optical lattice introduces di�erent light shifts on the interferometer arms,
which can cause decoherence problems and systematic phase shifts. To eliminate these e�ects,
we plan to use a beam from the same optical fiber as the optical lattice, but with an opposite
one-photon detuning to compensate for the light shifts. This additional beam contains only a
single frequency and therefore does not induce Bragg transitions [Kovachy, 2015a].

To improve the e�ciency and robustness of LMT beam splitters, we investigate the imple-
mentation of optimal control methods to identify the most e�cient optical lattice amplitude and
phase profile. Several control methods inspired by nuclear magnetic resonance techniques have
already been implemented with Raman transition interferometers [Luo, 2016], Adiabatic Rapid
Passage (ARP) [Kovachy, 2015a], as well as numerical optimal control methods [Saywell, 2020].
For Bragg di�raction, numerical studies have been performed [Goerz, 2023 ; Louie, 2023], and
[Saywell, 2023] have implemented these protocols with 6~k interferometers, but without demons-
trating any significant gain. Unlike methods that aim to optimize the robustness or e�ciency of
a single laser pulse, our approach aims to optimize the entire LMT sequence, i.e. the di�raction
process that favors destructive interference conditions between non-adiabatic losses. Our goal is
to make the CEBS acceleration sequence as fast as possible, while at the same time making it
robust to amplitude and frequency fluctuations. Robustness with respect to the initial velocity
of the atoms may prove useful in mitigating the constraints associated with source temperature
and fluctuations in the velocity of the condensate center of mass.
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1.3 Applications in fundamental physics

With the lithium interferometer, our team has developed expertise in measuring non-inertial
e�ects and geometrical phase shifts using separated-arm interferometers. The experiment we are
currently building is a continuation of this work. The new apparatus will allow a much larger
macroscopic separation of the arms, opening new perspectives for the study of geometrical
phase shifts induced, for example, by electromagnetic fields [Anandan, 1995], gravitational fields
[Anandan, 1995 ; Hohensee, 2012 ; Overstreet, 2022], or artificial gauge fields [Bouchiat, 2011 ;
Zygelman, 2015]. In this chapter I focus mainly on a proposed test for the electrical neutrality
of the atom.

1.3.1 Measuring matter neutrality

All experiments to date [Unnikrishnan, 2004 ; Bressi, 2011] indicate that atoms are electrically
neutral, i.e. there is an exact correspondence between the electron (qe) and proton (qp) charges,
and the neutron charge (qn) is zero. The best existing upper bounds for the electron-proton
charge asymmetry | qp + qe | /qe and the residual neutron charge | qn | /qe are close to 10≠21.
Despite the remarkable accuracy of these measurements, a tiny residual atomic charge would
have major implications for particle physics [Foot, 1993 ; Lammerzahl, 2007 ; Arvanitaki, 2008],
astrophysics and cosmology [Caprini, 2005]. Our new device will allow the implementation of
a new method based on the measurement of the scalar Aharonov-Bohm phase [Champenois,
2001b ; Arvanitaki, 2008]. We are confident that this approach could significantly improve the
current limits, possibly by several orders of magnitude.

State-of-the-Art Atomic Neutrality Measurements. It seems that one of the first pro-
posals that triggered tests of the neutrality of matter came from A. Einstein [Einstein, 1924]. In
1924, he proposed to explain the origin of the magnetic fields of astronomical bodies in terms
of a slight charge asymmetry leading to a non-zero charge density and, consequently, to the
emergence of a magnetic field comparable to that generated by a magnetic dipole when a body
is rotating. According to this model, a value of the order of 10≠19qe would explain the Ear-
th’s magnetic field. This proposal stimulated the first accurate matter-neutrality experiment,
[Piccard, 1925], which ruled out this explanation. 4.

Since these first experiments, many measurements of the electrical neutrality of matter have
been made with various atomic and molecular species. In the table below we summarize the
most important experiments. We distinguish between those that establish independent limits
for the electron-proton charge asymmetry (qp + qe) and the neutron charge (qn), and those that
do not distinguish between these two contributions (q = qAt

A
), where A is the number of nucleons

in the atomic species (or sample in the case of macroscopic bodies). These methods fall into four
categories:

1. Gas flow methods measure the electrostatic potential of a chamber (with electrical filters

4. We now know that the Earth’s magnetic field is due to a self-sustaining dynamo mechanism in the outer
core.
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to prevent the passage of charged particles) through which a gas flows [Piccard, 1925 ;
HILLAS, 1959 ; King, 1960] 5.

2. The electroacoustic method consists in the detection of the acoustic wave excited in a gas
by an alternating electric field inside an acoustic resonator [Bressi, 2011].

3. Levitation methods: An electrostatic force is applied to small magnetically levitated masses.
Analysis of the displacements induced by this force is used to define constraints on the
neutrality of matter [Marinelli, 1984]. This modern version of Millikan’s experiment was
originally designed to detect the presence of free quarks in matter.

4. Beam deflection methods 6: it consists of measuring the deflection of a molecular or neutron
beam under the influence of an electric field [Hughes, 1988 ; Baumann, 1988].

Methods (1-3) are based on the use of macroscopic bodies for which it is di�cult to model the
systematic e�ects associated with the presence of free charges or inhomogeneous electric fields.
Significantly improving the accuracy of the first two methods seems to be a considerable challenge
[Bressi, 2011]. Thanks to advances in optical trapping techniques for nanoparticles, the levitation
method (3) is currently attracting renewed interest [Moore, 2021]. The proposed accuracies,
of the order of 10≠24qe, are close to what we are aiming for. It should be noted, however,
that this method does not distinguish between contributions from neutrons and those from the
electron-proton charge asymmetry. Experiments based on atomic beams (method 4) look for
an anomalous deviation in the trajectory of atoms in the presence of an electric field induced
by a Lorentz force. This method requires very good knowledge of the beam profile and the
electric field. Young et al. [Young, 1997] have suggested using the remarkable sensitivity of atom
interferometers to acceleration with cold atoms to measure these electric forces. However, e�ects
related to the polarizability of atoms limit the practical interest of this method Champenois
et al. [Champenois, 2001b]. Finally, Durstberger-Rennhofer et al. [Durstberger-Rennhofer,
2011] have proposed a new method using spectroscopy of ultracold neutron quantum states in
the gravitational potential above a vertical mirror. However, as with the other methods, this
experiment requires a very good knowledge of the spatial homogeneity of the electric field.

Method Ref. q/qe (qp + qe)/qe qn/qe

1 [Piccard, 1925] 5 ◊ 10≠21 x x
1 [HILLAS, 1959] 1 ◊ 10≠21 3 ◊ 10≠20 3 ◊ 10≠20

2 [Bressi, 2011] 1.1 ◊ 10≠21 x x
3 [Marinelli, 1984] 0.8 ◊ 10≠21 x x

4 Atoms [Hughes, 1988] 3 ◊ 10≠21 1.2 ◊ 10≠19 9 ◊ 10≠20

4 Neutrons [Baumann, 1988] x x 1.1 ◊ 10≠20

Table 4.2 – Summary of the limits of matter neutrality from laboratory experiments.

The Aharonov-Bohm e�ect is an interesting phase shift for testing the matter neutrality
using matter wave interferometers. This phase shift is proportional to the charge of the particle,

5. Inconsistencies in these measurements are reported in [Stover, 1967]
6. This method, first implemented by Hughes et al., is said to have been suggested to V.W. Hughes in 1947

by I.I. Rabi after a discussion with A. Einstein [Hughes, 1988].
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A neutron interferometer experiment testing the existence of an Aharonov-Bohm effect
has been performed and no measurable phase shift has been found upon reversal of the
enclosed magnetic flux. A positive result would have provided evidence for a breakdown
in the standard minimal-coupling scheme for the electromagnetic interaction of a neutron.
The sensitivity of the experiment sets the ratio of the Aharonov-Bohm effect for a neutron
to that of a particle of charge e to be less than 5& 10

PACS numbers: 03.65.-w, 28.20,-v

For a charged particle, there are intrinsically
nonlocal effects produced by an electromagnetic
field. The Aharonov-Bohm (AB) effect' ' is a
striking demonstration of this phenomenon. Con-
sider. an electron beam which is split into two co-
herent subbeams and is allowed to interfere upon
subsequent recombination (see Fig. 1). Then, if
a magnetic flux is passes somewhere through the
area between the separated beams (for instance
by an infinite solenoid perpendicular to their
plane, or a toroidal coil wrapped around one of
them) there wi11 be a phase shift induced in the
interference pattern, even though neither beam
ever passes through the magnetic field. This ef-
fect has been demonstrated experimentally and
discussed many times for electrons. '
The effect is caused by the topological proper-

ties of the coupling between a charged particle
and the electromagnetic field. This coupling it-

self is a representation of the gauge invariance of
the theory, which is a consequence of the fact

Poth (Sl)

B 0
0') + 'Pa

Path (S2)
FIG. 1. The Aharonov-Bohm effect. An electron

beam is split coherently at u and recombined at b. A
magnetic flux through the region between the two sub-
beams, g~ and g2, will induce a phase shift in the inter-
ference pattern even if neither beam is ever in the mag-
netic field.
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Figure 4.10 – Testing the Aharonov-Bohm e�ect with neutrons allows neutron neutrality to
be tested. This experiment was performed by Greenberger et al. [Greenberger, 1981] by
constraining the neutron charge to 10≠12qe.

in a configuration where the electromagnetic field is zero on both arms of the interferometer,
thus minimizing polarizability e�ects. Proofs of principle for this method have been established
by Greenberger et al. [Greenberger, 1981] with neutrons (see figure 4.10). However, due to
the low flux of neutron interferometers, the measurements performed did not allow to constrain
neutron neutrality with an uncertainty better than 10≠12qe. We propose to test atom neutrality
using the scalar Aharonov-Bohm e�ect in atom interferometers.

Measurement principle. This approach was first proposed by our group [Champenois,
2001b] using a thermal atom beam. It was then adapted by M. Kasevich’s group for cold atoms
launched in a fountain [Arvanitaki, 2008], thus approaching the solution we wish to implement.
The principle consists in applying opposite electrostatic potentials ±V to each arm of the inter-
ferometer for a time interval · . The electrodes are not turned on until both wave packets are
completely inside the electrodes. If the atom has a non-zero electric charge ”qAt, then a phase
shift proportional to ”qAt is measured:

�„ = 2”qAtV ·

~ (4.3)

From the uncertainty of this phase shift we obtain the limit on neutrality of the rubidium atom
and the charge per nucleon ”qAt/A:

‡q

qe

= ‡„

~
2V ·

1
Aqe

(4.4)

This measurement has important conceptual advantages. First, it is a single-particle interference
e�ect, which eliminates the free charge bias often observed in macroscopic experiments. In
addition, in the Aharonov-Bohm configuration, the atoms do not experience an electric field,
reducing polarizability phenomena. Furthermore, the small number of particles involved in the
measurement is compensated for by the fast oscillation with the charge of the Aharonov-Bohm
phase (�„ Ã ~≠1).

Furthermore, measurements on the two rubidium isotopes 85Rb and 87Rb allow to indepen-
dently constrain the neutron charge qn and the electron-proton charge asymmetry qe + qp. The
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Figure 4.11 – (a) The arms of the interferometer are separated by a centimeter distance d
to accommodate the electrodes. The electrodes are turned on for a period of time. (b) The
electrodes are rotationally symmetric, of length L, radius R, and separated by a distance D.

charge conservation in — decay (n æ p + e≠ + ‹e) then allows to derive a constraint on the
neutrino electric charge (‹e) with the same accuracy as on the qp + qe and qn charges.

The principle of the experiment is illustrated in the figure 4.11. The rubidium BEC is laun-
ched vertically and then interacts with a vertical optical lattice to create two coherent paths via
LMT beam splitters. At the top of the trajectory, the distance d between the two arms is centi-
metric, allowing the electrodes to be placed around the arms. We consider cylindrical electrodes
of length L = 2 cm and radius R = 5 mm (figure 4.11(b)) and potentials up to V = 20 kV.

To demonstrate the applicability of our approach, we have theoretically studied the propa-
gation of atoms along the interferometer arms, taking into account the electrostatic potential
generated by the electrodes. The analyzed interferometers have a total duration of 2T =120 ms
and are based on atomic beamsplitters transferring momentum in the range of 80~k to 200~k,
with the interaction duration within the electrodes fixed at · =20 ms. Our analysis accounts for
sources of phase noise caused by laboratory vibrations, trajectory fluctuations correlated with
inhomogeneities in the electrostatic potential, and quantum projection noise [Beguin, 2023].

The uncertainty in matter neutrality targeted by this device is of the order of
10≠24qe. We assume that the neutrality measurements are averaged over a period of 72 hours,
which is approximately 2.5◊104 measurements, with a phase shift measurement every 5 seconds.
The main factors limiting the statistical uncertainty are summarized in the table below 4.2.

80~k configuration 164~k configuration
Separation 2 cm 4 cm
Vibrations 2 ◊ 10≠23 4 ◊ 10≠23

QPN 6 ◊ 10≠24 6 ◊ 10≠24

E(”z) 1 ◊ 10≠23 7 ◊ 10≠27

Table 4.3 – Sensitivity on neutrality measurement for 80~k and 164~k configurations.

The first limitation is likely to be the phase noise induced by the vibrations of the optical lat-
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1. Atom interferometry with macroscopic separation

tice. To quantify this phase noise, we have performed vibration measurements in our laboratory
using a seismometer Nanometrics Trillium Compact™installed on a passive vibration isolation
platform Minus-K™. The vibration noise is weighted by the response function of the interfe-
rometer [Décamps, 2020] and averaged over the duration of the measurement, allowing us to
estimate a vibration-induced phase noise of about ‡„ ≥ 1 mrad, giving a neutrality uncertainty
of about ‡q ≥ 2 ◊ 10≠23qe.

The e�ect of vibration noise can be significantly reduced by using two interferometers that
share the same optical lattice (gradiometer), with only one of the two interferometers interacting
with the electrodes. In this configuration, the measured phase can reach the quantum projection
noise (QPN), ‡QP N „ = (V

Ô
Nd)≠1. With Nd = 104 detected atoms and a visibility of V = 50%,

after an integration of 2.5 ◊ 104 measurements, the quantum projection noise limits the phase
measurements to 300 µrad, corresponding to an uncertainty on neutrality of about 3 ◊ 10≠24qe.

The evaluation of the accuracy of a new measurement method is a complex task. However,
it is worth noting that unlike inertial or h/M measurements, the scalar Aharonov-Bohm e�ect
used for neutrality measurements depends on the voltage applied to the electrodes. Therefore,
di�erential measurements can be made by switching voltages to distinguish the Aharanov-Bohm
e�ect from other systematic e�ects typically encountered in atom interferometry. We anticipate
two systematic e�ects that could potentially bias the measurements.

The first systematic e�ect arises from the residual electric field in the electrodes, which
induces a Stark phase shift. This electric field is mainly due to the curvature of the electric field
near the edges of the two electrodes. Using finite element simulation and preliminary electrode
design, we map the electric field. From this, we calculate the Stark phase shift:

��E = ≠2fi‘0–0
~ œ

·

0

C

E2(zB(t) ≠ E2(zA(t)))
D

dt, (4.5)

where –0 is the static polarizability, ‘0 is the vacuum permittivity, and zA,B(t) is the trajec-
tory of the atoms as they propagate through the electrodes. Our estimate is that this e�ect
could bias the measurement by as much as 10≠27qe. However, real metal conductors are not
perfectly equipotential due to "patch potentials" [Camp, 1991], which may introduce an addi-
tional contribution. Nevertheless, it is important to emphasize that these polarizability e�ects
do not have the same voltage dependence in V as the Aharonov-Bohm e�ect. Finally, in-situ
electric field measurements using Rydberg state spectroscopy are envisioned [Osterwalder, 1999 ;
Thiele, 2015 ; Mohapatra, 2008].

Another systematic e�ect comes from the transient current that occurs when the voltage
is turned on and o�. With our electrode geometry, we estimate the presence of a transient
magnetic field of about 300 µG for each electrode. This magnetic field can potentially a�ect the
measurement via the quadratic Zeeman e�ect, since the measurement is made on a mF = 0
state 7. In the worst case, where the fields of each electrode are uncorrelated, this phase shift
remains less than 1µrad (< 10≠27qe). In addition, it is possible to measure the magnetic field

7. As both stable rubidium isotopes are bosons with |F, mF = 0Í in the ground state, it is possible to use this
strategy
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using mF = ±1 states, thus minimizing this systematic e�ect.
The actual design of the electrodes and high-voltage electronics is currently being studied

in detail, with the goal of maximizing the applied voltage and achieving the most uniform
electrostatic potential possible. Although the full design of the experiment is not yet finalized,
an uncertainty of about 10≠24qe seems to be within reach. So what can we learn from this?
First, it is important to emphasize that the proposed neutrality test uses a method that is
fundamentally di�erent from previous approaches, which is essential from a metrological point
of view.

In addition, improved laboratory experiments will allow comparisons with constraints obtai-
ned from astrophysical observations: [Sengupta, 1996 ; Ra�elt, 1999 ; Sengupta, 2000 ; Caprini,
2005]. To my knowledge, the tightest limits have been obtained by analyzing the anisotropy
of the cosmic microwave background [Caprini, 2005]. These limits vary from q Æ 10≠22qe to
q Æ 10≠38qe, depending on the charge distribution. It would be interesting to study the possibi-
lity of refining these models using new laboratory measurements.

The search for a deviation from the neutrality of the atom is also an important test of the
Standard Model (SM), and o�ers the possibility of exploring theories "beyond the Standard
Model". In fact, the origin of the neutrality of matter is related to electric charge quantization
("ECQ"), i.e. the fact that all electric charges appear as multiples of a fundamental charge.
P.A.M. Dirac tried to solve the problem of ECQ by introducing magnetic monopoles [Dirac,
1948]. On the other hand, the Minimal Standard Model (MSM) 8 is unable to explain the quan-
tization of electric charge [Foot, 1993 ; Foot, 1994], and the extremely precise agreement between
the charges of the fundamental particles is a free parameter of the model. Consequently, a slight
deviation of the electric charge of neutrons or atoms from zero is allowed in this theoretical
context. In the context of extensions to the Standard Model that incorporate the non-zero mass
of neutrinos, the possibility of an Electric Charge Quantization (ECQ) violation depends on
whether the neutrinos are Majorana or Dirac particles. If the neutrinos are Dirac particles, this
allows for the existence of an unquantized charge defined as ”q = ‘(B ≠ L), where B is the
baryonic number and L is the leptonic number. In other words, this suggests that neutrons and
neutrinos may have a non-zero ‘ charge. In addition, tests of atomic neutrality are seen as a
means of probing models of physics described as "beyond the Standard Model" [Witten, 1979 ;
Foot, 1993 ; Lammerzahl, 2007 ; Arvanitaki, 2008]. Finally, atomic neutrality measurements com-
bined with fractional charge detection experiments [Moore, 2021 ; Afek, 2021] are used to test
for the existence of new charged particles envisaged in dark matter models [Jaeckel, 2010 ; Essig,
2013].

1.4 Conclusion

The new interferometer will o�er the possibility of obtaining spatial separations ranging
from a few centimeters to a meter, allowing the creation of controlled gravitational and elec-
tromagnetic potentials on the interferometer arms. The use of electromagnetic potentials o�ers
the possibility of studying geometric phases, and I have presented a particular application for

8. In this context minimal means that neutrinos have zero mass.
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testing atomic neutrality. Other geometric phases can be studied using artificial gauge fields
[Zygelman, 2015]. In addition, cavity electrodynamics experiments have been proposed using ca-
vities around the arms of the interferometer [Qureshi, 2023]. In addition, by positioning masses
close to the interferometer arms, we could study gravitational e�ects [Anandan, 1995 ; Hohensee,
2012 ; Overstreet, 2022] and make measurements of the gravitational constant G [Fixler, 2007 ;
Rosi, 2014]. Finally, we can imagine the use of horizontal optical lattices to create non-zero
area interferometers [Gautier, 2022 ; Schubert, 2021]. The latter configuration would o�er the
possibility to study more precisely certain properties of geometric phases of the Aharonov-Bohm
vector type (HMW, AC, etc.) [McKellar, 2014 ; Marletto, 2020], as well as generalizations of the
Sagnac e�ect applied to the total angular momentum of the atom [Oliveira, 1962 ; Mashhoon,
1988 ; Demirel, 2015].

Due to its versatility, our device is ideally suited to implement recent advances in atom optics
and their metrological evaluation. We plan to use Bloch oscillations to trap atoms in the vertical
optical lattice [Ferrari, 2006 ; Kovachy, 2010 ; Charrière, 2012 ; Zhang, 2016 ; Alauze, 2018 ; Xu,
2019], which could extend the duration of the interferometer without requiring the use of large
atomic fountains. In addition, the application of squeezing techniques could potentially benefit
our experiment with measurements below quantum projection noise ("QPN") [Hosten, 2016 ;
Salvi, 2018 ; Corgier, 2020 ; Anders, 2021 ; Greve, 2022].

2 New atom sources for interferometry

We are also interested in the development of atom inertial sensors. Our work on LMT beam-
splitters and atom interferometer metrology directly contributes to the improvement of these
quantum sensors. In addition, we are developing on-chip sources of ultracold atoms suitable for
on-board applications. I will briefly present these activities in this section.

2.1 Context

Atom interferometry is of great interest for the development of high-precision accelerometers
and gyroscopes with applications in inertial navigation and geodesy. Most of the accurate mea-
surements made so far with atom interferometers use thermally cold atom sources, producing
about 107 atoms cooled to a few microkelvins, at a rate of more than 1 Hz. Typical interaction
times for atom interferometers are on the order of 2T ≥ 100 ms. In gravimetric and geophysical
applications, atom interferometers have proven to be as good as, if not better than, state-of-the-
art commercial sensors, and are increasingly being investigated for their potential use in inertial
navigation.

To improve the sensitivity of inertial sensors, it may be advantageous to increase the mo-
mentum separation between the two arms of the interferometer by using LMT beamsplitters,
which requires the use of ultracold atoms to maintain a good visibility. It is also possible to
increase the interaction time T , with durations of several seconds being envisaged in the context
of space missions. However, the thermal expansion of the atomic clouds during the time of flight
in the interferometer makes it di�cult to control systematic e�ects. For example, if we consider
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(a) (b) (c)

Figure 4.12 – (a) Magneto-optical trap created with di�raction gratings and (b) magnetic trap
created with wires on the chip surface. (c) Photo of the optical and magnetic chip assembly.

rubidium atoms cooled to a few microKelvin, an interaction time of more than one second will
result in an atomic cloud of a few centimeters in diameter.

To fully exploit the potential of atom interferometers under such conditions, it is essen-
tial to use cooling methods that allow to reach much lower temperatures < 100 nK, typically
corresponding to Bose-Einstein condensates (BEC).

2.2 Atomic source on a chip

Bose-Einstein Condensation (BEC) sources used in the laboratory are generally limited in
rate, with typical values of tens of seconds, and require high power consumption. The main
goal of this study is to develop an ultracold atom source capable of producing BECs with high
cycle rates, high atom flux, and low power consumption. Atom chips have the advantage of
creating extremely confined atom traps, which allow for rapid production of ultracold atoms.
In addition, they have already demonstrated their compatibility with on-board experiments in
terms of reliability, power consumption and compactness. We have built an experimental device
(see figure 4.12) that combines a magnetic chip and optical gratings to create a compact and
robust device.

2.2.1 Laser cooling on a grating chip

The distribution of optical beams to the vacuum chamber is a potential source of instability
for on-board cold atom sensors. To mitigate this problem, we have developed a magneto-optical
trap consisting of multiple di�raction gratings arranged on a flat surface, which we refer to as an
"optical chip". These gratings have been specially designed to generate all the beams required
for the magneto-optical trap from a single incident laser beam, as shown in Figure 4.12. This
feature greatly simplifies the optical device and increases its robustness during the laser cooling
phase.

The optical chip consists of three one-dimensional (1D) di�raction gratings. The incident and
di�racted beams, combined with the magnetic field generated by anti-Helmholtz coils aligned
with the incident beam axis, form a magneto-optical trap in tetrahedral configuration, called
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2. New atom sources for interferometry

GMOT for Grating Magneto-Optical Trap [Nshii, 2013 ; McGilligan, 2015 ; McGilligan, 2017 ;
Imhof, 2017]. The design of the GMOT was guided by several features, including the reduction of
specular reflection (order 0), the quality of polarization of the di�racted beams, and the balance
of radiation pressure forces at the atomic level.

Two-dimensional (2D) geometries are sometimes used to achieve GMOTs [McGilligan, 2015],
but these require a 25 % distribution of optical power in each of the four di�racted beams to
achieve a balance of radiation pressures, which corresponds to a perfect di�raction grating 9.
On the other hand, by choosing a 3x1D geometry, it is su�cient to produce 1D gratings with
a di�raction e�ciency of 33 % in the +1 order. This corresponds to a suboptimal di�raction
grating in terms of di�raction e�ciency, which makes it easier to implement experimentally.

The design of our one-dimensional gratings is based on an in-depth numerical analysis car-
ried out by Romain Calviac with the expertise of our colleagues O. Gauthier Lafaye and A.
Monmayrant at LAAS. Several grating configurations were studied with the aim of obtaining a
radiation pressure balance to within 1%, a circular polarization of more than 90%, and a 0-order
di�raction e�ciency of less than 5%. We chose a simple Al/Si grating with a di�raction angle
of 40 degrees, a robust option in terms of fabrication processes.

Figure 4.13 – (a) Image of a magneto-optical trap near the surface. (b) Temperature measu-
rement of optical molasses.

The device is placed in a vacuum chamber where we manage to load about 7 ◊107 atoms
in just 1.5 seconds using 2D MOT. After a step of compressed MOT and optical molasses, the
atoms are cooled down to a temperature of about 20 µK. These performances are similar to
the best published results for GMOT. Table 4.4 shows the published performance of GMOT in
terms of number of atoms, temperature, and phase space density (PSD). This table puts our
results into perspective with the state of the art and underlines the validity of our approach.

The number of atoms is currently limited by the capture volume of the GMOT. We plan to
use a flat-top incident laser beam to obtain a more uniform distribution of laser power over the
atomic grating, thereby increasing the volume of the GMOT. In addition, sub-Doppler cooling

9. A perfect 2D square di�raction grating achieves 50 % di�raction in the +1 and -1 orders and 0 % in the other
orders, in each of the grating’s eigendirections. For a simple 1D grating, perfect di�raction e�ciency corresponds
to 50 % di�raction in the +1 order
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Atom number Temperature (µK) PSD Ref.
7 ◊ 107 20 4.1 ◊ 10≠6 LCAR

2.5 ◊ 108 - - [Imhof, 2017]
3 ◊ 106 3 - [McGilligan, 2017]
3 ◊ 107 46 3.7 ◊ 10≠6 [McGilligan, 2015]

Table 4.4 – Performance oof ur GMOT and recently published.

in molasses is likely to be limited by the presence of stray magnetic fields near the chip resulting
from eddy currents flowing in the copper baseplate. However, a temperature of a few tens of
microkelvin is perfectly suited for e�cient loading of the atomic assembly into the magnetic
potentials of the atom chip.

2.2.2 Magnetic trapping on a chip

Atom chips allow atoms to be trapped and manipulated using magnetic potentials created by
microfabricated conductive wires. This approach creates high-confinement traps that support
e�cient evaporative cooling. It also results in compact, robust, and energy-e�cient devices.
Our atomic chip design allows us to generate magnetic potentials similar to those used in the
QUANTUS experiment, which succeeded in creating a Bose-Einstein condensate (BEC) of about
105 atoms in 1 second [Rudolph, 2015]. A peculiarity of our configuration is that the magnetic
trap must be positioned at a su�cient distance from the wires to allow insertion of the optical
chip, whose substrate is about 200 µm thick. This requires the use of currents on the order of
10 A, which is also higher than what is typically used on atom chips. Consequently, this implies
the use of relatively large wires, measuring 50 ◊ 300µm2.

The schematic of the magnetic chip we built is shown in figure 4.14. The chip is manufac-
tured at the LAAS laboratory in Toulouse. The copper wires and the gold passivation layer are
electroplated on an AlN substrate. The chip consists of three Z-shaped wires, 10 mm, 6 mm
and 2 mm long, with a central cross section of 50 ◊ 300µm2. The 6 mm and 2 mm Z wires are
connected on both sides of the chip, which also allows the creation of H-shaped geometries. A
central wire with a cross section of 100 ◊ 50µm2 is used to create a dimple trap.

Details of the fabrication of the optical and magnetic chips, their hybridization, and the
optical and thermal performance tests will be presented in Romain Calviac’s thesis. The device
we built allowed us to successfully demonstrate the first loading of an atom chip from a GMOT
fused to the same chip (see figure 4.14). We were able to trap about 5 ◊ 106 atoms in this trap,
with a trap lifetime of 3 seconds.

These are the very first results and I think there is still a lot of room for improvement.
For example, a better adaptation of the magnetic trap and the GMOT, the introduction of
an optical pumping stage, or the use of a beam with a flat top profile are being considered.
These results are promising and pave the way for the creation of robust ultracold atom sources
suitable for on-board applications. Beyond atom source applications, Raman di�raction using
the optical chip would allow acceleration measurements in all three spatial directions, exploiting
di�erent combinations of di�racted wave vectors. In collaboration with LP2N and the company
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Figure 6 : plan de masque de la nouvelle puce magnétique conçue.   

 

 

Fabrication de la puce magnétique : 
Des embases ont été réalisées en utilisant le procédé développé durant la R&T précédente. La Figure 7 
montre une puce magnétique après fabrication.  

La résistivité du cuivre mesuré par une mesure 4 pointes est très proche de celle du cuivre massif  (Figure 
8). Les épaisseurs de cuivre déposées sont représentées dans le Tableau 1 elles sont satisfaisantes et très 
proches des 50 µm visés pour le Wafer 2.  

(a) (b) (c)

Figure 4.14 – (a) Mask of the magnetic chip wires. (b) Photo of the magnetic chip fabricated
in the LAAS clean rooms. (c) Number of atoms in the trap as a function of time in the magnetic
trap.

Exail, we are investigating the possibility of integrating this technique to create 3D inertial
sensors with our system. More generally, this technology opens new perspectives in optical
architecture for quantum technologies, whether for terrestrial or space applications. It allows the
creation of optical gratings with a single beam, opening the way to explore di�erent geometries
and dimensions of optical gratings. This advance could contribute to the development of high-
precision clocks, new inertial sensors, and quantum simulations.

3 Conclusion

The research project I have presented is a continuation of the separated-arm atom interfe-
rometry experiments initiated by Jacques Vigué. However, the apparatus we are implementing
di�ers significantly from the interferometer originally used in Toulouse. We are developing new
instruments based on the use of ultracold atoms, with applications in both fundamental physics
and quantum technologies. These atom interferometers with separated arms will enable new
tests in fundamental physics, such as tests of atom neutrality. Our developments in atom op-
tics, such as the creation of high-rate Bose-Einstein condensate sources and the manipulation
of ultracold sources using optical lattices, are in line with the development of inertial sensors
and the large-scale instruments proposed for gravitational wave detectors and the exploration
of physics beyond the Standard Model on Earth or in space.
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